L(A+ B) # L(A) + L(B). i ‘Use MATLAB to do the computations.

102 THEKERNELAND RANGE -~ Q"
OF ALINEAR TRANSFORMATION | A <

In this section we study qpecml types of linear transformauons we formulale
the notions of one-to-one linear transformations and onto linear lransforg::
tions. We also develop methods for determining when a linear transformat

1S one-to-one or onto.

DEFINITION A lmear transformation L: V. — W is sald to be one-to-one if for all Vl.Vz
~in V, v| # v, implies that L(v;) # L(v;). An equivalent statement is that L
is one-to-one if for all vy, vo in V, L(v)) = L(v,) implies-that v| = V2.

This deﬁ'nition says that ‘L is one-to-one if L(vy) and L/(vz) are distinct
whenever v| and v, are distinct (Figure 10.1).

" Figure 10.1 » ‘ R S, q
. NI ] i .‘ ‘ . w A '-

4 g e ‘4 AT

e | (1) Sy Ou‘,n L(v;)

Vi S L(Vz) E i V2 - . o . .y V,J’

: w ‘ ' " ‘ o

(a) L is one-to-one. (b) L is not one-to-one.
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Let L: R? 2 \ :

= R? be defined by . - %

L(x,y)=(
" BY)=x+y x—y).
To determine whether 7, i5 one-to-one, we let

Vi=(ay,a3) and vy = (b, b1).

Then if
L(vy) = L(v,),
we have

ay+a, =b + b
ay—a; = by — b

A . i . .
‘ diu;)g t};;,se equations, we obtain 2a; = 2by, or @y = b1, which implies that
2 =D ence, v| = vy and L is one-to-one. -

. R3 _ o
LetL: R° — 1.?2 be the linear transformation defined in Example 1 of Section
4.3 (the projection function) by

’ T  Lxy ) =)

Since (1, 3,3) # (1,3, =2) but |
L(1,3,3)=L(1,3.-2) =(1.3),
A .

we conclude that L is not one-to-one.
hether

~ We shall now develop some more efficient ways of determining W
or not a linear transformation is one-to-one.

rmation. The kernel of L, ker L, is the

letL:V — W be a linear transfo
v such that L(v) = Ow.

subset of V consisting of all vectors

We observe that property (2) of Theorem 1'0.2 in Section 10.1 assures us

, since Oy is in ker L.

that ker L is never an empty set

—» R2 be as defined in Example 2. The véctor (0,0,2) s in ker L.
since L(0,0,2) = (0, 0). However, the vector (2, =3, 4) is not in ker L, since
L2, 3,4 = (2 —3). To find ker L, we must Jetermine all x in R? so that

L(x) = 0. That is, we seek X = (X1, X2, x3) so that

L(x) = L(xg X2, x3)=0= 0,0). %
However, L(X) = (x1, %2). Thus (x1, x2) = (0, 0), sox; = 0, x2 = 0, and -
x3 can be any real number. Hence, ker L consists of all vectors 1n R° of the
' is any real number. Itis clear that‘kerL consists of the
- u

form (0, 0, r), where 7 1
dimension

Let L: R’

al space R3.

A}

z-axis in three-
s of all vectors X in R? such

ple 1, then ker L consist

If L is as defined in Exam .
that L(x) = 0. Thus we must solve the linear system
' X+y= 0 RS . 8
: xX—y= 0

for x and y: The only solution is x =0, 50 ker L = (0). -

>
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: : ' - EXAMPLES

THEOREM 10.4

“EXAMPLE6

EXAMPLE 7

)

b
0

-

EXAMPLE 8

' I
.
'
-

I /

If L: R* — R?is defined by

L

‘e =

_ x+y
“lz4+w]|’

then ker L consists of all vectors u in R* such that L(u) = 0. This leads,
linear system

w

.1‘+I)’ =0
z4+ w=0.

Thus ker L consists of all vectors of the form

where r and s are any real numbers. . - : ' ' 1

-

IfL: V — W isalinear rransfonnarién. then ker L is a subspace of V,’

First, observe that ker L is not an empty set, since Oy is in ker L. Also,|
and v be in ker L. Then sincé L is a linear transformation,

Lu+v)="Lu)+ L(v) =0w + 0y =0y,
sou+visinkerL. Aléo, if c is a scalar, then since L is a linear transforma

L(cu) = cL(u) = cOw = Oy,

- so-cuis in ker L. Hence ker L is d subspace of V..

If L is as in Example 1, then ker L is'the subspace {0}. its dimension iszj

If L is as in Example 2, then a basis for ker L is
((0,0, 1))

and dim(ker L) "= 1. Thus ker L consists of the z-axis in lhree-dimem!
space R>. _ i

If L is as in Example 5, then a basis for ker L consists of the vectors |
0

—1 0
gl . aod 1
0 —1
thus dim(ker L) = 2.

If L: R® — R™ is a linear transformation defined by L(x) = A%Y
A is an m x n matrix, then the kernel of L is the solution space of thel
geneous system Ax = 0. .

