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Preface

I have attempted to write this book in such a way that it can be
read not only by professional mathematicians, physicists, engineers,
and chemists, but also by well-trained graduate students in those
and closely allied fields. I-ven the research worker in special functions
may notice, however, some results or techniques with which he is not
already familiar.

Many of the standard concepts and methods which are useful in
the detailed study of special functions are included. The reader will
also find here other tools, such as the Sheffer classification of poly-
nomial sets and Sister Celine’s technique for obtaining recurrence
relations, which deserve to become more widely used.

Those who know me will not be surprised to find a certain empha-
sis on generating functions and their usefulness. That functions of
hypergeometric character pervade the bulk of the hook is but a
reflection of their frequent occurrence in the subject itself.

More than fifty special functions appear in this work, some of
them treated extensively, others barely mentioned. There are dozens
of topics, numerous methods, and hundreds of special functions
which could well have been included but which have been omitted.
The temptation to approach the subject on the encyclopedic level
intended by the late Harry Bateman was great. To me it seems that
such an approach would have resulted in less, rather than more,
usefulness; the work would never have reached the stage of publi-
cation.

The short bibliography at the end of the book should give the
reader ample material with which to start on a more thorough study
of the field.

This book is based upon the lectures on Special Functions which
I have been giving at The University of Michigan since 1946. The
enthusiastic reception accorded the course here has encouraged me
to present the material in a form which may facilitate the teaching
of similar courses elsewhere.

v
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I wish to acknowledge the assistance given me in the way of both
corrections and comments on the manuscript by Professor Phillip E.
Bedient of Franklin and Marshall College, Professor Jack R.
Britton of The University of Colorado, and Professor Ralph L.
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encouraged by the late Fred Brafman who was Associate Professor
of Mathematics at The University of Oklahoma at the time of his
death. Professor Brafman read the first ten chapters eritically and
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CHAPTER 1

Infinite

Products

1. Introduction. Two topics, infinite products and asymptotic
series, which are seldom included in standard courses are treated to
some extent in short preliminary chapters.

The variables and parameters encountered are to be considered
complex except where it is specifically stipulated that they are real.

Exercises are included not only to present the reader with an
opportunity to increase his skill but also to make available a few
results for which there seemed to be insufficient space in the text.

A short bibliography is included at the end of the book. All
references are given in a form such as Fasenmyer [2], meaning item
number two under the listing of references to the work of Sister M.
Celine Fasenmyer, or Brafman [1;944], meaning page 944 of item
number one under the listing of references to the work of I'red Braf-
man. In general, specific reference to material a century or more
old is omitted. The work of the giants in the field, Euler, Gauss,
Legendre, etc., is easily located either in standard treatises or in the
collected works of the pertinent mathematician.

2. Definition of an infinite product. The elementary theory of
infinite products closely parallels that of infinite series. Given a
sequence a; defined for all positive integral k, consider the finite
product

M Po=JI0+a) = (1 + @) +a) (1 +a.



2 INFINITE PRODUCTS |[Ch. 1

If Lim P, exists and is equal to P # 0, we say that the infinite
n-yo

product
(2) I=Il (14 a.)

converges to the value P. If at least one of the factors of the product
(2) is zero, if only a finite number of the factors of (2) are zero, and
if the infinite product with the zero factors deleted converges to a
value P 5 0, we say that the infinite product converges to zero.

If the infinite product is not convergent, it is said to be divergent.

If that divergence is due not to the failure of Lim P, to exist but
n-p oo

to the fact that the limit is zero, the product is said to diverge to zero.
We make no attempt to treat products with an infinity of zero
factors.

The peculiar role which zero plays in multiplication is the reason
for the slight difference between the definition of convergence of an
infinite product and the analogous definition of convergence of an
infinite series.

3. A necessary condition for convergence. The general term
of a convergent infinite series must approach zero as the index of
summation approaches infinity. A similar result will now be ob-
tained for infinite products.

Tueorem 1. If ][] (1 + a,) converges,
n=1

Lima, = 0.
n-yo

Proof: If the product converges to P # 0,

Lim ﬁ (1 + ax)

1= 123 —rekl _ Lim (1 + aw.
Lim[[(1 +a) 7
nyo k=1

Hence Lim a, = 0, as desired. If the product converges to zero,
n-pco

remove the zero factors and repeat the argument.

4. The associated series of logarithms. Any product without
zero factors has associated with it the series of principal values of
the logarithms of the separate factors in the following sense.



