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68 ORTHONORMAL BASES BCRR o e b

DEFINITION

From our work with the natural bases for R?, R3, and, in generalh

we know that when these bases are present, the computations are fy

minimum. A subspace W of R" need not contain any of the naw
vectors, but in this section we want to show that it has a basis withik
properties. That is, we want to show that W contains a basis § suchthﬂ .
vector in § is of unit length and every two vectors in S are onhogoud
method used to obtain. such a basis is the Gram—Schrmdt process.ﬁ
presented below _

¥ -

A set S‘ = {u,m, ..., u) in R is called orthogonal 1f any tWO‘; ™
vectors in § are orthogonal, that is, if u,

u; =0 fori % j.-An ol
set of vectors is an orthogonal set of unjt vectors. Thatis, § = {“l-“"
is orthonorm"d ify; cu; j

= Ofori #J and y; - u,—lforx—ll §
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Proof
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Ifxi = (1,0,2), x, = (2,0, 1),
orthogonal setin R, The vectors

[ 2 2 I
u = —, 0, — =|—-— ——

| (\/5 ﬁ) and u, (ﬁO,ﬁ)

are unit vectors in the

of unit length, it follo

(X1, X2, X3} is the s

and x3 = (0, 1,,0), then (x;, X3, X3} is an

directions of X) and x,, respectively. Since x3 is also

Ws that {uy, uy, X3} is an orthonormal set. Also, span
ame as span (uy, uy, x3). : |

¢

The natural basis

((1,0,0), (0, 1,0). 0,0, 1))
is an orthonormal set in R3,

More generally, the natural basis in R" is an
orthonormal set. ‘ :

n
An important result about orthogonal sets is the following theorem.
Let § = {uy, u,, -+++ W) be an orthogonal set of nonzero vectors in R". Then

S is linearly independenr. -

Consider the equation .

FiU|+,CiU2+'j'+CkUk~=0-' : | (h
Taking the dot prodt_’.lcl of both sides of(l)with u,l <i s.k, we haye
(Cll'l|4+'Czll’:+_'-'+CL-UA-)"U1,=_0'U1- ()

By properties (c) and (d) Qf Theorem 4.3_,-Sectiori 4.2, the left side of (2)is

cr(up-w) +ca(uy - wy) + -+ ¢ (g - ;).
and the right side is 0. Sinceu;-u; =0ifi £ J» (2) becomes

0=ci(u-w)=c|u?. 3)

By (a) of Theorem 4.3, Section 4.2; llu; || # 0, since u; # 0. Hence (3) implies
thatc; = 0,1 <i <k,and S is linearly independent. BN n

An orthonormal set of vectors in R" is linearly independent.
i penc

Exercise T.2. =

From Theorem 6.9 of Section 6.4 and Corollary 6.6, it follows that an or-
thonormal set of n vectors in R" is a basis for R” (Exercise T.3). An orthog-

onal (orthonormal) basis for a vector space is a basis that is an orthogonal
(orthonormal) set. . ' "

We have already seen that the computational effort required to solve a
given problem is often reduced when we are dealing with the' natural basis
for R™. This reduction in computational effort is due to the fact that we are .
dealing with an orthonormal basis. For example, if S = {uj.ua. ..., u,) isa - -
basis for R", then if v is any vector in V, we'can write v as

° "
v V=C|U|+(.'2U2+"'+Cnun- ) :
The coefficients c|, cs, ..., ¢, are obtained by solving a linear system of o,

‘equations in n unknowns. (See Section 6.3.) S '

- However, if S is orthonormal, we can obtain the same result svith much

less work. This is the content of the following theorem.
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Proof

Proof

EXAMPLE 3

Solution

THEOREM 6.18

- Proof

ler S = (u,. ny. . _n,) be an orthonormal basis for R* and
. €

R* Then V::“

ve=oOm 4+ ouy b o,
wherne

Cp o= V. 1 i <n.
Excrcize T 4.
5 = - . |

“;, : (ay. a3, ..., u,. ) be an orthogonal basis for Rn and vy e
R". Then

v=cm +cxuy 4 -+ cpu,,

where
u, - u,

Exercise T.4(b). \

: B!
Let S = {u,.u,, u:) be an orthonormal basis for R*, where v

we=(3 54, m=0G4-3). and w=(lyy

Write the vector v = (3. 4, 5) as a linear combination of the vectorsjy;

We have
v = cju; + ca2u> + ciu;.

