LINEAR INDEPENDENCE Thus far we have defined a mathematical system called a real vector space and noted some of its properties. We further observe that the only real vector space having a finite number of vectors in it is the vector space whose only vector is 0, for if $\mathbf{v} \neq \mathbf{0}$ is in a vector space V, then by Exercise T.4 in Section $6.1, cv \neq c'v$, where c and c' are distinct real numbers, and so V has infinitely many vectors in it. However, in this section and the following one we show that most vector spaces V studied here have a set composed of a finite number of vectors that completely describe V. It should be noted that, in general, there is more than one such set describing V. We now turn to a formulation of these # DEFINITION The vectors v_1, v_2, \ldots, v_k in a vector space V are said to span V if every vector in V is a linear combination of v_1, v_2, \ldots, v_k . Moreover, if S = $\{v_1, v_2, \ldots, v_k\}$, then we also say that the set S spans V, or that $\{v_1, v_2, \ldots, v_k\}$ spans V, or that V is spanned by S, or in the language of Section 6.2, The procedure to check if the vectors v_1, v_2, \ldots, v_k span the vector space Step 1. Choose an arbitrary vector \mathbf{v} in V. Step 2. Determine if v is a linear combination of the given vectors. If it is; then the given vectors span V. If it is not, they do not span V. Again we investigate the consistency of a linear system, but this time for a right side that represents an arbitrary vector in a vector space V. # EXAMPLE 1 Let V be the vector space R^3 and let $$\mathbf{v}_1 = (1, 2, 1), \quad \mathbf{v}_2 = (1, 0, 2), \quad \text{and} \quad \mathbf{v}_3 = (1, 1, 0).$$ Do v_1 , v_2 , and v_3 span V? # Solution Step 1. Let v = (a, b, c) be any vector in R^3 , where a, b, and c are arbitrary real numbers. Step 2. We must find out whether there are constants c_1 , c_2 , and c_3 such that $$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = \mathbf{v}.$$ This leads to the linear system (verify) $$c_1 + c_2 + c_3 = a$$ $2c_1 + c_3 = b$ $c_1 + 2c_2 = c$ A solution is (verify) $$c_1 = \frac{-2a+2b+c}{3}$$, $c_2 = \frac{a-b+c}{3}$, $c_3 = \frac{4a-b-2c}{3}$. Since we have obtained a solution for every choice of a, b, and c, we conclude that v_1 , v_2 , v_3 span R^3 . This is equivalent to saying that span $\{v_1, v_2, v_3\} = R^3$. ### EXAMPLE 2 Show that $$S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$ spans the subspace of M_{22} consisting of all symmetric matrices Solution Step I. An arbitrary symmetric matrix has the form $$A = \begin{bmatrix} a & b \\ b & c \end{bmatrix},$$ where a, b, and c are any real numbers. Step 2. We must find constants d_1 , d_2 , and d_3 such that $$d_1 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + d_2 \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + d_3 \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}.$$ which leads to a linear system whose solution is (verify) $$d_1=a, \qquad d_2=b, \qquad d_3=c.