§6] ABSOLUTE CONVERGENCE 3

THEOREM 2. If no a, = —1, [T (1 + a.) and 3 Log (1 + a,)
n=1 n=1
converge or diverge together.
Proof: Let the partial product and partial sum be indicated as
follows:

P,=JI(0+a), 8S.= Z:l Log(1 + ax).

k=1

Then* exp S, = P.. We know from the theory of complex variables

that Lim exp S, = exp Lim S,.. Therefore P, approaches a limit
n-yow n-pom

if and only if S, approaches a limit, and P, cannot approach zero
because the exponential function cannot take on the value zero.

5. Absolute convergence. Assume that the product J] (1 + a,)

na=]
has had its zero factors, if any, deleted. We define absolute con-
vergence of the product by utilizing the associated series of logarithms.

The product [ (1 + a.), with zero factors deleted, is said to be

n=1 ©
absolutely convergent if and only if the series D Log (1 + a,) is
absolutely convergent. mt

TuEOREM 3. The product [T (1 4 a.), with zero factors deleted, s
n=1

absolutely convergent if and only if 2 a, is absolutely convergent.

n=1

Proof: First throw out any a,’s which are zero; they contribute
only unit factors in the product and zero terms in the sum and thus
have no bearing on convergence.

We know that if either the series or the product in the theorem

converges, Lim a, = 0. Let us then consider n large enough, n > n,,
n-yc
so that |a.| < % for all n > n,. We may now write

Log (1 4+ a,) & (—l)kaﬂ"
0 g 00 £ o002

from which it follows that

Log (1 4+ an) _ Slal]r 11
an 1§/§11\7+1 <A=El k+1_2

*We make frequent use of the common notation exp u = ev,



4 INFINITE PRODUCTS |[Ch. 1

Thus we have

1o |Log(l+a) 3
5 < an <
from which
Log (1 +a,)| 3 L
phd.= a_—~n < 2 and LOg (1 + a") < 2.

By the comparison test it follows that the absolute convergence of

either of > Log (1 + a.) or X a. implies the absolute convergence
n=1 n=1

of the other. We then use the definition of absolute convergence
of the product to complete the proof of Theorem 3.

Because of Theorem 2 it follows at once that an infinite product
which is absolutely convergent is also convergent.

ExampLE (a): Show that the following product converges and
find its value:

ﬁ [1 T 1)1(n + 3)]’

The series of positive numbers

i 1
nzz:l (n+1)(n+3)
i1s known to be convergent. It can easily be tested by the poly-

. . . . = 1
nomial test or by comparison with the series ) el Hence our

n=1
product is absolutely convergent by Theorem 3.

The partial products are often useful in evaluating an infinite
product. When the following method is employed, there is no need
for the separate testing for convergence made in the preceding
paragraph. Consider the partial products

e 1 o (k4 2)e
P"‘E[l+<k+1><k+3)}‘H<k+1)<k+3)
345 --n+2)] _n+2 3

T2 34+ D456 --nt+3)] 2 w+3

At once Lim P, =3, from which we conclude both that the in-
n-y»co

finite product converges and that its value is 2.
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ExamrLE (b): Show that if z is not a negative integer,
(n — 1! ne

Li
e eF D +2E+3) - G+n—1
exists.
We shall form an infinite product for which the expression

P — (n=1" o=
ot DE+H2)(+3) @+ = 1)

is a partial product, prove that the infinite product converges, and
thus conclude that Lim P, exists.

nyo
Write
P = n! (n 4+ 1):
m (z4+1DE+2)---(2+n)
n! 2: 3= 4 (n 4+ 1)-
T e+ D+ (z4n) 1203w

e R IR R

Consider now the product*

® o0+ ()]

Since
Lim n? [(1 + 3>‘ <1 + 1) - 1]
n»o n n
= Lim 1+ zﬁ)—l(l.—{— B):—1 - Lim 1+ /J)’;:}_:Z_B
830 B’ P B?
L A E D 2 g 2 DAEHT o, ),
B>0 2B >0 2

we conclude with the aid of the comparison test and the convergence

of > %Zthat the product (2) converges. Therefore Lim P, exists.
n=1 n—p-

6. Uniform convergence. Let the factors in the product

JII[1 + a@.(2)] be dependent upon a complex variable z. Let R

na=1

*We shall find in Chapter 2 that this product has the value zI'(z).
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be a closed region in the z-plane. If the product converges in such
a way that, given any ¢ > 0, there exists an n, independent of z for
all zin R such that

ne+p no

g[l + ax(®)] — kI}l 1 +az)] < e

for all positive integral p, we say that the product [] [1 + a.(2)] is
n=1

uniformly convergent in the region R.
Again the convergence properties parallel those of infinite series.
We need a Weierstrass 1 -test.

