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DEFINITION

;]attl;ilifh;gter_ €very matrix consifi'ered i§ a square matrix. Let A beann X 7
en, as we have seen in Section 4.3, the function L:R" > R
deﬁned.by L(x) = Ax; for x in R", is a linear transformation. A question
of considerable importance in‘a great ‘many applied problems is the determi-
nation of vectors X, if there are any, such that x and Ax are parallel: Such
questions arise in all applications involving vibrations; they arise in aerody-
namics, elasticity, nuclear physics, mechanics,<hemical engineering, biology.
differential equations, and so on. In this section we shall formulate this prob-
lem precisely; we also define some pertinent terminology. In the ‘next section
we solve this problem for symmetric matrices and briefly discuss the situation

in the general case.
I et A be an n x n matrix, The real number A is called an eigenvalue of Aif
there exists a nonzero vector X in R" such that '

4 . ,AY = AX. (D
n eigenveétor of A associated

at the word “eigenvalue™ is 2
alues are also called

Every nonzero Veclor x satisfying (1) is called a
with the eigenvalue 4. We might mention th
hybrid one (“eigen_”'in_German means “proper”). Eigenv

teristic values, and latent values; and eigenvectors are

proper values, charac
also called proper vectors, and so on, accordingly.

Note that x.= 0 always satisfies (1), but 0 is not an eigenvector, since we

insist that an eigenvector be a nonzero-vector. &
In some applications one ehcounters matrices with complex,entnes,.and

vector spaces with scalars that are complex numbers (see Sections A.l and
A2 respectively). In such a setting the preceding definizion of eigenvalue.

is modified so that an eigenvalue can be a real or a complex number. An
introduction to this approach, a treatment usually presented in more advan_ced
books, is given in Section A.2. Throughout the rest of this book, unless stated
) = .

otherwise, we require thatan eigenvalue be a real number.

'
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If A is the identity matax L. "“’{“Am only eigenvalye i ,
Ix = 1Ix. Ve ¥
EEEEENCTTTIER
0 1
A=, . _1
2 O |
Then X - y
1 1
. A l = ? - : = |2 _ Al
1 I ol 1 2|,
50 that 1 '
~= 3]
is an eigenvector of A associated with the eigenvalye Al =1 Al
2+ Alsg,
1 1
o 1 & 1| T T3
- 1 1 o0 1 ! 2|,

so that

<[]

is an eigenvector of A associated with the eigenvalue A, = _1 E
shows that x; and Ax,; are parallel, and x, and Ax> a.rt-a parallzeia:ﬁ

illustrates the fact that if x is an eigenvector of A, then x and Ax areps

Figure 8.1 » “y
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Let ) be an eigenvalue of A with corresponding Cigenvecmrth
8.2 we sth x and Ax for the cases ). > 1,0 < A < 1,and X <-0- :

An eigenvalue 2 of A can have associated with it many d%ﬁ’ﬂ:;
vectors. In fact, if x is an eigenvector of A associated with A (16
and r is any nonzero real number, then

A =7(Ax) = r(ax) = ArN)-

) Thus rx is also an eigenvector of A associated with A.
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Figure 8.2 »

4] )
L>1

sothat x|, = [(l)] is an eigenvector of A associated with the eigenvalue 2, =0,

is an eigenvector of A associated with the eigenvalue A; = | (verify). |
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Ax = )x

B

0

0
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I
Ax =)z /
Ax = )x
O<h <l A<

7le]-16) =2l

o]

Example 3 points out the fact that although the zero vector. by definition,
cannot be an eigenvector, the number zero can be an e1genvalue.

Thus far we have found the eigenvalues and associated e1genvectors of a
given matrix by inspection, geometric arguments, or very simple algebraic
approaches. In the following example, we compute the ergenvalues and asso-
ciated eigenvectors of a matrix by a somewhat more systematic method.

- EXAMPLE 4 EEE
' g l 1
) = [—2 4]'
: We wish to find the eigenvalues of A and their associated eigzavecters. Thus

: we wish to find all real numbers A and all nonzaro vectors

salisfying (1), that is,

Equation (2) becomes

or

=[]

. o] 2 . v Q)
=2 4] X X2
X+ K= Ax
=21 + 40 = A,
(A =Dy — xn=0

2+ A -Hu =0

>

B b e B
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346 Chapter8 Eigenvalues, Eigenvectors, and Diagonalization

Equation (3) is a homogcneous system of two equations in i\nu
From Corollary 3.4 of Section 3.2, it follows that the horhogen, Un,,

in (3) has a nontrivial solution if and only if the determinant of ,LO Yy
matrix is zero; that is, if and only if