$$ Since we have found a solution for every choice of a, b, and c, we that S spans the given subspace. #### **EXAMPLE 3** Let V be the vector space P_2 . Let $S = \{p_1(t), p_2(t)\}$, where $p_1(t) = 1$ and $p_2(t) = t^2 + 2$. Does S span P_2 ? Solution Step 1. Let $p(t) = at^2 + bt + c$ be any polynomial in P_2 , where q are any real numbers. Step 2. We must find out whether there are constants c_1 and c_2 such $$p(t) = c_1 p_1(t) + c_2 p_2(t)$$ or $$at^2 + bt + c = c_1(t^2 + 2t + 1) + c_2(t^2 + 2)$$ Thus $$(c_1 + c_2)t^2 + (2c_1)t + (c_1 + 2c_2) = at^2 + bt + c.$$ Since two polynomials agree for all values of t only if the coefficient spective powers of t agree, we obtain the linear system $$c_1'' + c_2 = a$$ $$2c_1 = b$$ $$c_1 + 2c_2 = c.$$ Using elementary row operations on the augmented matrix of this tem, we obtain (verify) $$\begin{bmatrix} 1 & 0 & 2a - c \\ 0 & 1 & c - a \\ 0 & 0 & b - 4a + 2c \end{bmatrix}.$$ If $b - 4a + 2c \neq 0$, then the system is inconsistent and there is \mathbb{P} . Hence $S = \{p_1(t), p_2(t)\}$ does not span P_2 . For example, the ### EXAMPLE 4 The vectors $\mathbf{e}_1 = \mathbf{i} = (1,0)$ and $\mathbf{e}_2 = \mathbf{j} = (0,1)$ span R^2 , for as was observed in Section 4.1, if $\mathbf{u} = (u_1, u_2)$ is any vector in R^2 , then $\mathbf{u} = u_1\mathbf{e}_1 + u_2\mathbf{e}_2$. As was noted in Section 4.2, every vector \mathbf{u} in R^3 can be written as a linear combination of the vectors $\mathbf{e}_1 = \mathbf{i} = (1,0,0)$, $\mathbf{e}_2 = \mathbf{j} = (0,1,0)$, and $\mathbf{e}_3 = \mathbf{k} = (0,0,1)$. Thus \mathbf{e}_1 , \mathbf{e}_2 , and \mathbf{e}_3 span R^3 . Similarly, the vectors $\mathbf{e}_1 = (1,0,\ldots,0)$, $\mathbf{e}_2 = (0,1,0,\ldots,0)$, $\mathbf{e}_3 = (0,0,\ldots,1)$ span \mathbf{e}_3 , since \mathbf{e}_3 vector $\mathbf{u} = (u_1,u_2,\ldots,u_n)$ in \mathbf{e}_3 can be written as $$u = u_1 e_1 + u_2 e_2 + \cdots + u_n e_n$$. ### EXAMPLE 5 The set $S = \{t^n, t^{n-1}, \dots, t, 1\}$ spans P_n , since every polynomial in P_n is of the form $$a_0t^n + a_1t^{n-1} + \cdots + a_{n-1}t + a_n$$ which is a linear combination of the elements in S. #### **EXAMPLE 6** Consider the homogeneous linear system Ax = 0, where $$A = \begin{bmatrix} 1 & 1 & 0 & 2 \\ -2 & -2 & 1 & -5 \\ 1 & 1 & -1 & 3 \\ 4 & 4 & -1 & 9 \end{bmatrix}.$$ From Example 8 in Section 6.2, the set of all solutions to Ax = 0 forms a subspace of R^4 . To determine a spanning set for the solution space of this homogeneous system, we find that the reduced row echelon form of the augmented matrix is (verify) The general solution is then given by $$x_1 = -r - 2s$$ $$x_2 = r$$ $$x_2 = s$$ $$x_4 = s$$ where r and s are any real numbers. In matrix form we have that any members of the solution space is given by $$\mathbf{x} = r \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} -2 \\ 0 \\ 1 \\ 1 \end{bmatrix}.$$ Hence the vectors $$\begin{bmatrix} -1\\1\\0\\0 \end{bmatrix}$$ and $\begin{bmatrix} -2\\0\\1\\1 \end{bmatrix}$ span the solution space. # **Unear Independence** #### DEFINITION The vectors v_1, v_2, \ldots, v_k in a vector space V are said to be linearly v_1, v_2, \ldots, v_k , not all zero, such that dent if there exist constants c_1, c_2, \ldots, c_k , not all zero, such that $$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_k\mathbf{v}_k=\mathbf{0}.