THEOREM 4. If there exist positive constants M, such that 3, M,

n=l

is convergent and |a.(z)| < M, for all z in the closed region R, the

product [] [1 + a.(2)] is uniformly convergent in R.
n=1

Proof: Since ) M, is convergent and M, > 0, [ (1 + M,) is

n=1
convergent and Lim [] (I + M,) exists. Therefore, given any
nypo k=1
e > 0, there exists an n, such that

no+p

[T+ M) - T+ My<e

k

for all positive integers p. For all 2z in R, each ax(z) is such that
lar(2)] < M.. Hence

L1+ @] = [T+ auca)]
=T + )| - kiffrlll‘i—ak(z)]—ll

<kIn_°Il(1+Mk)[""If (1+Mk>—1]

k=n,+1
netp no
<A+ M) =I1A+ M) <
=1 =

which was to be proved.
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EXERCISES
1. Show that the following product converges, and find its value:
= 6 21
I [1 a‘rmﬁ@] Ans. °g
! 1 1
3. Show that ] (1 - i) diverges to zero.
n=2
4. Investigate the product ] (1 + 2) in |z| < 1.
n=0
Ans. Abs. conv. to .
1 -2z
5. Show that [] exp<}l) diverges.
n=l
6. Show that H exp(——1> diverges to zero.
n=l
@ 2
7. Test [] <1 - %) Ans. Abs. conv. for all finite 2.
ne=l
8. Show that [] [1 + (_Q__] converges to unity.
=i

9. Test for convergence: H (1 — ——) for real p = 0.

Ans. Conv. for p > 1- div. for p <

sin (z/n) .

1.

10. Show that H ——=——is absolutely convergent for all finite z with the usual

z/n

convention at z = 0. Hint: Show first that

11. Show that if ¢ is not a negative integer,

10~ ) ()]

is absolutely convergent for all finite z. Hint: Show first that

el (- 2 ewl?) - ] -2



CHAPTER 2

The Gamma

and Beta Functions

7. The Euler or Mascheroni constant y. At times we need to
use the constant v, defined by

(1) v = Lim (H, — Log n),
ncw
in which, as usual,
=1
(2) H,=23 7
=k

We shall prove that v exists and that 0 < v < 1. Actually
v = 0.5772, approximately.

Let A, = H, — Logn. Then the 4, form a decreasing sequence
because

Appr — Ay = Hopy — H, — Log (n + 1) + Log n

1 1
=n+1+LOg<1—ETr_1>

|
|
|
+
5
o=
+

hd 1
R S CE D G

Furthermore, since 1/t decreases steadily as ¢ increases,

1 kot 1
—_ _ — >
(3) k<k_.t<k—1’ k22

We sum the inequalities (3) from k¥ = 2 to ¥ = n and thus obtain
8
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2 3 n
Hn—1<£%+£%+-~+ @<Hn_1,

n-1 t
or
H,—1<Logn < H,_,,

from which it follows that

-1 < —H,.+ Logn < —-%,
or

1>A,.>—1-'
n

Thus we see that the A, decrease steadily, are all positive, and
are less than unity. It follows that vy exists and is non-negative
and less than unity.

8. The Gamma function. We follow Weierstrass in defining
the function I'(z) by

) = T (14 De(-2)]

in which v is the Euler constant of Section 7. The product in (1)
is absolutely convergent for all finite z as was seen in Ex. 11, page 7,
the special case ¢ = 0 and z replaced by (—z). That the product
is also uniformly convergent in any closed region in the z-plane is
easily shown by employing the associated series of logarithms.

We shall see in Section 15 that the function I'(z) defined by (1)
is identical with that defined by Euler’s integral; that is,

I'(z) = f e~ =1 dt, Re(z) > 0.
0

The right member of (1) is analytic for all finite z. Its only zeros
are simple ones at z = 0 and at each negative integer. We may
therefore conclude that

(a) T(z)isanalytic exceptatz = nonpositive integersandz = o«

(b) T(2) has a simple pole at z = each nonpositive integer, z = 0,
-1, -2, =3, -;

(¢) T(z) has an essential singularity at z = «, a point of con-
densation of poles;

(d) T'(z) is never zero [because 1/T'(2) has no poles].
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9. A series for I'’(z)/T(z). By taking logarithms of each mem-
ber of equation (1) of Section 8, we obtain

log T(2) = —Logz — vz — ij [Log(l + ;z) - f]-

n=1 n

Term-by-term differentiation of the members of the foregoing
equation yields
e _ _1_ _ °°<_1_~l>
Tz 2z 7 ; z4+n nf
or
I‘ 2
the series on the right being absolutely and uniformly convergent

in any closed region excluding the singular points of I'(z), a result
easily deduced by using the Weierstrass M-test and the convergence

ofz

n=1

— n(z + n)

10. Evaluation of I'(1) and T'’(1). In the Weierstrass definition
of I'(z) put z = 1 to get

g = 1L+ ) el 5)]