An examination of the elements in ker L allows us to decide whet
or is not one-to-one.



proof

proof

THEOREM 106"

Proof

A linear transformation L. V — W s one-to-one if and only ifker L = {0y ).

Let L be one-to-one. We show that ker L = (0v). Let x be in ker L. Then
L(x) = Ow. Also, we already know that L(0y) = 0y. Thus L(x) = L(0y).
Since L is one-to-one, we.conclude that x = 0. Hence ker L = {0y ].

- Conversely, suppose that ker L = [0,). We wish to show that L is one-
to-one. Assume that L(u) = L(v), foruand vin V. Then

L(u) — L(v) = 0y,

so by Theorem 102, L(u - v) = 0y, which means that u — v is in ker L.

_ Therefore, u — v =0y, sou = v. Thus L is one-to-one. O

Note that we can also state Theorem 10.5 as: L is one-to-one if and only
if dim(ker L)=0. : » .

The proof of Theorem 10.5 has also established the followiny result,
which we state as Corollary 10.2.

IfL(x)=Db and L(y) = b, then x — y belongs 10 ker L. In other words, any

rwo solutions to L(X) = bdiffer by an element of the kernel of L.

Exercise T.1. : -]

"The linear transformation in Exariple | 1s one-to-one; the one in Example 2

1s not. |

In Section 10.3 we shall prove ‘that for every linear transformation
L: R" — R™. we can find a unique m x n matrix A so that if x is in R",
then L(x) = Ax, Itthen follows that to find ker L, we need to find the solu-
tion space of the homogeneous system Ax = 0. Hence to find ker L we need
only use techniques with which we are already familiar.

If L: V — W is a linear transformation, then the range of L, denoted by
range L, is the set of all vectors in W that are images, under L, of vectors in
V. Thus a vector w is in range L if there exists some vector v in V such that
L(v) = w. If range L = W, we say that L is onto.

If L: V —_ W is a linear transformation, then range L is a subspace of W.

First, observe that range L is not an cinpty set, since Ow = L(0y), s0 O isin
range L. Let w, and w, be inrange L. Then wy = L(vy) and wa = L(v2) for
some v, and v» in V. Now :

W+ W= Livi)+ L(v2) = L(Vl + v).

- which implies that w; + w; is in range L. Also, if ¢ is a scalar, then cw) = .

cL(vy) = L(cv,),socw, isinrange L. Hence range L is a subspace of W.. &

Let L be the linear transformation defined in Example 2. To find out whether
L is onto, we choose any vectory = (y), »2) in R® and seek a vector x =
(1. x2. x3) in R? such that L(x) = y. Singe L(x) = (x|, x1), we find that if
X1 ="y and x; = y,, then L(x) = ¥. Therefore, L is onto and the dimension
of range L is 2. ‘ a

§ o

L il

e
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' Solution

(@
d)
()
(d)

(a)

(b)

a) 1 0 1 a
L a; = |1 1 2 aj &
ay 2, 1 31| as
Is L onto?
Find a basis for range L. '
Find ker L.
Is L one-to-one?
Given any
a
w=|b |
¢ |
in R3, where a, b, and ¢ are any real numbers, can we find i
v=|az
[ 93
so that L(v) = w? We seek a solution to the linear system 5, '-

-

1 0 1 a) ~la
1 1 2 a | = | b
2 1 3 asjs [

and we find the reduced row echelon form of the augmented matrix
(verify) ' '
1 0 1. a

0 1 1 b—a

0 0 0 i c—b—a.

Thus a solution exists only forc — b —a = 0,s0 L is not-onto.

To find a basis for range L, we note that
aj 1 0 1 a a, + a3
L az =11 - -1 2 a | = a, + ax +2a
a; 2 1 3 as 2a; +a; + 3
1 0 1
= a 1| 4+ a2 1| +as3 2
2 1 3
This means that
1 0 1
1{,(1],]2
2 1 3

spans range L. That is, range L is the subspace of R’ spanncd

columns of the matrix defining L. ‘ '- s
The first two vectors in this set are linearly independent, smcfj

are not constant multiples of each other. The third vector is the 5=

the first two. Therefore, the first two vectors form a basis for range L

dim(range L) = 2.°




Solution

Sec, 10.2  The Kerre} and Range of a Linear Transiormation 440

©) *To find ker L, we wish to find all v in R’ 3o that L(v) = 0g. Solving
the resulting homogeneous system, we find (verify) that @y = —a3 and
a; = —ajy. Thus ker L, consists of all vectors of the form

~a -1
—a| =ag—1
A 1

where a is any real number. Morzover, dim(ker L) = 1.
(d) Since ker L # {0z}, it follows from Theorem 10.5 that L is not one-to-
one. , m

The problem of finding a basis for ker L always reduces 1o the problem of

finding a basis for the solution space of a2 homogeneous system: this latter
problem has been solved in Example 1 of Section 6.5.

If range L is a subspace of R™, then a basis for range L can be ob-
tained by the method discussed in the alternative constructive proof of The-
orem 6.6 or by the procedure given in Section 6.6. Both approaches are

“illustrated in the next example.