$$ Otherwise, v_1, v_2, \dots, v_k are called linearly independent. That is, v_1, v_2, \dots, v_k are called linearly independent. That is, v_1, v_2, \dots, v_k are called linearly independent. Otherwise, v_1, v_2, \dots, v_k are embedded if whenever $c_1v_1 + c_2v_2 + \dots + c_kv_k = 0$, v_k are linearly independent if whenever $c_1v_1 + c_2v_2 + \dots + c_kv_k = 0$, v_k $$c_1=c_2=\cdots=c_k=0.$$ That is, the only linear combination of v_1, v_2, \ldots, v_k that yields the zero That is, the only linear confidences are zero. If $S = \{v_1, v_2, \dots, v_k\}$, that in which all the coefficients are zero. If $S = \{v_1, v_2, \dots, v_k\}$, then also say that the set S is linearly dependent or linearly independent in vectors have the corresponding property defined above. It should be emphasized that for any vectors v_1, v_2, \dots, v_k , Equation always holds if we choose all the scalars c_1, c_2, \ldots, c_k equal to zero. important point in this definition is whether or not it is possible to satisfy with at least one of the scalars different from zero. The procedure to determine if the vectors v_1, v_2, \ldots, v_k are linearly dependent dent or linearly independent is as follows. Step 1. Form Equation (1), which leads to a homogeneous system. Step 2. If the homogeneous system obtained in Step 1 has only the trivia solution, then the given vectors are linearly independent; if it has a nonth ial solution, then the vectors are linearly dependent. Determine whether the vectors $$\begin{bmatrix} -1\\1\\0\\0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} -2\\0\\1\\1 \end{bmatrix}$$ found in Example 6 as spanning the solution space of Ax = 0 are line dependent or linearly independent. Forming Equation (1), Solution $$c_{1} \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + c_{2} \begin{bmatrix} -2 \\ 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$ we obtain the homogeneous system $$-c_1 - 2c_2 = 0$$ $$c_1 + 0c_2 = 0$$ $$0c_1 + c_2 = 0$$ $$0c_1 + c_2 = 0$$ whose only solution is $c_1 = c_2 = 0$. Hence the given vectors are limited and the solution in $c_1 = c_2 = 0$. independent. Are the vectors $\mathbf{v}_1 = (1, 0, 1, 2)$, $\mathbf{v}_2 = (0, 1, 1, 2)$, and $\mathbf{v}_3 = (1, 1, 1, 3)$ in R^4 Solution We form Equation (1), $$c_1 v_1 + c_2 v_2 + c_3 v_3 = 0$$, and solve for $c_1, c_2, and c_3 = 0$. and solve for c_1 , c_2 , and c_3 . The resulting homogeneous system is (verify) $$c_1 + c_3 = 0$$ $$c_2 + c_3 = 0$$ $$c_1 + c_2 + c_3 = 0$$ $$2c_1 + 2c_2 + 3c_3 = 0$$ which has as its only solution $c_1 = c_2 = c_3 = 0$ (verify), showing that the # **FXAMPLE 9** Consider the vectors $$\mathbf{v}_1 = (1, 2, -1), \quad \mathbf{v}_2 = (1, -2, 1), \quad \mathbf{v}_3 = (-3, 2, -1),$$ and $$v_4 = (2, 0, 0)$$ in R^3 . Is $S = \{v_1, v_2, v_3, v_4\}$ linearly dependent or linearly independent? Solution Setting up Equation (1), we are led to the homogeneous system (verify) $$c_1 + c_2 - 3c_3 + 2c_4 = 0$$ $$2c_1 - 2c_2 + 2c_3 = 0$$ $$-c_1 + c_2 - c_3 = 0$$ a homogeneous system of three equations in four unknowns. By Theorem 1.8, Section 1.5, we are assured of