= ¢ Lim H[ +1 exp(— %):l
nypo k=1l

= ¢ Lim (n 4+ 1) exp(—H.)
n-pow

Il

e Lim (n 4+ 1) exp(— v — Log n — e),
n-po

in which ¢, - 0 asn — . It follows that
1 n+1__
() = ev %;xg — ¢ v =1,
so that T'(1) =
We know from the series for I''(z) /T'(z) obtained in Section 9 that
oy
o) - L+ 2 T

so that



§111 THE EULER PRODUCT FOR T(z) 11

1) = —ny — (1 _ 1
) = —v 1+,§<n n+1
- - —1+Lim(1———1-—)
v o +1

since the series involved telescopes. Thus we find that T'(1) = —

11. The Euler product for I'(z). From the Weierstrass product
definition of I'(z) we obtain

exp(—v2)

i1 [(1+5) el =)
so that

(1) 2T(2) = exp(—72) Lim kHl [(1 + Zz)_lexp(/\ﬂ
But

2l(z) =

?

v = Lim (H, — Logn) = Lim [H, — Log (n + 1)]

npo n-p o
= Lim[ - X 1o éi_]
n-yo
Hence
exp(—vz) = Lim exp[ —zH, + = Z Log &_'Af_l]
n-po

Lim [ (55 el -5) |

Therefore (1) can be written

2T (z) = I;_l}r?o kI:II [(1 z>zexp( )(1 + §>_lexp<%>:|,

from which it follows that

o o=t

which is Euler’'s product for TI'(z). Note that for real = > 0,
Ir'(z) > 0.
Refer now to Example (b), page 5, to conclude that
(n—1D!n
® Me) = e T e+ G Fn =D

It will be of value to us later to note that, since
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Lim (n+ D= _ 1,
n-yo n*

we can equally well write the result (3) in the form

i n! ne
(4) M@ =Lm e T e+ n

12. The difference equation I'(z + 1) = zI'(z). From Euler’s
product for I'(z) we obtain

ooy o B0+)04EY)]
)6 ]

= [ 0+ 0+ =) ]
k

_ oz k+1 k4 Z,_)
B T S N F+z4+1
_ .. n+1 142
i e U By Rl
Therefore
(1) I'(z+ 1) = 2T'(2)

for all finite z except for the poles of I'(z).

If z = m, a positive integer, iterated use of the equation (1) yields
I'(m+1) =m!. Since I'(1) =1, this is another of the many reasons
we define 0! = 1.

13. The order symbols 0 and O. Let R be a region in the com-
plex z-plane. If and only if

Lim 2@ o
z»c in R g(z)
we write
f(z) = o[g(2)], asz — cin R.
If and only if gg—g is bounded as z — ¢ in R, we write

f(z) = O[g(2)], as z — ¢ in R.
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It is common practice to omit the qualifying expressions such
as “z — ¢ in R” whenever the surrounding text is deemed to make
such qualification unnecessary to a trained reader. The point
z = ¢ may on occasion be the point at infinity. Also, the symbols
o and O are sometimes used when the variable z is real, the approach
is along the real axis, and even when z takes on only integral values.

. . sin*z .
ExampLE (a): Since Lim = 0, we may write
290
sin?z = o(2), as z — 0,

noting that in this instance the manner of approach is immaterial.

ExampLE (b): For real z, |cos | = 1, from which it is easy to
conclude that

cosx — 4x = O(x), as r — «, x real.

ExampLE (¢): In Chapter 3 we shall show that if

sa(x) = 2 k! xk,
k=0

—— — 8u(x) = o(zx"), as ¢ — 0 in Re(z) = 0.

14. Evaluation of certain infinite products. The Weierstrass
infinite product for I'(z) yields a simple evaluation of all infinite
products whose factors are rational functions of the index n. The
most general such product must take the form

g mta)n+a)---(n+ a,)

W P =1l )t by (n t b
. ay
1,<1 + )

because convergence requires that the nth factor approach unity as
n — o, which in turn forces the numerator and denominator poly-
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nomials to be of the same degree and to have equal leading coeffi-
cients. Now the nth factor in the right member of (1) may be put

in the form
1/ < : 1
+ ;<E =2 bk) + O(“n‘e>’

so that we must also insist, to obtain convergence, that
(2) Z ak = Z bk.
k=1 k=1

If (2) is not satisfied, the product in (1) diverges; we get absolute
convergence Or no convergence.

We now have an absolutely convergent product (1) in which the
a’s and b’s satisfy the condition (2).

