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EXAMPLE 4 ‘Let

The eigenvalues of A are A; = 1 and A; = 1. Eigenvectors associ'
and A; are vectors of the form

’-I'

[0

where r is any nonzero real number, Since A does not have tw#
independent eigenvectors, we conclude that A is not diagonalizable. f

7 '_I'hc following is a useful theorem because it identifies a l'.us::{; ‘
matrices that can be diagonalized. [
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Proof Letiy, )a,..., ), bethedistincteigenvaluesof Aandlet § = (X, Xz,....X,)
be a set of associated eigenvectors. We wish to show that S is linearly inde-
pendent. '

’ﬁ Suppose that S is linearly dependent. Then Theorem 6.4 of Section 6.3

implies that some vector x; is a linear combination of the preceding vectors
in 5. We can assume that §; = {x;.x3,.... x,_1} is linearly independent, for
otherwise one of the vectors in 5, is a linear combirfation of the preceding
ones, and we can choose a new set 5;. and so on. We thus have that §; is
linearly independent and that

X=X +oxp+--4+c, 1 Xj—1. (4)

where ¢y, ¢z, ..., c,_, are real numbers. Premultiplying (multiplying on the
left) both sides of Equation (4) by A, we obtain

Axj= A(ciXy + C3Xa + - -+ €¢;—1Xj—1)
=c1AX; + c2AX; + - -- +c,_,Ax,_|.

)

Since Ay, A3....,X; are eigenvalues of A and Xy. X2..... X,, its associated
eigenvectors, we know that Ax; = A;x, fori = 1.2..... j. Substituting in
(5), we have

: YRix, = A Xy CaraXa - 1A 1X e (6)
Multiplying (4) by A ;, we obtain
’ ) L}

Aix; = A, + Ajeaxg +---F A%, @)

Subtracting (7) from (6). we have

0 =2xx; —2x;
= (X —}L_,')X! + C:(Az.— Aj)Xz +---+ ci—1(Rj=1 — Aj)x;_).

Since §) is linearly independent, we must have

M =Xx;)=0, c202=x;)=0,.... c,(X;1 —2%;)=0.

1\ _ Now .
i _' s A.|—Aj;‘—'0. )Lp_—).j —#0 ..... )Lj_|'—kj 7&0

(because the A’s are distinct), which implies that

Cl=C=-""=Cj1 = 0.
From (4) we conclude that x; = 0, which is impossible if X, is an eigenvector.
Hence S is linearly independent, and from Theorem 8.4 it follows that A is
) - diagonalizable. ‘ — . -
Remark In the proof of Theorem 8.5, we have actually established the following some-
what stronger result: Let A be an n x n ‘matrix and let Xy, Az, ..., 4; be £
distinct eigenvalues of A with associated eigenvectors x;. Xz, .... X Then
X1, X2, .... Xy are linearly independent (Exercise T.11).
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‘mual of A are all real, then A can be diagonalized if and only if for each;

- associated with A;. We cun51der the follow ing examples.

1f all the roots of the characteristic polynomial of A are real ang ,
distinct, then A may or may not be diagonalizable. The characteristic
mial of A can be written as the product of n factors, each of the form j
where A is a root of the characteristic polynomial and the eigenvalye,

are the real roots of the characteristic polynomial of A. Thus the Characrey
polynomial can be written as

A =AD" = (= At
where Ay, A2 ... A, are the distinct eigenvalues of A, and k., k,

integers whose sum is n. The integer &; is called the multiplicity of-;"i"]:_
in Example 4, 4 = 1 is an eigenvalue of

| o)

of multiplicity 2. It can be shown that if the roots of the characteristic

pol

value A ~of multiplicity k; we can find k; linearly independent eigenvec
This means that the solutton space of the lmenr system (l I, — A)x =
dimension k. It can also be shown that if A ; is an elgenvalue of A of muly
ity k,. then we canmnever find more than k; linearly independent eigeny

Let
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The characteristic polynomial of A is f(X) = A(A — 1)?, so the eigenvil
of Aare A, = 0, 2> = 1, and Az = 1. Thus A> = 1 is an eigenvalue of
uplicity 2. We now consider the eigenvectors associated with the eigenva
’> = A3 = |. They are.obtained by solving the linear system (lh A)x=f

1 0o -1 S 0
0 0 -2 X2 = 0
(0] 0 0 X3 0
A solution is any vector of the form
0 -
ri. !
0

system (I1/3 — A)x = 0 is 1. There do not exist two linearly indepe

where r is any real number, so the dimension of the solution space ofthclq
eigenvectors associated with A; = 1. Thus A cannot be diagonalized.

Let
X To- 0o o
=10 . 1 0
- 0 1
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The characteristic polynomial of A is f(1) = A(h e 12, so the eigenvalues of
A are by = 0,)3 = 1,13 = I; Az = 1 is again an eigenvalue of multiplicity 2.
Now we consider the solution space of (1/; — Ajx = 0, that is, of

1 o0 0][x 0]
0 0 0 )= 0
-1} 0 0 Xy 0
A solution is any vector of the form
0
i r
b
for any real numbers r and 5. Thus we can take as eigenvectors x> and x; the
vectors
0 0
x2=11 and x3=1]0
,_0 t!
Now we look for an eigenvector associated with 4, = 0. We have to solve
(03 — A)x =0, 0r .
0o o 0][x] [O
0 -1 O]|x|=1]0
- 0 -1 _t3J 0
. A solution is any vector of the form
!
0
—r _j
for any real number ¢. Thus
1
X =
~1
is an eigenvector associated with A; = 0. Since x;, X;. and x3 are linearly
independent, A can be diagonalized a

Thus an 2 x n matrix may fail to be diagonalizable either because not all
the roots of its characteristic polynomial are real numbers, or because it does
not have n linearly independent eigenvectors.

The procedure for diagonalizing a matrix A is as follows.

Step 1. Form the characteristic polynomial f(1) = det(A/, — A) of A.
Step 2. Find the roots of the characteristic-polynomial of A. If the roots
are not all real, ther A cannot be diagonalized.

Step 3. For each eigenvalue A; of A of muluplicity k;, find a basis for the
solution space of (AjI; — A)x = 0 (the eigenspace associated with A
If the dimension of the eigenspace is less than k;, then A is not diagonal-
izable. We thus determine n linearly independent eigenvectors of A. In
Section 6.5 we solved the problem of finding a basis for the solution space
of a hoirrogeneous system.

Step 4. Let P be the matrix whose columns are the n linearly independent
eigenvectors determined in Step 3. Then PlAP =D, a diago:ral matrix
whose diagonal elements are the eigenvalues of A that correspond o the
columns of P.
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