Let L: R*— R?bedefined by
_ L(ay, az,a3,as) = (a; + a3, a3 +as.a; + a3).
Find a basis forrange L.
We have _
Liavaz asas) = a(1.0, 1) +ax(1,0,0) +a3(0. 1. 1) + ay(0, 1. 0).

Thus
§=((1,0,1),(1,0,0).(0. 1, 1), (0. 1.0}

spans range L. To find a subset of S that is a basis for range L, we proceed as
in Theorem 6.6 by first writing

ai1(1,0, 1) +ay(1,0,0) +a3(0, 1, 1) + as(0, 1,0) = (0, 0, 0).

The reduced row echelon form of the augmented matrix of this homogeneous
system is (verify)

»

1 0 0 -1:0
0 1 0 1:0
1

0 0 ‘1:0

~ Since the leading 1's appear in columns 1, 2, and 3, we conclude that the first

three vectors in S form a basis for range L. Thus
©{(1.0,1).(1,0,0),(0. 1, )}

is a basis for range L.

Altématively, we may proceed as in Section 6.6 to form the matrix whose

rows are the given vectors

—— 0 O

O - r—
O = O -

1
3
i
{

i
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THEOREM 10.7

Proof

\!

reduced row echelon form, We oy |
ain

ces

Transforming this matrix to

1 0 0 ‘ h"trifh r
o 1 0 |
0 0 1 |
0 0 0 ;

Hence {(1.0.0). (O 1.0), (0,0, D} isa basis for range [

near wransformation is one-to-one ¢ - J
. . - 2 - furth-r ~ = ront

solve a lincar system. This 1s on¢ & er demonstratiop of 1 O, we

with which linear systems must be solved to answer m : My

algebra. Finally. from Example 11, where dim(ker L) = |

and dim(domain L) = 3, we saw that

To determine ifali

dim(ker L) + dini(range L) = dim(domain L

This very important result is always true and we now prove j e
theorem. 0”0“1'

IfL:V — Wisa linear transformation of an n—dimc,,s,-()"a, ve
into a vector space W, then ‘ . Ctor spgey
dim(ker L) + dim(range L) = dim V Y
' (
Let & = dim(ker L). If k = n. then kerL: = V (Exercise T, Secn
which implies that L(v) = Ow for_ every v in V. Hence run‘ge Lcimns_4
dim(range L) = 0, and the conclusion holds. Next, suppose tha | = [0,
We shall prove that dim(range L) = n — k. Let (Vi.va..... v} be Sbk'si
ker L. By Theorem 6.8 we can extend this basis to a basis 2 basis
’ ’ i

S::[V].‘Vz ..... Vk.Vk+|.-...V,,] |
for V. We prove that the set
= {L(Vier). L(Vis2)o oo L(V,)) J

is a basis for range L.

First, we show that 7 spans range L. Let w be any vector in range L. Tk
w = L(v) for some v in V. Since S is a basis for V, we can find a uniqus
of real numbers a,. a2, ..., a, such that ' '

V=a,vy+avi+ -+ a,v,.
Then

w = L(v)
= L(a\vi +axva+ -+ aVi + aep Va1 + -+ daVa)
=aL(vi) +a> L(vy) 4+ ar L(vy) + ag o1 L (Ves1) + .;.+c:,.L(".E
= @ L(Vig)) + -+ a, L(v,) '

becarl:[se Vi,Va...., v arein ker L. Hence T spans range L.
ow we show that T is linearly independent. Suppose that

At LVt 1) + a L(vigr) + - - + ay L(Va) = 0y
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Then by (b) of Theorem 10.2 \
L(ak“'l"l&] +at¢2"‘2+... +a‘v‘) =o.'-

Hence the veClor @ey Visy + ayVysgy + --- +a,¥, is in ker L, and we can
write

Ape1Visl F QesaVisg + - 4 0,9, = byvy + szz.+." -+ by ve.
where by, ba. ... by are uniquely determined real numbers. We then have
bivi+bava 4+ ka':‘: — BipyVis] = OpeqViel — - = Bp¥a = Dy.
Since S is linearly independent, we find that

b.l =b2 —cee = bk-::at'Q" =ak4‘2=“. =a_1 =0-
‘Hence T is linearly independent and forms a basis for range L. ~
If k = 0, then ker L has no basis; we let {v;.v;....,v,} be abasis for V.

" The proof now proceeds as above. =

The dimension of ker L is also called the nullity of L, and the dimension
of range L is called the rank of L. With this terminology the conclusion of
Theorem 10.7 is very similar to that of Theorem 6.12. This is not a coinci-
dence, since in the next section we shall show how to attach a unique m x n
matrix to L. whose properties reflect those of L.

The following ‘example illustrates Theorem 10.7 graphically.

: b
I =
Let L: R? — R? be the linear transformation defined by i 1
L ' E

A ) a a; +az ; (

* Lllax|]|=|a+a]. . £

as a—a@ E* |

. a) } i - i}'i
A vector | a; | isinker L if & 1
asz . i 1:

a 0 : i

L ay =10 j ; |

as 0 . y L.