Since
ex (lz‘:a)—ex <le>
pnk=l k) pnk=1 A

we may, without changing the value of the product (1), insert the
appropriate exponential factors to write

3) P-1]- e
e+ 2)eo( )]

The Weierstrass product, page 9, for 1/T'(z) yiclds

rfjl |:<1 + 7%) exp<—s>} Tz exp(wl/z)I‘(z) B I'(z + l)1 exp(vyz)

Thus we obtain from (3) the result
I‘(l + bk) exp('ybk)

P = w1 (1 4 ay) expl(yay)
_ _ _(w bx)
= exp| v ; b ; ax =I I+ ap)
T +b
- ried
THEOREM 5. If ), a, = bk, and if no ay or by is a negative

integer,
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ﬁ (n+ax)(n+az) cct (n-l-a,) _ F(1+b1)r(l+b2) s F(1+bs) .
ai (n+b)(n+bs)- - - (n+b,) r(l+a,)r(l14a,)---r(1+a,)

If one or more of the a, is a negative integer, the product on the
left is zero, which agrees with the existence of one or more poles of
the denominator factors on the right.

ExamprLe: Evaluate

ﬁ(c—a-}-n—l)(c—b—!—n—l)
aic+n—1Dc—a—-b+n-—-1)

Since(c—a—1)+(c—b—-1)=(c—=1)+(c—a—-b—-1),
we may employ Theorem 5 if no one of the quantities ¢, ¢ — a,
¢ — b, ¢ — a — b is either zero or a negative integer. With those
restrictions we obtain

> c—a+n—1c—b+n—-1)) T()T(c—a—0>)
) g(c+n—l)(c—a—b+n—-l)_ I'(c — a)T(c — b)

15. Euler’s integral for I'(z). Elementary treatments of the
Gamma function are usually based on an integral definition.
Theorem 6 connects the function I'(z) defined by the Weierstrass
product with that defined by Euler’s integral.

TreoreEM 6. If Re(z) > 0,

(1) I'(z) = fme—‘t'—l dt.

We shall establish four lemmas intended to break the proof of

Theorem 6 into simple parts.
Lemmal. If0£a<1,14 a=expla) = (1 — o)l
Proof: Compare the three series

1+a=1+4e¢, exp(a)=14+a+ Z):_:, (1—a)'=14a+ Z_za"-

Lemma 2. If 02 a<1, (1 —a)*=1— na, for n a positive
integer.
Proof: Form = 1,1 —a=1—1" o asdesired. Nextassume
that
1—a)*=1— ke,
and multiply each member by (1 — «) to obtain

1—-a) 121 —al—ka)=1- (k + Da + ka2,
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so that
A=) 21—(k+ Dea

Lemma 2 now follows by induction.

Lemma 8. If0 =t < n, n a positive integer,

O é et — (1 — i) é gg:‘.
n n

Proof: Use a = t/n in Lemma 1 to get

-1
1+ tse()=(1-9)
n n, n.
from which

o (Y eez(-))

or

so that
3) et — (1 — 5) > 0.

But also
(-2 i)
n n

and, by (2), ¢t = (1 + %) . Hence

) (1= s f1-(1-1)]

Now Lemma 2 with « = 2/n? yields

2\ " 2
(-5 21-:
n n

which may be used in (4) to obtain
- B < pe| 1 — £ _ e,
(5) e‘—(l—ﬁ>§e‘[1 1+7_z]_ -

The inequalities (3) and (5) constitute the result stated in
Lemma 3.
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Lemma 4. If n 1s integral and Re(z) > 0,

®) I'(2) = Lim (1 - 5) 11 dt.

nypwm
Proof: In the integral on the right in (6) put ¢ = ng and
thus obtain

) f(l — %) =1 dt = ne| (1 — B)B—" dB.
0 0

An integration by parts gives us the reduction formula

1 1
[a—preras =" = gy as,
0 2Jo

iteration of which yields

! - nn—1)n —2 e
fo(l—ﬁ)B B= T et z+n—1)f"+ tdp

n!

T2+ DE+2) G+

Now (7) becomes

" ¢ n » B ’I?!N_’
j(:(l_n)t dt—z(z+l)<2+2)..-(z+n)
so that

Lim (1 — 5) =1 dt = Lim nln’ = T(2)
n-p o nycw Z(Z "I‘ 1) A (z + 7L)

by equation (4), page 12.
We are now in a position to prove Theorem 6, which states that

®) I'(z) = f "=t dl,  Re(z) > 0.