the existence of a nontrivial solution. Hence, S is linearly dependent. In fact, two of the infinitely many solutions are $$c_1 = 1$$, $c_2 = 2$, $c_3 = 1$, $c_4 = 0$; $c_1 = 1$, $c_2 = 1$, $c_3 = 0$, $c_4 = -1$. ## EXAMPLE 10 The vectors e₁ and e₂ in R², defined in Example 4, are linearly independent, since $$c_1(1,0) + c_2(0,1) = (0,0)$$ can hold only if $c_1 = c_2 = 0$. Similarly, the vectors e_1 , e_2 , and e_3 in R^3 . and more generally, the vectors e_1, e_2, \dots, e_n in \mathbb{R}^n are linearly independent (Exercise T.1). Corollary 6.4 in Section 6.6, to follow, gives another way of using whether n given vectors in R^n are linearly dependent or linearly independent We form the matrix A, whose columns are the given n vectors. Then the given vectors are linearly independent if and only if $det(A) \neq 0$. Thus, in Example 10, $$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$ and det(A) = 1 so that e_1 and e_2 are linearly independent. Consider the vectors $$p_1(t) = t^2 + t + 2$$, $p_2(t) = 2t^2 + t$, $p_3(t) = 3t^2 + 2t + 3$ $p_1(t) = t + t + c$. To find out whether $S = \{p_1(t), p_2(t), p_3(t)\}$ is linearly dependent or line set up Equation (1) and solve for c_1, c_2 , and c_3 . The To find out whether $S = \{p_1(t), p_2(t), p_3(t), p_4(t), p_5(t), p_5$ homogeneous system is (verify) $$c_1 + 2c_2 + 3c_3 = 0$$ $$c_1 + c_2 + 2c_3 = 0$$ $$2c_1 + 2c_3 = 0,$$ which has infinitely many solutions (verify). A particular solution is c $c_2 = 1, c_3 = -1, so$ $$p_1(t) + p_2(t) - p_3(t) = 0.$$ Hence S is linearly dependent. If v_1, v_2, \dots, v_k are k vectors in any vector space and v_i is the zero vector $c_i = 1$ and $c_i = 0$ for $i \neq i$. Equation (1) holds by letting $c_i = 1$ and $c_j = 0$ for $j \neq i$. Thus j. Equation (1) holds of the hold the zero vector is linearly dependent. Let S_1 and S_2 be finite subsets of a vector space and let S_1 be a subset S_2 be a subset S_3 be a subset S_4 of S_2 . Then (a) if S_1 is linearly dependent, so is S_2 ; and (b) if S_2 is linearly independent, so is S_1 (Exercise T.2). We consider next the meaning of linear independence in R^2 and R^3 . Su pose that v_1 and v_2 are linearly dependent in R^2 . Then there exist scalars and co, not both zero, such that $$c_1\mathbf{v}_1+c_2\mathbf{v}_2=\mathbf{0}.$$ If $c_1 \neq 0$, then $$\mathbf{v}_1 = \left(-\frac{c_2}{c_1}\right)\mathbf{v}_2.$$ If $c_2 \neq 0$, then $$\mathbf{v}_2 = \left(-\frac{c_1}{c_2}\right)\mathbf{v}_1.$$ Thus one of the vectors is a scalar multiple of the other. Conversely, support that $\mathbf{v}_1 = c\mathbf{v}_2$. Then $$1\mathbf{v}_1 - c\mathbf{v}_2 = \mathbf{0},$$ and since the coefficients of v_1 and v_2 are not both zero, it follows that v_1 \mathbf{v}_2 are linearly dependent. Thus \mathbf{v}_1 and \mathbf{v}_2 are linearly dependent in R^2 only if one of the vectors is a multiple of the other. Hence two vectors in are linearly dependent if and only if they both lie on the same line pass through the origin [Figure 6.4(a)]. Suppose now that v_1 , v_2 , and v_3 are linearly dependent in R^3 . Then can write $$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 = \mathbf{0},$$ where c_1, c_2 , and c_3 are not all zero, say $c_2 \neq 0$. Then $$\mathbf{v}_2 = \left(-\frac{c_1}{c_2}\right)\mathbf{v}_1 - \left(\frac{c_3}{c_2}\right)\mathbf{v}_3,$$ figure 6.4 ► (a) Linearly dependent vectors in R2 (b) Linearly independent vectors in R². which means that v_2 is in the subspace W spanned by v_1 and v_3 . Now W is either a plane through the origin (when v_1 and v_2 are linearly independent), or a line through the origin (when v₁ and v₃ are linearly dependent), or the origin (when $v_1 = v_2 = v_3 = 0$). Since a line through the origin always lies in a plane through the origin, we conclude that v_1 , v_2 , and v_3 all lie in the same plane through the origin. Conversely, suppose that v_1 , v_2 , and v₃ all lie in the same plane through the origin. Then either all three vectors are the zero vector, or all three vectors lie on the same line through the origin, or all three vectors lie in a plane through the origin spanned by two vectors, say v_1 and v_3 . Thus, in all these cases, v_2 is a linear combination of v_1 and v_3 : $$v_2 = a_1 v_1 + a_3 v_3$$ Then $$a_1\mathbf{v}_1 - 1\mathbf{v}_2 + a_3\mathbf{v}_3 = \mathbf{0},$$ which means that v₁, v₂, and v₃ are linearly dependent. Hence three vectors in R³ are linearly dependent if and only if they all lie in the same plane passing through the origin [Figure 6.5(a)]. Figure 6.5 ▶ (a) Linearly dependent vectors in R³. (b) Linearly independent vectors in R3. More generally, let \mathbf{u} and \mathbf{v} be nonzero vectors in a vector space V. We can show (Exercise T.13) that u and v are linearly dependent if and only if there is a scalar k such that v = ku. Equivalently, u and v are linearly independent if and only if neither vector is a multiple of the other. This approach will not work with sets having three or more vectors. Instead, we use the result given by the following theorem. The nonzero vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ in a vector space V are linearly dependent if and only if one of the vectors v_j , $j \ge 2$, is a linear combination of the preceding vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{j-1}$. **Proof** If \mathbf{v}_j is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{j-1}$, $$\mathbf{v}_{i} = c_{1}\mathbf{v}_{1} + c_{2}\mathbf{v}_{2} + \dots + c_{j-1}\mathbf{v}_{j-1},$$ then $$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_{j-1} \mathbf{v}_{j-1} + (-1) \mathbf{v}_j + 0 \mathbf{v}_{j+1} + \cdots + 0 \mathbf{v}_n = \mathbf{0}.$$ Since at least one coefficient, -1, is nonzero, we conclude that the variety dependent. linearly dependent. Conversely, suppose that V_1, V_2, \ldots, V_n are linearly dependent dependent of the suppose that V_1, V_2, \ldots, V_n are linearly dependent. there exist scalars c_1, c_2, \ldots, c_n , not all zero, such that $$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_n\mathbf{v}_n=\mathbf{0}.