A—1 -1
2 | =
This means that - %
A-—1DA—-4)+2=0,
or
. A2-5A+6‘=0=(A—3)(k—2)..A
Hence '

-

.\l=2 and Ay =3

are the cxgenvalues of A. To find all eigenvectors of A assocnated

W.'
we form the linear system ; h A3
AX = 2x,
" or -
1 1 X1 _ X1 . )
[ ] =2[n)
This gives - -
Xy + x2 =2x
—2.‘(’1 + 4x; = 2x>
ar
2—Dx; — x2 =0 {
2x1 +(2—4)xx; =0
or

x| — X2=0
2x; — 2x; = 0.

~ Note that we could have obtained this last homogeneous’ system by
substituting A = 2 in (3). All solutions to this last system are given bymi

X| = X3
x> = any real number r.
Hence all eigenvectors associated with the cigenvalue A} = 2 are gi\'J
r

|:’_ . r any nonzero real number. In particular,

el

is an eigenvector associated with A} =. 2. Similarly, for A, = 3¢ “
) from (3), :

B—=-x — x> =20 4
2x; + (3 —4d)x> =0
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or

2-1;1—12'—'0,
2y —x=0.

All solutions to this last homogeneous system are given by

1
X1 = 312
= any real number r.
L]

Hence all eigenvectors associated with the eigenvalue A; = 3 are given by

1
=r .
[2 ], r any nonzero real number. In pameular.
r

]

is an eigenvector associated with the eigenvalue A; = 3. L]

In Examples 1, 2, and 3 we found eigenvalues and eigenvectors by inspec-
tion. whereas in Example 4 we proceeded in a more systematic fashion. We
use the procedure of E‘amp!c 4 as our standard method, as follows.

DEFINITION Let A = [u,,] be an # x # matrix. .The determinant

A—aq -ap - —ayn
. -ay - A-an ... a2,
fQ)y=det(A, = A) = : : ' i . (4)
—a,] —ap v A—a,,

is called the characteristic polynomial of A. The equation

f(\) =det(A, — A) =0

15 called the characteristic equation of A.

L 2l
A=|1 o 1.
4 -4 5

The characteristic polynomia'l of A is (verify) -

U R 1

f(A) =detAly —A)=| -1 L=0 .y
' =5 4 A-$

17 2
= A —6A +llkl—6. o
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. i .
may be complex o s from the product " the Chy

polynomial of A come o N
(A — @)X —am) (A = an,),
:: the coefticiént of A" is 1.'We can then write
: O
e TR LIIP-p Lot -7 St R
- £0) = dat = A2 , Fonag
at 1f we let A =0 in det(Al, — A) 33 well as in the expressiop on G,
2 e

_which shows that the constant term o o

, —A)=Cn H i
we get det(—4) 4 to establish the following theorem B (\”%‘\‘\1
i M

This result can be use

TheoreM 8.1 IEVER R UG singular if and only if O is an eigenvalye o7 ,

Proof Exercise T.7(b).

We now extend our List of Nonsingular Equivalences, |

List of Nonsingular Equivalences :
“The following statements are equivalent for an n X n matrix A

1. A is nonsingular. -
2. Ax = 0 has only the trivial solution.
3. A is row equivalent to In.

4. The linear system Ax = b has a unique solution for every n
" matrix b. ’ ' x1

5. det(A) # 0. .

6. A hasrank n.

7. A has nullity 0.

8. The rows of A form a linearly independent set of n vectors in g

9. The columns of A form a linearly independent set of n vectorsing | *
10. Zero is nor an eigenvalue of A. '

[

We now connect the characteristic polynomial of a matrix with its eigy

. ~ values in the following theorem.
THEOREM 8.2 igenvalues
lin 2hs _ The eigenvalues of A are the real roots of the characteristic polynomialdl\
- Proof Let X be an ei .
H igenvalue of A with 1 ig =]
- which can be rownitten o associated eigenvector x. Then Ax =4
. - Ax = (Al)x
or
(A — A)x =0, T

a hondo
trivial sgi:ggrt:si:ysgm of o equations in # unknowns. This system has 3."‘""
(Corollary 3.4, S and only if the determinant of its coefficient matrix vanish
ConVcrs-el.' f?:;:qn 3.2), that is, if and only if det(al, — A) = 0.
.det(x 1, — A) 3: (‘) Sol:h:; rheal root of the characteristic polynomiﬂl of A:,fl
. Hence X is an ei f;t;nvalue o?ﬁogeneous system (S) has a nontrivial solut! {