We must then find a basis for the solution space of the homegeneous system

a + a3=0
. al-if-az =0

a; — a3_=0.
-1

We find (verify) that a basis-for ker L is ,sodim(ker L) = 1, and

—

1

e S
I — A .

ker L is a line through the origin.
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Figure 10.2 »

~ .
| |

COROLLARY 10.3

Proof

and Matrices
‘ 1 - | a + Q,
Next. every vector in range L 1s of the form | g, i ‘
az - Whic |
ay h QN|
written as . o i :
a 1|l +a2f{l ] +as 1 ]
. 0 1] 0 |
Then a basis for range L is
-17] [o
1(,]1]-1
0 |_l

o dim(range L) = 2 and range L is a plane pa

in), s i Ssi
(explain) Nustrated in Figure 10.2, l’\/loreoversmg Lhrou&h'

origin. These results are i

dim R® = 3 = dim(ker L) +dim(range L) = | | 2

verifying Theorem 10.7.

(£}

<

Vv = R?

We have seen that a linear transformation may be one-to-one and notog
or onto and not one-to-one. However, the following corollary shows that ey
of these properties implies the other if the vector spaces V and W haw
same dimensions.

LetL: V — W be a linear transformation and let dim V = dim W.

(a) If L is one-to-one, then it is onto.
(b) If L is onto, then it is one-to-one.

Exercise T.2.

Let L: P, - P, bethe linear transfo;'matjon defined by
L(at? 4 bt + c:) = (a + 2b)t + (b + ¢).

(a) Is —41%2 4+ 2¢ — 2 in ker L?
(b) Is >+ 2¢ + 1 in range L?
(c) Find a basis for ker ..

(d) Is L one-to-one?
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(f) Is L onto?
(2) Verify Theorem 10.7.

solution (a) Since

L(-47 4 2 -

N
+
L
|

]

we conclude that —4,2 + 2r

(b) The vector 12 4+ 2; 4 |
in Pz such that "2¢ L if we can find 5 vector ar® + bt + ¢
L(ar? o4y p

Smce L(at + bt +¢) = taty

(@ +2b)r + (b +¢), we have
. (a +2b)r + (b+¢)

. " The left side of this equatior ¢ i
o] an also be written a5 0r°+(a+2b)r+ (b+c).

T

-—
=rr4+2r+q,

g

g e el

, )
Or +(a+2b)r+(b+c)=:3+2:+ I.

We must then have - g

g i
. 0= !

a+2b=2 §

Since this linear system h Y

Y as no solution, the given vector is not in range L. §

(c) The vector ar> + bt + cisinker L if

;
L(ar* + bt +¢) = 0, 3 ;
 that is, if g
(a +2b)t +(b+c) =0. ) ]
Then !
a+2b =0 :
b+c=0.

Transforming the augmented matrix of this linear system to reduced row
echelon form, we find (verify) that a basis for the solution space is r

9
-~

anl

so a basis for ker L is {217 — 1 + 1).

(d) Since ker L does not consist only of the zero vector. L is not one-to-one.
, .

(e) Every vector in range L has the form
(a +2b)t + (b+0)

d 1 span range L. Since these vectors are also linearly

range L.
L is a subspace of P> of dlmens:on

so the vectors r an
independent, they form a basis for

(f) The dimension of Ps is 3, while range

2 so range L # Py. Hence, L is not onto. 7
. &
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(g) From

lrL:R'—b R"

Aisannaxnm

6.2, we ¢an s
We now ma

n x n. We again consi
Ax. for X in R™.

— n. so dim(ker L) _
ar system has a unique solution

her considerations). Now
ecans that dim(ker L) = n
Therefore, there exists a vector by i 050!
o solution. Moreover, since 4 ig sin "~ L
If Ax = b has a solution y, then n Ary

L(x) =
rank 4 =
means th
knew this result

a no;u.rivial solution Xo.
10 Ax = b (venfy). Thus,

it is not unique.

10.2 Exercises
1. Let L+ R* — R® be the linear sransformation defined by
Lia,.as) = (a,. 0).

(a) Is (0.2) inker L? (d) Is (2.2) in ker > B4

() Is (3.0) inrange L? (d) Is (3,2) inrange L?

(e) Findker L.
2. Let L: R® — R® be the lincar transformation defined by

(D=0 e

11. 2
(a) Is {}] inker L7 (b) Is [_I] in ker L?

(N Findrange L.

@ 1s E’] in range L? (d) Is [2] in range L?
3 3
(e) Find ker L.
(f) Find 2 set of vectors spanning range L.
3. Let L: R — R’ be defined by
- Lx.y)=(x,x+y,y).
(a) Find ker L.
(b) Is L one-to-one?
(c) Is L onto?

4. Let L: R* — R’ be defined by

L(x,y.z,w) =(x+y, 24+ w,x +2).
(a) Find a basis for ker L.
(b) Find a basis for range L.
(c) Verify Theorem 10.7.

F

how (EXCI"L‘
ke onc fin

at the given line
from ot
Then rank A < 1. This m
o-one and not onto.