$$ Now let j be the largest subscript for which $c_j \neq 0$. If $j \geq 1$, the $$\mathbf{v}_{j} = -\left(\frac{c_{1}}{c_{j}}\right)\mathbf{v}_{1} - \left(\frac{c_{2}}{c_{j}}\right)\mathbf{v}_{2} - \dots - \left(\frac{c_{j-1}}{c_{j}}\right)\mathbf{v}_{j-1}$$ where $c_{1}\mathbf{v}_{1} = \mathbf{0}$, which implies that \mathbf{v}_{1} If j = 1, then $c_1 v_1 = 0$, which implies that $v_1 = 0$, a contradiction of the vectors are the zero vector. Thus one If j = 1, then $c_1 \mathbf{v}_1 = \mathbf{v}$, which $c_1 \mathbf{v}_1 = \mathbf{v}$, which have $c_1 \mathbf{v}_1 = \mathbf{v}$, which have $c_2 \mathbf{v}_1 = \mathbf{v}$, which have $c_1 \mathbf{v}_1 = \mathbf{v}$, which have $c_2 \mathbf{v}_1 = \mathbf{v}$. hypothesis that none of the vectors v_1, v_2, \dots, v_{j-1} #### EXAMPLE 13 If v_1 , v_2 , v_3 , and v_4 are as in Example 9, then we find (verify) that $$v_1 + v_2 + 0v_3 - v_4 = 0,$$ White (0) so v1, v2, v3, and v4 are linearly dependent. We then have $$v_4 = v_1 + v_2$$. Remarks - (0) 1. We observe that Theorem 6.4 does not say that every vector via which combination of the preceding vectors. Thus, in Example 9, we have $0 \le 0$. We cannot solve in the t the equation of $v_1 + 2v_2 + v_3 + 0v_4 = 0$. We cannot solve, in this v_1 the equation of v_1 , v_2 , and v_3 , since is the equation $v_1 + 2v_2 + v_3$ for v_4 as a linear combination of v_1 , v_2 , and v_3 , since its $coe^{\frac{1}{2}}(c)$ - 2. We can also prove that if $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is a set of $\mathbf{vectors}_{[n]}$ space V, then S is linearly dependent if and only if one of the $\mathbf{v}_{[n]}$ which S is a linear combination of all the other vectors in S (see Exercise) For instance, in Example 13, $$\mathbf{v}_1 = -\mathbf{v}_2 - 0\mathbf{v}_3 + \mathbf{v}_4$$ and $\mathbf{v}_2 = -\frac{1}{2}\mathbf{v}_1 - \frac{1}{2}\mathbf{v}_3 - 0\mathbf{v}_4$ (c) 3. Observe that if v_1, v_2, \ldots, v_k are linearly independent vectors in v_0 space, then they must be distinct and none can be the zero vector The following result will be used in Section 6.4 as well as in seven which places. Suppose that $S = \{v_1, v_2, \dots, v_n\}$ spans a vector space V and v_n blinear combination of the preceding vectors in S. Then the set (b) { $$S_1 = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{j-1}, \mathbf{v}_{j+1}, \dots, \mathbf{v}_n\},\$$ consisting of S with v_j deleted, also spans V. To show this result, observed if v is any vector in V, then, since S spans V, we can find scalars a_1, a_1, b_0 such that $$\mathbf{v} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_{j-1} \mathbf{v}_{j-1} + a_j \mathbf{v}_j + a_{j+1} \mathbf{v}_{j+1} + \dots + a_j \mathbf{v}_{j+1} + \dots + a_j \mathbf{v}_{j+1} \mathbf{v}_{j+1} + \dots + a_j \mathbf{v}_{j+1} \mathbf{v}_{j+1} + \dots + a_j \mathbf{v}_{j+1} \mathbf{v}_{j+1} \mathbf{v}_{j+1} + \dots + a_j \mathbf{v}_{j+1} \mathbf$$ $$\mathbf{v}_j = b_1 \mathbf{v}_1 + b_2 \mathbf{v}_2 + \cdots + b_{j-1} \mathbf{v}_{j-1},$$ then $$\mathbf{v} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_{j-1} \mathbf{v}_{j-1} + a_j (b_1 \mathbf{v}_1 + b_2 \mathbf{v}_2 + \dots + b_{j-1}) + a_{j+1} \mathbf{v}_{j+1} + \dots + a_n \mathbf{v}_n$$ $$= c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_{j-1} \mathbf{v}_{j-1} + c_{j+1} \mathbf{v}_{j+1} + \dots + c_n \mathbf{v}_n$$ which means that specifications of which means that span $S_1 = V$. #### EXAMPLE 14 Consider the set of vectors $S = \{v_1, v_2, v_3, v_4\}$ in \mathbb{R}^4 , where $$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \quad \text{and} \quad \mathbf{v}_4 = \begin{bmatrix} 2 \\ 1 \\ 1 \\ 0 \end{bmatrix}.