Theorem 6.17 shows that ¢, c3. ;md c3 can be obtained without by
solve a linear system of three equations in three unknowns. Thus k|

cp=v-u; =1, co=v-.u; =0, c3=V-uy=7

and v = u; + 7u3.

(Gram®-Schmidt** Process) Ler W be a nonzero sub.;pace of R" wig

S = (u;,uss...,u,). Then there exists an orthonormal basis T =y
e W) for W.
The proof is constructive; that is, we develop the desired basis T. i
we first find an orthogonal basis T* = (v, v, ..., v, } for W.

First, we pick any one of the vectors in §, say u,, and callitv,
v, = u,. We now look for.a vector v, in the subspace W of W3
by {u,, u:) that is orthogonal to v,. Since v, = u;, W, is also the 4

spanned by {v;, uz}. Thus

V2 = V) +cou;.

o ]
- )
i = ——— 1l <i<n. r

We ry to determine ¢ and ¢ so that v, - v» = 0. Now

O0=v2-.vy = (c1vI + c2u3) - v} = ¢ (v} "'l)+"2(u-2.m‘

*Jorgen Pederson Gram (1850-1916) was a Danish actuary.

sl
**Erhard Schmidt (1876-1959) taught at several leading German Universiti€s an;:"
of both Hermann Amandus Schwarz and David Hilbert. He made imPO""“lom,
the study of integral equations and partial differential equations and, as 1&"
introduced the method for finding an orthonormal basis in 1907. In 1908011::&1“
infinitely many lincar equations in infinitely many unknowns, in which he f
Hilbert spaces and in which he again used his method. . ‘




- Now

0. Observe that vy # 0 (why?). Solving5) and (6) for ¢ and d>, respectively.
. 'we obtain

Hence

Figure 6.11 »
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SinCc v # 0 (Why?), Vi-vYi1 # O, and leiﬂg fO!’ Cy and c2 in (4)- we havc

uy-Vv;

cp = —0€ .
ViV,

We may assign an arbitrary nonzero value to c;. Thus, letting ¢z = [, we
obtm’n P

cp = - .
Vi-Vi
Hence

u>-Vv;
Vi=covy 4ot =0 — v;.
¥« Y

Notice that at this point we have’an orthogonal subset {v,. v;} of W (see Figure
6.10).
Next, we look for a vector v; in the subspace W, of W spanned by

{u;.uz, u3} that is orthogonal to both v; and v;. Of course. W is also the
subspace spanned by {v;. vz, u3} (why?). Thus

: vy = dyv| + d>vs + dyos.
We now try to find d; and d; so that

Q;-v, =0 and v;.-vy;=0.

‘0 =ViTV) = (_dg\"l + d>v, —5— diu3) ~v; = d(v;-v)) = druy - V). - €5)
0=v3-vy=(d\vy+d1v2 + d]“]) ¥y = dr(vr-va) = di(us - V:)_- ©)