The integral on the right in (8) converges for Re(z) > 0. With
the aid of Lemma 4, write

f e~t=' dt — I'(z) = Lim l:f e~ dt — f (1 — £> et dt]
0 n-po 0 0
v [l (- Yheas [ a]
n-p»o 0 n/ . n
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From the convergence of the integral on the right in (8) it follows
that

Lim | e t—1di = 0.

npwo v n
Hence
(9) f et dt — T'(z) = Lim [e“‘ - (1 - t) }t"‘ dt.
0 nyw J0 n

But, by Lemma 3 and the fact that |¢2] = Rt

n n 7y
f [e-z - (1 — ﬁ) :Itz—l dt f Pt reo—1 gy
0 n 0 n

1 n
‘f e~ t{Re(2)+1 dt.
NnJy

n

@
Nowf e~ 'tRe+1 df converges, sof e~ tRe+1 d¢is bounded. There-
0 0

Lim [e“ - (1 - i) ]t"‘ dt = 0,
nyo VYO n

and we may conclude from equation (9) that (8) is valid.

IIA

1A

fore

16. The Beta function. We define the Beta function B(p, ¢) by

1) B = [t=( —ytd, Re(p) > 0, Re(q) > 0.

Another useful form for this function can be obtained by putting
t = sin? ¢, thus arriving at

ir
(2) B(pg = Qf sin?r~lp cos?lp dp, Re(p) > 0, Re(q) > 0.
0

The Beta function is intimately related to the Gamma function.
Consider the product

(3) I(p)T(g) = fwen‘l”—' dt - fme‘vvq—l dv.

In (3) use t = x? and v = ¥? to obtain

o

I(p)T(q) = 4fmer\'p(—x'z)x““‘ dz - f exp(—y)y*t dy,
0 0
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r(p)T(q) = 4f f exp(—x? — y2)x2r-iy2e! dx dy.
0 0

Next turn to polar coordinates for the iterated integration over the
first quadrant in the xy-plane. Using z = rcos 6, y = rsin 6, we
may write

© i
T'(p)T(g) 4f f exp( —r?)r2p+2a? cos??19 sin?¢~'9 rdodr
0 0

I

@ in

2f exp(—rd)ret2eidr . 2f cos?P~1g sin?¢='6 d.
0 0

Now put 7 = v/t and § = iz — ¢ to obtain

I'(p)T(q) = f e trrat dt . 2fz sIin?P~le cos? e do,
0 0
from which it follows that
r(pr(g) = r(p + 9B(p, 9).
TueoreMm 7. If Re(p) > 0 and Re(g) > 0,

_ T(p)T(g).
(4) B(p,g) = T F g

By (4), B(p,q) = B(q,p), a result just as easily obtained directly
from (1) or (2).

Equations (2) and (4) yield a generalization of Wallis’ formula
of elementary calculus. In (2) put 2p — 1=m, 2¢ — 1 = n, and

use (4) to write
m+ 1 (n + 1>
F( 2 >

2F(m+n+2)

valid for Re(m) > —1, Re(n) > —1.

ir
(5) f sin™p cosmp dp =
0

17. The value of I'(z)T'(1 — z). The important relation (4) of
Section 16 suggests that the product of two Gamma functions whose
arguments have the sum unity may possess some pleasant property,
sinceif p+¢=1,T(p+¢q =T(1) = 1.

If zis such that 0 < Re(z) < 1, both z and (1 — 2) have real part
positive, and we may use (4) of Section 16 to write



20 THE GAMMA AND BETA FUNCTIONS |[Ch.2

1
Irz)T(1 —2) = B(z,1 — 2) = ft='1(1 — )= dt
0
_ f ( t )’ﬂ.
S\l =t/ ¢
Now put ¢/(1 — t) = y to arrive at
_ B myz—l @
(1) rz)r(l — 2) = C1Ey 0 < Re(2) < 1.
The integral on the right in (1) can be evaluated with the aid of

contour integration in an a-plane where Re(«) = y. The contour

a-plane

N

Figure 1
C in Figure 1 encircles a single simple pole « = —1 of the integrand
in
a ! da
c1l+ «

so that the residue theory at once yields

a ! da

T = 2m(=D = 2niexplxi(z — D]

(2
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The integral on the left in (2) may be split into four parts, as indi-
cated in the figure. In detail we use

(a) a = Rei*, g from 0 to 2r;

(b) a = yer=i, y from R to s;

(¢) a = édeit, ¢ from 2= to 0;

(d) a = yei, y from § to R.

Thus (2) can be written in the form

3) f tR* exp(iz6) df ff‘l exp(2wiz) dy
1+ Rexp 20) 1+y

I

® 182 exp(120) do ff”exp (0/2) dy _
+ oo 1 F 6 oxp(i0) T+ = 2t exp[ri(z—1)].
Nowlet § > 0and R — « and use 0 < Re(z) < 1 to conclude that
the first and third integrals on the left in (3) approach zero. Then
the limiting form of (3) is

Ay dy ytdy . .
exp(2niz) 1T y 1 ¥y 2w exp(miz),

from which we obtain

“y=tdy  2mexp(wiz) _ 2m
o 14+vy  exp(2riz) — 1  exp(miz) — exp(—miz)

We have thus shown that, for 0 < Re(z) < 1,

_ _ myz—l dy _ T
(4) Irz)r(l —2) = VT ¥y —snnz

But each member of (4) is analytic for all nonintegral z, and the
theory of analytic continuation permits us to come to the useful
conclusion of Theorem 8.