$$ and let W = span S. Since $\mathbf{v}_4 = \mathbf{v}_1 + \mathbf{v}_2$, we conclude that $W = \text{span } S_1$, where $S_1 = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$. ### Exercises which of the following vectors span R^2 ? - a) (1, 2), (-1, 1). - (0,0),(1,1),(-2,-2). - (1,3), (2,-3), (0,2). - (2,4), (-1,2). which of the following sets of vectors span R³? - $\{(1,-1,2),(0,1,1)\},$ - $\{(1, 2, -1), (6, 3, 0), (4, -1, 2), (2, -5, 4)\}.$ - (2,2,3),(-1,-2,1),(0,1,0) - d) $\{(1,0,0),(0,1,0),(0,0,1),(1,1,1)\}.$ Which of the following vectors span R⁴? - a) (1,0,0,1), (0,1,0,0), (1,1,1,1), (1,1,1,0). - b) (1, 2, 1, 0), (1, 1, -1, 0), (0, 0, 0, 1). - c) (6, 4, -2, 4), (2, 0, 0, 1), (3, 2, -1, 2). - (5, 6, -3, 2), (0, 4, -2, -1). - $\begin{array}{c} \text{d)} \ (1,1,0,0), \ (1,2,-1,1), \ (0,0,1,1), \\ (2,1,2,1). \end{array}$ Which of the following sets of polynomials span P_2 ? - a) $\{t^2+1, t^2+t, t+1\}$. - b) $\{t^2+1, t-1, t^2+t\}$. - $\{t^2+2, 2t^2-t+1, t+2, t^2+t+4\}.$ - d) $\{t^2+2t-1, t^2-1\}$. be the polynomials $t^3 + 2t + 1$, $t^2 - t + 2$, $t^3 + 2$, $t^3 + t^2 - 5t + 2$ span P_3 ? and a set of vectors spanning the solution space of x = 0, where $$A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 2 & 3 & 1 \\ 2 & 1 & 3 & 1 \\ 1 & 1 & 2 & 1 \end{bmatrix}.$$ ind a set of vectors spanning the null space of $$A = \begin{bmatrix} 1 & 1 & 2 & -1 \\ 2 & 3 & 6 & -2 \\ -2 & 1 & 2 & 2 \\ 0 & -2 & -4 & 0 \end{bmatrix}.$$ 8. Let $$\mathbf{x}_1 = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}, \quad \mathbf{x}_2 = \begin{bmatrix} 4 \\ -7 \\ -1 \end{bmatrix}, \quad \mathbf{x}_3 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$$ belong to the solution space of Ax = 0. Is $\{x_1, x_2, x_3\}$ linearly independent? 19. Let $$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{x}_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}, \quad \mathbf{x}_3 = \begin{bmatrix} 6 \\ 2 \\ 0 \end{bmatrix}$$ belong to the null space of A. Is $\{x_1, x_2, x_3\}$ linearly independent? - 10. Which of the following sets of vectors in R³ are linearly dependent? For those that are, express one vector as a linear combination of the rest. - (a) $\{(1,2,-1),(3,2,5)\}.$ - (b) $\{(4,2,1),(2,6,-5),(1,-2,3)\}.$ - (c) $\{(1,1,0),(0,2,3),(1,2,3),(3,6,6)\}.$ - (d) {(1, 2, 3), (1, 1, 1), (1, 0, 1)}. - Consider the vector space R⁺. Follow the directions of Exercise 10. - (a) {(1, 1, 2, 1), (1, 0, 0, 2), (4, 6, 3, 6), (0, 3, 2, 1)} - (b) $\{(1, -2, 3, -1), (-2, 4, -6, 2)\}.$ - (c) 1(1, 1, 1, 1), (2, 3, 1, 2), (3, 1, 2, 1), (2, 2, 1, 1)) - (d) $\{(4, 2, -1, 3), (6, 5, -5, 1), (2, -1, 3, 5)\}$ - 12. Consider the vector space P₃. Follow the directions of Exercise 10. - (a) $\{t^2+1, t-2, t+3\}$ - (b) 1212 + 1,12 + 3,11. - (c) $(3t+1,3t^2+1,2t^2+t+1)$. - (d) $(t^2-4,5t^2-5t-6,3t^2-5t+2)$. - Consider the vector space M₂₂. Follow the Exercise 10.