(). dim(ker L) =

3 =dim P

5. Let L: R®> — R® be defined by

. Let L: R* — R? be defined by

1. and from (e), dim(mnge L)

— dim(ker L) 4- di"‘('mg
: ¢ o [‘)..

is a lincar transformation defineq b
then using Theorem 10.7, Equay in
ise T.4) that L isone-to-one if ﬂl::jn (1 s ang o
al remark (or a linear system € ¢
der the hnear transformation 7 . ,;\n b
. : -
If A is a nonsingular matrix, then (‘Aﬁa 4#,_‘_

X < drh “'
. “"’1,;

- O. lhllS [, iS one-to
-One m(r
and K Rn?:'

Ce |
as (OfCUUr Oty
X

Sumc lha[ » “"i?,
—rank g, o " i

Singular_ i fOf %

for A singular, if a solution tg P ¥is ay

v

X

_ 10 -

X2 3 I,

5 X3 = L 0 0 2 __} 11

. X4 : é 0 -1 S —1||s
Xs 0 -1 R

(a) Find a basis for ker L.
(b) Find a basis for range L.
(c) Verify Theorem 10.7.

Let L: R® — R® be defined by
q 4 2 21 [«
L y = 2 3 =11y
z —1 1 =2z

(a) Is L one-to-one?
(b) Find the dimension of range L.

Let L: R* — R’ be defined by
B x+Yy
L { = y—'Z
-~ lz—w
w

(a) Is L onto? .

(b) Find the dimension of ker L.

(c) Verify Theorem 10.7. '
L(X.)'. Z)——:(I _...yl,¥+?-y-:)

(a) Find a basis for ker L.~



&
! sq)
“S’S.ﬁ ) Find a basis for ranic L.
.lﬂ verify Theorem 10.7.

()

1 ,) Find a basis for ker L.

fnd pasis for range [ trg
L}
F UL

By .‘.,1(Y Theorem |0.7.
g Ve
L

+ Theorem 10.7 for the following lineay
\ﬂ“‘v’m““'i(‘ﬂ‘.

.«J‘(' y)y = (x + y.y).

4 —1 -1\ (=
2 2 3,1
2 -3 - z

Lix \._:)z(,'.’~F_\'—Z.X+y,y+z)_
<) 5

14,
5

L: R*— R* be defined by

1 2 1 3 x
L ; . 1 0 0 — 2\
w 4 I —1 0 w

L: P; — P be the linear transformation defy
Let & -

ned by
Lar? + bt =€) = (a+ ) + (b + o).
a

m!s,!.-{— 1 in Ker L?
mlIsr?+r1— linker L?
{

o ls2r* —tinrange L? *

@ 1s1? —t + 2inrange L?

) Find 2 basis for ker L.

() Find a basis for range L. ,

h12t L: Py — P3 be the linear transformation defined by
( Lat* +bt* +ct +d) = (a — by + (c — d)r.
@lse? +r>+r—1inker L?

by lse® =+t — 1in ker L?

(©) 1s3r* + 1 in range L?

W) s3> — 1? in range L?

(¢) Find a basis for ker L.

() Find a basis for range L.

by :

: a b a+b b+c
' L([c dl) T \la+d b+d|

0

Sec. 10.2 The Ke

L Let L: M>» — M>: be the linear transformation defined

451

- Transformation
; e of a Linear
rriel and Rang )

' |
(a) Find a basis for ker L. _ :
i e L.

ind a basis for rang -
o P? be the linear transformation defined by
let.: P; — K - -
L(at? + bt +c) = (a, b).
(a) Find a basis for ker L.

(b) Find a basis for range L.

15, Let L- Af Af.- be the linear transformation defined
h 2 ¥ —* iz OC

by ; .2 . o
L(V)‘: [‘ i T s
(3) Find a basis for ker L.

) Find a basis for range L.

16. Ler L. My — M,
by LEAY = AT |

(3) Find a basis for ker L. i
() Find a basis for range L.

be the linear transformation Cefined

17. (Calculus Required) 1.t L: P

— P, be the linear
ransf{ormation defined by

Lipiny = p'(r).
(2) Find a basis for ker L.

(b) Find abasis for range L.

18. (Calculus Required) 1ot | - P, — R

be the linear
transformation defined by

=\

Liptny = j pyde.
9
(2) Find a basis for er L.
(b) Find a basis for fange L

- 19. letL: R* — R® be a linear transformanica.
(@) If dim(kerL) =2, whatis dim(range LY?
(®) If dim(range L) = 3, whatis dimiker LY?
20. Let L1 V = R* b alinear transiormanion.
(@) 1 L is onto and dim(ker L) = 2, whatis &m'V?

(®) 1f L is one-to-one and onto, what is dim V2

[neoretical Exercises
Il Prove Corollary 10.2.

L. Prove Corollary 10.3.

column space of A is the range of L.