THEOREM 8. If 2z 18 nonintegral,

rz)r(1 —z2) =

sin w2

Our first, and extremely simple, application of Theorem 8 is the
evaluation of I'(3). Usez = % to get

r(HT(3) = m,
which, since I'(3) > 0, yields
6)) r(3) = /=
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18. The factorial function. Throughout this book we make fre-
quent use of the common notation

M@=+ k-1)
ala + D(a+2) - (a +n—1), n =1,
(a)o =1, a # 0.

The function (a)., is called the factorial function. 1t is an immediate
generalization of the elementary factorial, since n!/ = (1),.

In manipulations with (a), it is important to keep in mind that
(a)n is a product of n factors, starting with « and with each factor
larger by unity than the preceding factor.

Lemma 6. (@) = 22n<g>n<ﬁ_%"_1)n.

<

Proof: In the product
(a)sn = ala + 1)(a +2)(a +3)---(a + 2n — 1),

group alternate factors, factor 2 out of each factor on the right,
and thus conclude that

o= 2{5) (5,

Lemma 6. If k is a positive integer and n a non-negative integer,

o () (), (),

The proof of Lemma 6 is like that of Lemma 5 except that the
factors of (a):. are grouped into k sets of n factors each, and then
k is factored out of each factor to obtain (2).

Other properties of («), will be introduced when needed, particu-
larly in series manipulations involving functions of hypergeometric
character. At present we are concerned only with the relation of
(a)n to the Gamma function.

We know that I'(1 + z) = 2I'(z). It follows that, for n a posi-
tive integer,

MNMa+n)=(+n—DI'(a+n-—1)
(a+n—Da+n—2)T(a+n—2)

=(a+n—Dla+n—2) - alla).
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THEOREM 9. If o 18 neither zero nor a negative integer,

3) (o, = Hatn)

We have already had, in equation (3), page 11, the result

g (n — D!ne
M) = Lm e Y o e n =D
which can now be written in the form
. (n—Dln:
4 I'(z) = Lim ~——2""
4) (2) Lim =7~

Equation (4), reinterpreted in the light of Theorem 9, yields a
result of value to us in the subsequent two sections.

Lemma 7. If n is integral and z is not a negative integer,

. (n—Dln
(5) I et

19. Legendre’s duplication formula. ILet us turn to Lemma 5,
page 22, and use « = 2z. We thus obtain

(Qz)% = 22”(2),.(.2 + %)n
In view of Theorem 9 we may rewrite the above as

r'(2z 4+ 2n)  2»T(z 4+ n)T(z + 3 + n)
r2z;) I'(z)T(z + 3) ’

or
I'(22) _ Ir'(2z 4+ 2n)
r(z)T(z +3) 2T(z+n)T(z+ 1+ n)
which, since the left member is independent of n, also implies
T(2z) . 2z + 2n)

1 SR 0. ) EE, :

W FeTeF D TR ETE F e + 1 F
We next insert in the right member of (1) the appropriate factors
to permit us to make use of the result in Lemma 7. Irom (1)
we write

I'(22)

I+ 3)

~ Lim I'(2z42n) .(n—l)!nz.(n—l)!n”*. 22:(2n—1)!
T aye 2n=D1(2n)*  T(+n) Tle+i+n) 27ni(n—1)1]
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which, because of Lemma 7, becomes
T'(22)

I 22:(2n — 1)!
TATG 1)~ A0 Fomi[in = DI

It follows that

I'(22) _
22T(2)T(z +3)

2

in which ¢ is independent of z. To evaluate ¢ we use z = % and

find that
_ r(1) _ 1
TaTHTD T o/

We have thus discovered an expression for I'(2z) in terms of T'(z)
and I'(z 4+ 3). It is Legendre’s duplication formula,

(2) A/7T(22) = 22T (2) T(z + ).

20. Gauss’ multiplication theorem. Following the technique
used to discover and prove Legendre’s duplication formula, we
readily move on to a theorem of Gauss involving the product of &
Gamma functions.

Lemma 6, page 22, can be written

k
(@)e = knt ] (i“i.%.:l)

s=1

and by Theorem 9, page 23, (a), = I'(a + n)/T'(a). We thus

obtain
+s—1
e
(1) Ila + nk) _ k .