In obtaining the right sides of (5) and (6). we have used the fact that vy - v2 =

us-vy - uj - V>

dl‘=.—d3 and d:: -—d:a,

V=¥ V2 -V

We may assign an arbitrary nonzero value to di. Thus, letting dy = 1, we have

uy vy
d| = —
¥y -V,

uy - vy u3 - vy .
¥y = u3 — W — Y.
V-V Yy V>

Notice that at this point we have an orthogonal subset {v;, va, v3} of W (se
Figure 6.11). -
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SIS SRS We next seek a voctor Vi in the subs;;acclz Wi of S5
L - vi. V2. V3, W}, that ig an
{u;. 2. uz, us), and thus by {w1 Othoggya

ed
a ey te aby |
vy. We can then write \) vl,‘h!
uy - ‘vl ll.‘ - V2 u )"
vy = Uy — vi— ¥are U2ty
.= V2 V2 e
3 vy "’3.

i in this until we have an ort
We continue in this manner hOg

onal
- i Se .
v,,) of m vectors. It then follows that T* js 5 basis fo: ‘I,"ﬁ"{
normalize the v;, that is, let | W u,l"l
. - . ) _
w; = Vi (1l <i <m
CTwll ).

. .
then T = [Wi. Wa. ..., Wn] is an orthonormal basis for w

We now summarize the Gram-Sghmidt process. .

The Gram-Schmidt process for computingm
(wi.wa..n w,,} for a nonzero Subspaqe W of gn Wit?), basisr
{u;, uz, ..., u,} is as follows. Ith :

- Dagjg i
- Step 1. Let v, = u,. .

Step 2. Compute the vectors v2, ¥3, ...,
the formula

o
' u; - v, L u; - v2 Wilkys
I 1 (v‘.vl) Vy =.V> e . ;T-\ v'-l-

VYm, succe'ssively One gy
: : s ag

-1* Vi,_l

: The set {f vectors T‘ = {Vl sV, ..., V,n] iS an Ol'thogonal set. ’ ‘
- Step 3. Let )
W, = —— vV (1 =i <m).
\ CTvall a
Then T = {w;, w2, ..., W,]} is an orthonormal basis for w.
T

Remark It is not difficult to show that if u and v are vectors in R" such thaty.y4

* then u-(cv) = O for any scalar ¢ (Exercise T.7). This result can gfs
used to simplify hand computations in the Gram-Schmidt process. Ag

as a vector v; is computed in Step 2, multiply it by a proper scalar to ckzg

fractions that may be present. We shall use this approach in our compu
work with the Gram—Schmidt process.

: S r EXAMPLE 4 Consider the basis § = {1, u,, u3} for R?, where

N ‘ uy=(LLD, w=(-1,0,—1), and uy = (=123 |

. . L
Use the Gram-Schmidt process to transform S to an orthonormal basis®

Solution  Step 1. Let Vi=u =(1,1,1).

Step 2. We now compute v, and vj:

vi=u, — (22 W : —2 L) =(-3i"
- 2 V).V, v'=('_‘l'_0'—l)—(—f)(l‘l =

}

v

|
3
|
i
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Multiplying v; by 3 to clear fractions, we obtain (-1, 2, —1), which we now
use as v2. Then

| uy - ' .

| V3=UJ—( 2 vl)ﬂ—(u] Vz)vz
. ViV v-V2

. , : =(=1.2,3)-4$0,1,1) - 3(-1.2.-) = (-2.0.2).

| Thus

= (Vi.va.v3} = ((1. 1. 1), (1.2, =1}, (=2.0. 2)}
| ) ~is an orthogonal basis for R3. |

Step 3. Let
| - p= ety ba g 4 i
CT v —ﬁ(
‘; _ 1 1 —L2.-1)
vall ¥ f : - ‘
. AT R AN 32
| Then

T = (wl, Wa, Wj}.

| - _[(1 L 1)( | 2.__1_) (__‘_6_‘_)}-.
‘ | W\ A AB)ITHERE RV
| : is an orthonormal basis for R?. -,

m Let W be the subspace of R* with basis § = {u;. u2, w3}, where

U =(1,-2,0.1), u=(-1,00=1). and u3=(1.1.0.0).
Use the Gram-Schmidt process to transform S to an onhonormal basis for W. -
S°'“t‘°“ “Step 1. Letv, =u, =(1,-2,0,1).
Step 2.. We now compute v; and v: , .
vi=uy— (“2““)\,l = (-1.0.0.—D) — (R) (1. =2.0:D)
vy V) .
=(-3.-3.0.-3)- |