-

\‘
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Thus, to find the eigenvalues of a giver matrix A, we must find the rea]
roots of its characteristic polynomial f(1). There arc many methods for find-
ing approximations to the roots of a polynomial, some of them more effective
than others; indeed, many computer programs are available to find the roots
of a polynomial. Two results that are sometimes useful in this connection are
as follows: the product of all thé roots of the polynomial .

f)y=a" +0|l"-[ 4o, 1A +a,

is (—1)"a,,and if ay, a3, . .., a, are integers, then f(A) cannot have a rational
root that is not already an integer. Thus, as pessible rational roots of f(X),
one need only try the integer factors of a,. Of course, f(A) might well have
irrational roots. However, to minimize the computational effort and as a con-
venience to the reader, all the characteristic polynomials to be considered in
the rest of this chapter have only integer roots, and each of these roots is a
factor of the constant term of the cha:acterisu'c polynomial of A. The corre-
sponding eigenvectors are obtained by substituting the value of A in Equation
(5) and solving the resulting homogeneous system. The solution te this type
of problem has already been studied in Section 6.5.

<+

Consider the matrix of Example 5. The characteristic polynomial is
O = -612+ 111 =6,

The possible integer roots of f(A) are £1, £2, 3, and =6. By substituting

these values in f(A), we find that £(1) = 0,s0A = l isaroot of f(A). Hence
(x — 1) is a factorof f(X). Dividing f(A) by (A — 1), we obtain (verify)
fQ) =& =DA% =52 +6).
Factoring A% — 5X + 6, we have
fAO=R-DA=-2)A-3):
The cige.nvalucs of A are then _
M=l =2 n=3
To find an cigenvéctor x; associated with ) = 1, wc iorui the system

(I3 = A)x=0,

or
2 0 -2 «]
) -1 1 -1
- —4 4 '_4

A solution is s

T
Y e i i it

——
v

e —
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for any real numbser - Thus, ¢
N Tor r =

S~
X =

is an cigenvector of A RSSOy
To find an (‘-'lgcn\-eﬂhr atey Wit

X
# AS0ciatey = 1

.

that 1s, ~ ? =
e~ 0‘
24 -3
-1 o) 1
~4 el | X
. X BN
: S T !
-4 4 -3 x,
A solution is . Xy =

for any real number r, Thuys, for r

N =4,
X) = —h%
1s an eigenvector of A associated wi )
g tha,
To find an eigenvector x, associatetz\; h-
ith
3=
(313 = A)x =
and find that a solution is (verify) '
'—%r
L,
r

for any real number r. Thus, for r = 4,

.

- \d . .
: is an eigenvector of A associated with A3 = 3,

EXAMMPLE 7

o 1 .0

FOY =22 41,

»We g
™
i

Let A= [_1 0]. Then the characteristic polynomial of Ais

which has no real roots. (The roots are A, = i and A; = —i.) Th!

that A has no eigenvalues. -
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and associated eigenveciors of 5 |

[ The procedure for finding the eigenvalues |

f
stic polynomial 1

matrix is as follows.

Step 1. Determine the real roots of the characten pyf

p()) = det(il, — A). Thess are the eigenvalues of A. ’ ) {
. . - - !

Step 2. For cach eigenvalue . find all the nr;ntr_w;dl ,ohmon; o the bomo. !

‘geneous system (11, — Ajx = 0. These are the eigenvectors q. A associated |

with the eigenvalue j.. ‘

Sy

Of course, the characteristic palynomial of 2 matrix may have some com-
plex roots and it may even have no real roots (see Example 7). However, in
the important case of symsmetric matrices. ail the o015 of the characteristic
polynomial are real. We shall prove this in Section 3.3 (Theorem 3.6).

Eigenvalues and eigenvectors satisfy many important and interesting prop-

_erties. For example. if A 1s an upper (lower) tnangular matnx. or a diagonal

matrix, then the eigenvalues of A are the clements on the main diagonal of A

_(Exercise T.3). The set § consisting of all eigenvectors of A associated with

X as well as the zero vector is a subspace of R” (Exercise T.1) called the
eigenspace associated with ;. Other properties are developed in the exer-
cises for this section.

It must be poinred out that the method for finding the eigznvalues of a
linear transformation or matrix by obtaining the real roots of the characiznistic
polynomial is not nractical for n > 4, since it involves evaluating a deter-
minant. Efficient numerical methods for finding esigenvalues are studied in
numerical analysis courses.