I Let L: R" — R" be a linear transformation

L(X) = Ax,where Alsann X n mawms. S\\cwﬂ
1S One-to-one if and only if dew(A) 0. \Hmr.\
Theorem 107, Equation (1), and Corollary 62.1

i

L. Let Abe anm x n matrix and let L: R* — R™ be -4
defined by L(x) = Ax for x in R". Show that the

TS, Let L1 V — W be a linear transformation.
Vi Ve, o0 vy spans V, show that

defined by (LG, LV, .. ., LEvy)) spans range L.
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N f vectors in W.

lincarly independ
independent sct O ‘ ‘
v — W be a linear transformation, p |
v. Show that L is one-to-one "anc
¢ under L of a basis for v jg abasdis

T.6. Let L: V — W be a lincar mns.fom:ati(m. .
" (a) Show that dim(range Z) < dim V. T.10. Let L:

: 4 = dim}
e ‘mWw <dimV. dimV = dim
(b) Show that if L is onto, then dim only if the,imag !

transformation, and let

T.7. - V — W be alinear 4 ; s
’ f;e -i-livr\a ..... va la be a set of vectors .n.V-af:;O : = dimensional vector space anq
that if T = {L(V)). “"}"(';f.-,"5:2’:33&1'12‘2[ Sis T.1L. é‘cl ‘; B V. ) be a basis for V. Let .. v
N sois S int: ASS Vi, V22020 " . {
;mﬁmﬂ:‘)\{m can we say about 7'7) ' bczdcﬁrl}cd by L(v) = [V]5- Show that i R.;
TS. Let L: V — W bealinear uansfo""-"[i{r)' S"STI;,"C? X (a) L is a linear transformation.
L is one-to-one if and only if dim(range L) = ' ’ (b) Lis one-to-one.
3 L that -
TS9. Let L: V — W be a linear transformation. Show tha " . (¢) Lisonto.

L is one-to-one if and only if the image of every

—

MATLAB Exercises ' -3 2 7

In order to use MATLAB in this section, you should first read —2 ; y

Section 12.8. Find a basis for the kernel and range of the ML.2. A = G :

linear rransformarion L(x) = Ax for each of the following L 2 -2 . _

matrices A. : | - 5 3 _3 1 .

MLL A =’[ - SR 5] ML3. A=|-4 —4 7 -2 —19
) -2 -3 -8 -7 | 2 3 ey 1 9

10.3 THE MATRIX OF A LINEAR TRANSFORMATION |

We have shown in Theorem 4.8 thatif L: R — R™ isa linear transformat;

then there is a unique m x n matrix A so that L(x) = Ax for x in R In t(];l'lu.-‘
section we ge'neralize this result for a linear transformation L : 14 _>-w fy
finite-dimensional vector space V into a finite-dimensional vector spacew a

Py
—8

R |
The Matrix of a Linear Transformation B -
|

THEOREM 10. : ‘ ] ; '
M 10.8 Let L: V — W be a linear transformation of an n-dimensional vector

V into an m-dimensional vecror space W (n

S = v VYo, ... _
respec[zi\:ely,z The;zvr;zl and T = (Wi, w2, ..., w,,} be bases Sfor V and W.ir
vector [L(v; )y of Lfvrfl) t»ifh':mru A, whose jth column is the coordinate,
. e ; : k
following property: If X is inV, zi?zf}” to T, is associated with L and has te\—
]

L . |
(L), = alx); | 0"

’

space§
# O and m # 0) and lat,

are the coordinate

. vectors of L (x) wi '
Property. Sand T, Moreoy of X and. L(x) with resped

er. A is the only matrix with ths

Proof The : '
PI'OOf 1S a COnS[ 2 '
. fuctive gpe: that ; : ]
: ’ at i1s we s ;
VjinV for j
basis for w,
In 7 in a unj

=12 .

we v -y : ;

€an expresg this v. j)isa vector in W, and since T 15!

que mannper. Thus.

L(v;)= .
i) =cy;

- lfwl+C2jw2+-‘-+

CmjWp (1 < j <n). @
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58 means that the coordinate vector of L(v;) with respect to T is

C”
[L(V})]T = C?j

le

] - s

: . .

; now défine the m x n matrix A by choosing [L(v;)].. as the jth column
| ' WCA and show that this matrix satisfies the Propc[rticsj S!arted in the theorem-

OWe Jeave the rest of the proof as Exercise T.1 and amply illustrate it in the

gxamples DelO¥

-

matrix A of Theorem 10.8 is called the matrix representing L with
respect to the bases Sand T, or the matrix of L with respect to S and 7 -

We now summarize the procedure given in Theorem 10.8.

. — F . y

The proccdure_for computing the matrix of a linear transformation
L: V — W with respect to the bases § = fv;,v,,...,v,} and T =
(W), W2, .-+ W} for V and W, respectively, is as follows.

Step 1. Compute L(v;) for j = 1,2,...,n.