M““‘Pl)’lng v> by 3 to clear fractions, we obtain (—2.-2.0, —"). which we
Now use as v,. Then :

— us - vi vi — u-‘.v:)v
| V)-v'—u_\—' Vi - vy 1 Va-va 2
| : it =10, 0)—(-—‘)(1.—2.0.'1)—(7—3—)(—2.—2.0. -2)
' £.0,0.-1).

Multiplying v3 by 2 to clear fractions, we obtain (1.0, 0, —1), which we now

use as v3. Thus _ .
T* = {(1.—2.0. 1), (2, —2,0, —2), (1,0, 0, —1)}

_ is an orthogonal basis for W.

2
4
[
it

i
9 } - g
1 ey
R 4 «
- i3
B85
M (3]
& Mg o
& B
1 \
! :
¥
] %
o ™
38
'y ¥ '
H
3 0
{4
y :
\w )
¥

i
<}
|
L
*
|
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‘ ' Step 3. Ly
- . . T — ‘ .
' W = __I_v 1 =
v ' = = =20,
1
W el v, o 1 .
VY= A5 (-2 —2.0.-2) = -1 -1
wy= 1 Vi 1 l(l
' iva 2 = 5 (1.0,0, =1, |
< 2 : p
Then : ' |
T = {\Vl‘ \V‘,,\VJ} ) |
1 2
- ={ —_ : 1 : 1 1 1 1 '
| T~ L (i 02k, (L o8
Vo' /s A TAB)IN\NAE T

1S an orthonormg] basis for W,

Remarks - 1. In solving Exam

Ple 5, as soon as a vector is computed we mult
an appropriate s P 3

=S calar_to e_liminme any fra(-:tions that may bc prese
this approacphr‘esu"S in sxmplex_- computations v\.fhen working by
fer from th 1s taken, the resulting basis, while orthonormal,
co he onhonorn_ml basis obtained by not clearing fractio

mputer implementations of the Gram—Schmidt process, inclug
developed with MATLAB, do not clear fractions.

2. We make one final observation with regard to the Gram—Schmig;

In our proof of Theorem 6.18 we first obtained an onhogonali

. _ "and then normalized all the vectors in T* to obtain the orthonon

) - T. Of course. an alternative course of action is to normalize ex
' as soon as we produce it. ’

6.8 Exercises s L R R ey
~ 1. Which of the feilowing are orthogonal se.s of vectors? 5. Use the Gram-Schmidt process to find an onha
@) {(1.,=1,2).(0,2,=1). (=1, 1, D). ‘ basis for-the subspace of R* with basis
() ((1,2,~1,1),(0. =1, =2,0).(1,0,0, —D)}. (1. -1.0). 2.0. D).
(c) f‘(O. 1,0, —1), (1,0, 1, 1), (—=1,1,—=1,2)). ‘ 6. Use the Gram-Schmidt process to find an o'nhu

basis for the subspace of R* with basis

1 in g ‘ 2 N
2.. Which of the following are orthonormal sets of vectors? ((1.0.2). (—1. 1. O)).

® ((5:33).G.4-D . G.=3 D).