We now tum to examine briefly three applications of sigenvalues and
eigenvectors. The first two of these applications have alrzady been seen in
this book; the third one is new. Chapter 3 is devoted entirely to a deeper study
of several additional applications of eigenvalues and eigenvectors.

&

:
"Yiov Chains

We have already discussed Markov processes or chains in Sections 1.4 and
2.3. Let T be a regular transition matrix of a Markov procass. In Theorem 2.5
we showed that as n — oo, T" approaches a matnx A. all of whose columns
are the identical vector u. Also, Theorem 2.6 showed that n is a stzady-state
vector, which is the unique probability vector satisfying the matrix equation
Tu = u. This means that A = 1 is an zigenvalue of T and u is an associated
eigenvector. Finally, since the columns of A add up to 1, iz follows from
Exercise T.14 that A = 1 is an eigenvalue of A. '

' bear Economic Models

" In Section 2.4 we discussed the Leontief closed model, consisting of a society
made up of a farmer, a carpenter, and a tailor, where each person produces

" one unit of each commodity during the year. The exchange marrix A gives

the portion of each commodity that is consumed by each individual durins
the year. The problem facing the economic planner is that of determining &
prices p), p2, and py of the three commodines so that no one makes MG
or loses money, that is, so that we have a state of equilibrium. Let p dent
the price vector. Then the problem is that of finding a solution p to the lim
system Ap = p whose components p; will be nonnegative with at least v

4

o e

T

W

E e g ek v (T T A AL

PR




354
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8.1 Exercises

3 4
Lileal ¥ =1 2: § @« 0 —1- 3
~2 a} o3 v o 11 o0 3 3]
(0) Venfy \hu; A; = 1 v an cigenvalue of A and 0 4 3 Lo 0 0 2
r . - .
Xy = L,y r # (O, is an associated cigenvector. In Exercises 14 and 15, find bases for the cigenspaces ,, ]
. ; ~ 5F . L3
™ Verify that &, = 4 is an Sigesrvaiie oF A and Exercise T.1) associated with each eigenvalue.
t r - : , . 2 2 3 4
X:=| }.r =0 is an associated eigenvector. 2 3 0 0 2 3 -
q -
R . |01 0y . lo .00 1 178
leta= T p ;‘ L ’ i 0 . 0 ‘ |
- . . |
‘ o U S In Exercises 16—19. find a basis for the eigenspace (se,
&) Venfy that &, = —1 is an eigenvalue of A and Exercise T.1) associated with A. -
1 . o 0 1 2 1 0 !
X = \? ts an associated eigenveClor. 16. |0 1 Ol Ax=1 17. 1172 Tla=y |
= . 10 ol 0o 1 2 |
(}‘ \Cnf_\ _Xhat A; = 2is an eigenvalue of A and g !
-2 3 0 O :
X2 = | =3 | is an associated eigenvector. " 18, | -2 3 —2(,xa=3 j
( | 2 : 2 0 5
C) Verify that 3. — 25 & P N
. \) "re Ay = -4 1s an eigenvalue of A and 4 2°0 O ..
X3= | S5]is = - . : 33 00 A=2
“ an associated eigenvector. 19. 00 2 5 .
In Exercises 0.0 o =

jlhmughj iz y “ial . 2.
of each marrix. th 5, find the characteristic polynomia 20, Let A be the matrix of Exercise 1. Find'the eigenval

1 = : and eigenvectors of A? and verify Exercise T.5.
- 0 1 D -4, < 1 ) 21. Consider a living organism thzft can li.ve L0 a maximg
L—! 3 5 —1 3 age of 2 years and whose Leslie matrix is
[ -
Edd & 0 0 8
0 o 3| A=|t 0 of.. :
In Exerciges D 3 0
eigem.:‘,:f:: o rhmf‘gh 13, find the charac:eristic polynomial,
o - and eigemveciors of each matrix. - “Find a stable age distribution.
. N : il ‘
5 lo o -:; 1 0 0 22. Consider a living organism that can live to a maxims
0 0 0 ’ - —; g g ) : age of 2 years and whose Leslie matrix is
1 1 0O 4 O
8 [ ] . 145
1 1 .)" 2 4] A= i 0 0
2 -2 3 2 2 -3 - 0 31 O
10. 10 3 i 1, =2 "1 o
0O -1 2 2 _2 al Find a stable age distribution.
Theoretical Exercises
T:1. Let A; be a particular eigenvalue of the n x n matrix T.2. In Exércise T.1 why do we have to include the zer
- A. Show that the subset S of R" consisting of the zero vector in the subset §7

vector and all eigenvectors of A associated with 4, isa T.3. Show that if A is an upper (lower) triangular ma7i
subs;_::ace-of' R", called the eigenspace associated with a diagonal matrix, then the eigenvalues of A ared
the eigenvalie 1;. . : - elements on the main diagonal of A.