Step 2. Find the coordinate vector {L(v;)], of L(v;) with respect to the -
basis T. This means that we have to express L(v;) as 2 linear combination
| ; of the vectors in T [see Equation (2)].
| ‘ Step 3. The matrix A of L with respect to § and T is formed by choosing
: [L(v)]; as the jth column of A. : , _

1
\ Figure 10.3 gives a graphical interpretation of Equation (1), that is, of
S A Theorem 10.8. The top honzontal arrow represents the linear transformation
L Trom the n-dimensional vector space V into the m-dimensional vector space
W and takes the vector x in V' to the vector L(x) in W. The bottom horizon-
tal line represents the matrix A. Then [L(x)],. a coordinate vector in R™, is
| obtained simply by multiplying [x] ¢» a coordinate vector in R", by the matrix
AL IR BLw], = 4 (] A. We can thus always work with matrices rather than with linear transforma-
e s -tions, :
Physicists and others who deal at great length with linear transformations
perform most of their computations with the matrices of the linear transfor-

. Mations.
m LetL: R} » szcdcﬁncd by
L (

S=(Y|,V2.V3} and T = [Wl.Wﬂ'

|
!
I
1

103 ,

N

_[x+y] . N ‘
)—[y—Z]' T bar | G
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Solution

be bases for R? and R?, respectively, where

be bases for R* and R2, respectively, where

1 0 0
v = 0 . V2 = 0 ' VJ = 0] .
0 1

ith respect to §
Wc now find the matrix A of L wi ) +(l;: , nnq T. We haye
L(vi) = 0-0] .= b0] i
[0o+1] _
L(v2) = _1 "O_‘ "f Ll]
[0+0] [ o
L(v3) = Lo_l “ '-l]'

Since T is the natural basis for R?, the coordinate vectors of |
and L(v3) with respect to T are the same as L(v;), L(Vz) and L(( 0, L(v,;
uvel) That is,

=[] =[] o[y

[t 1 o
‘_“‘[0 1—1]-

Let L: R? — R? be defined as in Example 1. Now let

Hence

= [vl'- Y2, V3} ‘ and T = [wl, w2j

1 0] [
vi=]0], vo=| 1], vi=|1],
1 1 1

e[ o]

Find the matrix of L with respectto S and 7.

1 ! 7
l:(vl) = [—l] ' L(v2) = [0] ) L(vy) = [0]

To find the coordinate vectors [L(v))],. [L(v2)],,and [L(vy)]; ve it

[ ; -1
L(v)) = _::I =a;w, +awy = q, [,l,] +ﬂ.’.[ |]'

-

We have

L(vs) = r(l):l =biw +bywy = b, [ ]+b1[ ]

b

2
v = 0]=C|W1+czw2=c| [J,]+Cv[ ]

-
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That is, we must solve three linear systems, each of two equations in-t¢wo-.-
unknowns Since their coefficierit matrix is the same, we solve them all at
once, as in Examplc 4 of Section 6.7. Thus we form the matrix *

L

Io=1i 112 B
2 1i-1:0: o0} ¢
on

' »which we transform to reduced row echel

1 0;0:

o
—

.

|
=

1

!

|

e Win

Equation (1) is then
: v

. [L(x)]r = ~1 ;_

L 3

To illustrate Equation (4), let

Then from the definition of L, Equation (3), we have
. - 1+6} - [7]
- [24-6).

Now (verify)

% . 2 _3

X|. = .2

=
Then from (4),

(L], = Al =

= w3

Hence

= 2[]-5[-)

Whlch agrees with the previous value for L(x).

form, obtaining (verify)

“

Notice that the matrices obtained in Examples 1 and 2 are different even
though L is the same in both cases. It can be shown that there is a n:latmnshlp

between these twé matrices. The study of this rclauonshlp is beyond the scope

of lhls book.

" The proccdui'c used in Examplc 2 can be used to ﬁnd the matrix repre-
senting a linear transformation L: R" — R™ with respect to given bases S

and T for R" and R™, respectively.

———

e B S VSR ——

YL LS R

P———
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The P edure for computing the matrix of a |
¢

. Near :
LR = R™ with respect to the bases § = 'ranxfo

[ i A].

: v
T = (Wi Wae-eos w,,} for R" and R™, respectively, ig a;‘f‘(ﬁf :M]
. . 7 . ' ow,
step 1. Compute L(X;) forj=1.2.....n Wy
Step 2. Form the matrix -
o wr e W TLODEEOD Ty
n

which we transform to reduced row echelon form, Oblaining th f
. ’ e m
iy

/

:x A is the matrix representi ;
Step 3. The matnx A is P Ing L with respecy,
and T. Obig,

Solution

A , " -
L) = [: 1 1] T 1

L

L R? be as defined in E.xamplc 1. Now let
S = {vi. V2. vi} and T = (w,, wv,),

where V1. V2, v3, Wy, and wy are as in Example 2. Then the may;
respectto Sand T is o Yoty

0
—1

A=

Wb WIN

Wi W=

Note that if we change the order of the vectors in the bases § .and T
matrix A of L may change. ‘ iy

Let L: R} — R? be defined by

()=t

S= (v, v2,v3} and T = {w,, w2}

Let

be the natural bases for R3 and R2, respectively. Find the matixal
respectto S and 7.

We have

= = lw; + 1wz, S0 [L(Vl‘)]r

e \l

2 3‘ Lg [ 1] [

1 7 —0-| r . = :h
L(vy) = [l ) 1 1| = 1] = lw,; + 2wz, SO [L(“)]’
Jlo| L2 : e

Also,

[L(V:;)]T = [;] (VCfifY)' &
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Then the matrix of L with respect to S and 7T is
| | I
- [1 2 3] : d

Of course, the reason that A is the same matrix as the one involved in the
definition of L is that the natural bases are being used for R? and RZ, 5

LetL: R? — _li’2 be defined as in Example 4. Now let
S=|v,,v;.v3} and T = [w;.w:}.

where

0
Y = | p V2 = 1 vy = 0
0 I

el wmef]

Find the matrix of L with respect to S and T.
) .I:

L(v)) = [g’], L(v;) = [;] and L(vy) = B] .