7. Use the Gram-Schmidt process to find an onh

(b) [(715‘ 0. _7|5) s (%' %' %) (0. 1, 0)]' _ basis for the subspace of R* with basis
©(e) {(0,2,2,1).(1,1,-2,2), (0, =2, 1, 2)). . (1, =1,0.1).(2.0.0.=1), (0.0, 1,0)}. -

; ; 8. Use the Gram-Schmidt process to find an ot
, otV = R : _
. Excpisesdignd o, SRy basis for the subspace of R* with basis
" 3. Letu=(l,1,-2) and v = (a, — 1. 2). For what values {(1.1,—1,0),(0.2.0, 1). (—1.0,0, D).

of a are u and v orthogonal? . ) _
: 9. Use the Gram—Schmidt process to transform (X

4. Letu= (7'5, 0, 7'.2-), andv = (a. :7'; —b)- For what -{(1, 2), (=3, 4)} for R? into (a) an orthogonal
* values of @ and b is {u, v} an orthonormal set? (b) an orthonormal basis. ‘
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‘ (0c€%% L ror R into an OMogene Malbasis for qp,
hmid‘,p( .23 S=Neous system % solution space of the
.
I' ] r
(0 R {)asa linea
/ !-”,sis fof e (2 3l art (a) v~ =9
s wile s ed in P 2
tg? q10 %, obtaift L+ x4
o 6175 sis © . . the vectors 1+ 25 =0
£ o ineb y containing - 19. Fing -
*f‘.f“ o™ . for R : an orthorormaj pacic
f ﬂ"ﬂ Dﬂsis om basis for the soluyt;
?n‘ mﬂal ’g) *_opstruct an 0geneous system ution space of the
) (af*‘;(é' 5 2o l:ecw of R* spanned by | '
) 4 i spa F.=
\I}gf] ch‘ﬂf (he 5“b(]p 2.} 2 ; X 0
" lwiﬁ f(()()- 0. 1. e COnS(rUC[ o T ¢ X2l=10
fdi 2,2' 0 chcss IOC w of R? spanned by A X3 0
i | subspac 20. Consid
iy pﬂfics o #3,-3.0-—%) 7 the orthonormal basis
/I'Ol : ' .
r“d(l- s of R* s={(~ l) ( (I
3 ubspace =l ——, =
el Jbasi f.;rt:_:r; (a.a+b.b) v2' 2 7 \/i)]
o™ g of 1he T - 4 for R?. Usj
0., L"}?_\nv ors B it subspace of R i :Ls:rfg Theorem 6.17 write the vector (2.3)asa
B’ bﬂS‘sf the form ¢ar combination of the vectors in §.
on0 50 :
ﬂf:t" vectr b.c.b+ ¢ R3 21. Consider the orthonormal basis
+ s for the subspace of | , :
bas? uch that Sl .t = 2 2 1
0fs(a.b.c)s Jg.o.-f |\ ——=.0. —= .(0.1.0)}
g+b +c=V. R : 5/-. \/3 \[5_
space of R 3 .
| basis for the 5““"; i for R‘ - Using Theorem 617 write the vector (2. —3. 1)
c.d) suc as a linear combination of the vectors =
+d=0 in . :
s for R* is an orthonormal T.8. Suppose that [v,, v, ..., v,] isan oﬁhdnormal setin
- T R”. Let the matrix A be glven by
g, " A= [VJ v \',.]. Show that A is nonsingular
(rollary 6.6 ) ) and compute its inverse. Give three different examples
fatan orthonormal set of n vectors in R" isa of such a matrix in R* or R>.
Wk .
< T.9. Suppose that {v;. va..... v, ) is an orthogonal set in
tTheorem 6.1, R". Let A be the-matrix whose jth column is v;,
Corollary 6.7. j=1,2,....n. Prove or disprove: A is nonsingular.
Lt TR v, be vectors in R”. Show thatifu § basis f
oo vy, Va. ..., V.. then u is orthogonal to T.10. Let S = {u;. us, .... u.} be an O"h‘_’"om“’" asis fora
®OrNSPan (v, va. ... .V, ) ' subspace W of R", where m > k. Discuss .how to
i : 1. - Val. . construct an orthonormal basis for V that includes S.
atigrifced vector in R”. Show that the set of all . ; ' - ;
k" that are orthogonal to u is a subspace T.11. Let {u,..... TR | FRY TP u, } be an orthonormal basis
B for R". S = span {uj..... u}, and o
T =span (Ugepo---s u,}. Forany x in S and any y in