\

{7 have the same eigenvalues. What,

t Aand / ;
“’:’.J:,g can we say about the associated
(] .
ﬂ‘_ccm,g of Aand AT? *
A\l
; ,igcnvalue of A with associated eigenvector
VI R s an eigenvalue of A' = A-A - A
717 ihat At is an eigenvalue o =
‘ﬁ:vrs) with associated eigenvector x, where kisa
uit

1y, | Sve nteger
i « n matrix A is called nilpotent if A* = O for
P_M' tive integer k. Show that if A is nilpotent,

;,nlht only eigenvalue of A is 0. (Hint: Use Exercise

LU ‘
m“be:m nxn matrix.

e " Show (hat det(A) is the product of all the roots of
g the characteristic polynomial of A..

§) Show that Ais singular if and only if 0 is an

2 | eigenvalue of A.

L be an eigenvalue of the nonsingular matrix A
;ihassociated eigenvector x. Show that 1/X is an
jgenvalue of A~! with associated eigenvector X.

Abeany n X n real matrix.

", | show that the coefficient of 3"~Vin the

characteristic polynomial of A is given by

-Tr(A), where Tr(A) denotes the trace of A (see

-Supplementary Exercise T.1 in Chapter 1).

p) Show that Tr(A) is the sum of the eigenvalues

Waha! of A.

¢) Show that the constant term of the characteristic
polynomial of A is & times the product of the
eigegvalues of A.

Ximgy
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(8 Sherw that detl A) is the product of the eigenvalye,
of A

T.A0. Let Abeann « nmateic with zigenvalues i, and
where 3, # 3. Let 5, and 5. be the eizenspaces
asseciated with 5, and i, respectively. Explain why
the zero vector 1s the onfy vector thaf 1210 both §,
and 5;.

T.11. Let i be an eigenvalue of A with associated
eigenvector x Show that 2 & 7 is an gigenvalue of
A + rl, with associated eigenvector X. Thus, adding 5
scalar multiple of the identity matrix 10 A merely
shifts the eigenvalues by the scalar multiple

T.12. Let A be a squarz matnit.

(a) Suppose that the homogenenus system Ax = 0 hag
a nontrivial solution x = v. Show that a is an
eigenvecfor of A. )

(b) Suppose that O is an sigenvalue of A and v is an
associated eigenvector. Show that the
homogeneous system Ax = 0 has a nontrivial .

“s solution.

T.13. Let A and B be n x n matrices such that Ax = x and’
Bx = ux. Show that:
(a) (A+B)x=(RA+pu)x

. (b) (AB)x = (Au)x.

T.14. Show thatif A is a matrix all of whose columns add up
to 1, then A = | is an eigemvalue of A. (Hinr: Consider
the product AT x. where X is a vector all of whose
entries are | and use Exercise T4) '

B N
Jus Exercises

enstic polynomial and eigenvalues of a matrix.

-! poly(A) gives the coofficients of the characreristic
walof matrix A, starting with the highest-degree
fvesetv = poly(A) and then use command roots(v),
“nthe roots of the characteristic polvnomial of A.
xeis cun also find complex eigenvalues, which are
din Appendix A.2.

Ximz

lo . . :
find a corresponding eigenvector from the linear

(ace w :
%ﬁ we have an eigenvalue A of A. we can use rrefor
h -")X = 0

Fi g :
3 Is:l[‘:d the characteristic polynomial of each of the
O%ing matrices using MATLAB.

x| W A = [:l, _:;-]

2
a[f’ (b)-‘\z 1
0

PO NN
N — O

8has a pair of commands that can be used to find the

I 0o 0 0

2 -2 0 o0

@ A=lg. o 3~
| 0 .0 -1 2

ML.2. Use the poly and roots commands in MATLAB to
find the eigenvalues of the following matrices:

@ A= B :5] B A= 5 N
11 2
2 -2 0 )
@A=|[1 =1 o}l W .{:[2 4]
. 1 =1 o I 6

MLJ3. Ineach of the following cases, A is an eigenvaluel,
A. Use MATLAB to.find a corresponding eigenvec.

' I 2
(a) l=3.:\=[_l 4]

4

0
(bll-=—_|.(i= 3 .0].
1 -1

[

P
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