We now form (verify)

We have

. "’ 0 .
[wi w:iL(v.)iL(v:)iL(v:)]=[; R ;]

Transforming this matrix to reduced row echelon form, we obtain (verify)

l 0:3:1:0
0 Li-li 1%

so the matrix of L with respectto Sand T is

3 1 0
=l
This matrix is, of course, far different from the one that defined L. Thus, al-
though a matrix A may be involved in the definition of a linear transformation

L. we cannot conclude that it is necessarily the matrix representing L with
respect to two given bases Sand T. |

Let L: P, — P, bedefinedby L(p(1)] = tp(2). -

(a) Find the matrix of L with respect to the bases § = {r. 1}and T = {:2 t, 1]
for P, and Ps, respectively.

(b) If p(r) = 3t — 2, compute L[p(r)] d:rectly and usmg lhe matnx obtained
in (a).

I Ty e

B T L

T g 3 g ey . SR
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e | solution @ We have |

L(:)=r-t=12= 1¢¢?) +0() +0(1),  so [L(t)] 1
r=p|
’ ' LD \
py =1+ T =0aD F1@O +0M) 50 1) %

. : | e
e ' Hence the matrix of L with respect to § and T'i:s Yoy -LO'.'

: . .
A= 1|0 1.

0O O
(b) Computing Llp"] directly, we have

Lip))=tp(®) =t(3t —2) =32 _ 5 ‘

- To compute L[p(t)] using A, we first write

) ' | ' p(:).=3.-t+(—-2)1, ' so [p(;)]s__:[ :;]

| 1 .0 V :
[Lip®O], = AlPWD]s = [0 1] [_g] = [‘3]
: : 0] 0 0
Lip(®)] =312 + (—=2)t +0(1) = 31> - 2.

m Let L: P; — Pz be as defined in Example 6.

(a) Find the matrix of L with respect to the bases § .= (¢, 1) and?
{t2.1 — 1,1t + 1} for P, and P,, respectively.
(b) If p(r) =31t — 2, compute L[p(r)] using the matrix obtained in ().

'I'hcn

Hence

Solution (a) We have (verify)
. - ‘- - . '17
‘ L) =1 =107 +0(r — 1) +0(t + 1), so [L(:)],Tg:
" ‘ | .0.

L) =r=00)+L¢ -1+ L¢+1), so [LOD]= 1|

| i

Then the matrix of L with respect to S and T is

1 0
A= 0
0

N— W=




—
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(b) We have
1 0 3 3
[Llp], = A[p®)]s= |0 1 [_2] -1-t|-
0 3
Hence

Llip) =32+ (D@ - 1)+ (—=1)(r + 1) = 3¢% — 2r.

459

Suppose that L: V — W is a linear transformation and that A is the ma-
trix of L with respect to bases for V and W. Then the problem of finding ker I
reduces to the problem of finding the solution space of Ax = 0. Moreover,
the problem of finding range L reduces to the problem of finding the calumn-

space of A.

If L: V — V is a linear operator (a linear transformation from V to
W, where V = W) and V is an n-dimensional vector space, then to obtain
a matrix representing L, we fix bases S and T for V and obtain the matrix

- of L with respect to § and T. However, it is often convenient in this case

to choose S = T. To avoid redundancy in this case, we refer to A as the
matrix of L with respectto S. If L: R"™ — R" is a linear operator. then the
matrix representing L with respect to the natural basis for R” has already been
discussed in Theorem 6.3 in Section 6.1, where it was called the standard

matrix representing L.

Let I: V — V be the identity linear operator on an n-dimensional vecter
space defined by /(v) = v for every vin V. If § is a basis for V, then the
matrix of / with respect to S is /, (Exercise T.2). Let T be another basis for
V. Then the matrix of / with respect to S and T is the transition matrix (see

Section 6.7) from the S-basis to the T -basis (Exercise T.5).

If L: R — R™ is a linear operator defined by L(x) = Ax, for x in R”,
then we can show that L is one-to-one and onto if and only if A is nonsingular.

We can now extend our List of Nonsingular Equivalences.

List of Nonsingular Equivalences
The folfowing statements are equivalent for an n x n matrix A.

" 1. Ais nonsingular.

2. AX = 0 has only the trivial solution.
3. A is row equivalent to I,.
4

. The linear system Ax =b has a unique solution forevery n x 1
matrix b.

S. det(A) # 0.

6. A has rank n.

7. A has nullity 0. : ;

8. The rows of A form a linearly independent set of n vectors in R".
9

10. Zero is not an eigenvalue of A.

'is one-to-one and onto.

- The columns of A form a linearly independent set of n vectors in R".

11. The linear operator L: R® — R" defined by L(x) = Ax, for x in' R",