:-Mbe vectors in R". Show thatifu-v = 0,
™ =0for any scalar c. )

T.show thatx-y = 0.

bercises
iy

e:f,,,m““ takes a basis S for a subspace W
iy 'horthonormai basis T for W. The

bimy, © OTThONOrmal basis T that is given

m ‘mpkme N
ond '.'chegp nted in MATLAB in routine

E.Sthmidtfur directions.

ML.1. Use gs'chmidt to produce an orthonormal basis for
R? from the basis

(D

T
B e -
S

-
p e e S i

ORI RTINS L TS s
b e i e ) -

T .fmm“\i’
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! Your answer \\.iil be in decimal form. rewrite it in by -
‘Cﬂ“&ﬂr\ 2 " " (C) V'—-:(--‘.(]‘])_ | l]
i »Juce an orthonormal basis tor _4. Find an onl .
M- l;fjcrg: Ch:r':c“:u‘:r.p; L0, 1 DL (1 20 LA Ml i honormal basis g,
A om <] . CClors of th e S‘Jh‘
(0.2. 1. . €0, 1.0.M}. . © form Py
SIS, .
MLJ3. 1nR3,5=—_{(0.—1.l).(O.l.‘l)-(J-l-l”'Sarad' (ﬂ.().ai-b‘b "ﬂ
Find an orthonormal basis T from § and then hn whers &, b, and ¢ ar + o),
. [¥]; foreachof the following vectors. € any req) g,
- r&.

. DEFINITION

- " _THEOREM 6.19

Proof

6.9 ORTHOGONAL COMPLEMENTS

-

{(a) v = (1,2, 0),

Let W, and W; be subspaces of a vector space v L
of all vectors v in V such that v .= w + w,, Wher-e we REYT
W-. In Exercise T.10 in Section 0.2, we asked you g SLH in W, thy
subspace of V. In Exercise T.11 in Section 6.2, we E OW thy, ‘chﬁ
V = W, + W> and W, N W, = {0}. then V is the dir ed YOuth
and we write V = W, @& W,. Moreover, in this case ect gy h{n

. i - . = eve oy
uniquely wntten-as w, + w->, where w 1sin W, and Wo Ty v

/

A . L er 1
we show that if W is a subspace of R”. then R" cap be“ inw,

- - ' i Wri 'ln‘h
of W and another subspace of R". This subspace ‘wjj Wen g,

. ; . 1
basic relationship between four vector spaces assoc-‘a‘edhfv-u:fd‘
' it

A mye
Let W be a subspace of R". A vector u in R" is said 1 i

if it is orthogonal to every vector in W. The set of a)] vee Orthoy
orthogonal to all the vectors in W is called the orthogonalctors in
in R” and is denoted by W (read “W perp®). compj

Let W be the subspace of R? consisting of all multiples Of the yeg,
w = (2.—-3.4). -

Thus W = span {w}, so W is a one-dimensional subspace of W
u in R? belongs to W1 if and only if u is orthogonal to c“',fol-.any
can be shown that W is the plane with normal w. '

Observe that if W is a subspace of R", then the zero vectoraly;
to W+ (Exercise T.1). Moreover, the orthogonal complement of
subspace and the orthogonal complement of the zero subspatg
(Exercise T.2). -

Let W be a subspace of R". Then
(a) W2 isasubspace of R™.
(b) WNwt={(0}

(a) Let u, and u; be in W+. Then u; and u; are orthogonal &
in W. We now have

(u1+u2)'w=ul'“’+Uz-W=0+0‘=0‘

> = i
sou; +us isin WL, Also, let u be in W+ and let ¢ beart
. for any vector w in W, we have

(Cu)-wzc(u-w)=c0=0-
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so cu is in W, which implies that W+ is closed under vector addition and

scalar multiplication and hence is a subspace of R”".

- (b) Letubeavectorin W N WL. Thenuisinboth W and Wi, sou-u = 0.
From Theorem 4.3 in Section 4.2 it follows that u = 0. n

In Exercise T.3 we ask you to show that if W is a subspace of R” that is
spanned by a set of vectors S, then a vector u in R" belongs to W+ if and only

if u is orthogonal (o every vector in S. This result can be helpful in finding
wL, as shown in the next example. :

Let W be the subspace of R* with basis {w, . w2}, where

w,::(l.l,O.l) and W2.=(0.—1,1-l)-
Find a basis for W+,

solution Letu= (a.b,c.d)beavectorin W*. Thenu-w;, =0and u- w> = 0. Thus
we have . _ .

u-wy=a+b+d=0 and u-w,; = —b’+c+d=0.
Solving the homogenec;us system
a+b . +d=0
—b4+c+d=0,
we obtain (verify) )
‘a = —r — 25, b=r+s, c=r. d=s.

Then

. U= (=r—2.r+s.r.s)=r(=1,1.1,0 +s(—2,1.0. ).

Hence the vectors (—1.1.1.0) and (—=2. 1, 0, 1) span W+. Since they are not

multiples of each other, they are linearly independent and thus form a basis
for W, : =

)

O LAV N DM  Let W be a subspace of R™. Then ~

R'=Weo W

Proof Letdim W = m. Then W has a basis consisting of 1 vectors. By the Gram—
Schmidt process we can transform this basis to an orthonormal basis. Thus let
” S = {wi.wa ..., w,, } be an orthonormal basis for W. If v is a vector in R”,
g le[ 7

—

™ W= (VW)W + (VW)W F -+ (Ve W,y )Wp,

and

u=v—w.

R

L e L

NS
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i
'

Since w is a linear combination of vecto;s inS, w belon s td ;
show that u lies in W+ by showing that u is orthogona g every | g

basis for W. For each w; in S, we have e%rl
Hew; = (VW) W, =VW —W-W,
=vew = [(Vvew)w + (V'Wz)Wz+---+(v.wm)w
C=vew = (Vew) (W e W) : m].‘!
=0 )
since wj + Ww; = 0 for i # and Wi “l =L1<i<m, Thusui
. to every vector in W and so lies in W+, Hence s

Remark
-~ THEOREM 6.21

Proof

Remérk ,

[ —

vectors w and u defined by Equations (1) and (2) are unique,

~ which implies thatu = 0. Thenv = w, so v belongs to W. Henceil
Sthat(WHLt = w. .

v=w-+u,

w'hich means that R" = W + W, From part (b) of Theorem 6.19 it
A9,
that ' 1

R" ="V@"V'L

As pointed out-at the beginning of this section, we alsq conclud'e.h

If W is asubspace of R", then
Wht=w.

First, if w is any vector in 'W, then w is orthogonal to every Vectoryj
so wisin (W+)L. Hence W is a subspace of (W)L, Conversely,laq
arbitrary vector in (W+)+. Then, by Theorem 6.20, v can be Written 3

V=w-+4u,

where w is in W and u is.in WL, Since u is in W+
w. Thus ‘

0=u~v=u-(w+u)_%.u-w+u-u=u-u

, 1t 1s orthogonal bt

or

M= G

Since W is the orthogonal complement of W+ and W+ is also lhiez‘e,s
complement of W, we say that W and W+ are orthogonal comp

‘Relations Among the Funda
Associated with-a Matrix

mental Vector Spaces

g §
If Aisagiven m x n matrix, we associate the following -f,ouiheh““ .
vector spaces with A: the null space of A, the row space of s !
of AT, and the column space of A. The following thC,OTCmshq :
these four vector spaces are orthogonal complements..