P F(z:ti:.l)

In (1) put a« = kz and rearrange the members of the equation to
arrive at

)

T'(kz) _ r'(kz + kn)
k k .
II I‘(z + ﬁ-%—1> k= 11 I‘<z +n+ é—/ﬁi>

s=1

— Lim I'(lz + kn)

©

lnk I1 r<z ot 5“_/:'1)
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By Lemma, 7, page 23, we know that

8—1

(n — 1)!n+

Lim =1,
npo ( s — 1)
k
and
— 1! .
Lim (nk — 1)! (nk)* 1

n-y»co I‘(kz + l\:n)

We now use the foregoing two limits in conjunction with (2) to
obtain

I'(k2)
k
II I‘(z + ——)
=1
T (kz+kn) (k) e (nk— D! £r (n—Dn" 1
= L k= Dk e =0

- <z+n+—> (n—l)!nz+7
o () (k= n! ﬁ 1

n-)oo knE 5= ’_1
(n—Dln

(nk)k(nk — 1)!
= }‘_’;2 T [(n — l)l]knkz+§(k~l)

Therefore,
r(kz)

Foke H F(z + S—-_—1>

in which c is independent of z. To determine ¢, we put z = 1/k,
use the fact that (1) = 1, and obtain

e~ 1e(p) - ()
k:«;ﬁ: Il () <k_s) HS TS’

"%

Then

or
k-1

(3) kxctrt—t = ] sin 1}?
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We can obtain ¢ once we know the value of the product on the
right in (3).

k-1
Lemma 8. If k 2 2,]] sinll: _ b
s=1

S

Proof: Let o = exp(2ni/k) be a primitive kth root of unity.
Then for all z,

x"——1=(x—1)ﬁl(x—a'),

from which, by differentiation of both members, we get

(4) kot = 11 @ — o) + (@ = Dg(@),

in which g(x) is a polynomial in z. Put z = 1in (4) to obtain

k=11 (1 — o).

s=1

2mis w18 w18 —ms
Poer=1- exP(T) - "GXP(T)[“P(T) ”e"p< k )]
—2i ex (l“‘f> sin 7
P\ /S %
Hence

k-1 k-1
k = (—2i)*1 exp[ixi(k —1)] [T sin ”78 = 2+ [] sin EE
§=1 v s=1

which yields the desired result.
With the aid of Lemma 8, equation (3) can be written

k2cepk—1 = _Z_é__.,l
The constant c is positive because the Gamma function is positive
for positive argument. Ience
¢ = (2n)~ 100k,
This completes the proof of the Gauss multiplication theorem.
s — 1
k

k
Tueorem 10 J] I‘(z + > = (2m) =D Li=kT (k2).
g=1

21. A summation formula due to Euler. Let
P(x)=x—[x]——;—,
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in which [z] means the greatest integer < z, a notation also used -
frequently in later chapters. The function P(z) is periodic,

Pz + 1) = P(x),

and is represented graphically in Figure 2.

P(x)

-t

Figure 2

Euler employed P(x) in obtaining some useful summation for-
mulas, of which we use only that in Theorem 11.

TaEOREM 11. If f'(x) is continuous for x = 0,

S0 = [ 1@ de +170) + 100 + [ P@r@ d,
m which P(z) = ¢ — [z] — 3.

Proof. First write

LnP(x)f’(x) dx = 1‘?;»/;_1 P(x)f'(x) dzx.
Now
| Por@a=[ @-k+nr@as,

and we integrate by parts to obtain

fk: P()f'(x) dx = [(x —k+ %)f(x)]

k

- J(z) dz

k-1 k-1

=4 + 1 1) = [ j@) da.
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We may therefore write
S Par@ =15 m 15k -0 - % [ s ae
=130 + 15 0 — [T da

= 3 (k) = 4(0) = 4f(n) ~ [ 1@ s
which is a simple rearrangement of the result in Theorem 11.

Lemma 9. For |argz| < = — 6, where § > 0,

;}Log(z + k) =(+n+1}) Log(z + n)
R C Y

Proof: Lemma 9 follows at once by applying Theorem 11 to the
function f(z) = Log (z + ).
Let us next turn to the result

—_ | nz
(1) I(z) = Lim o Di7
n o (z)n

)

established on page 23. In (1) put z = 4§ and shift from n to
(n + 1) to obtain

Lim nt(n + 1))
n -—pw (%)n-f—l

= T(),

which may be put in the form

) V'(n 4+ 1)in! 22»
L mn
) B2

Now Lemma 6, page 22, yields

- V.

22@-) (1)a = (2)2n = 2n + 1)L
Therefore we have

o 2n (4 DI(n 4+ DF —
(2) Lim 2n + ! =V
It is legitimate to take logarithms of each member of (2) and
thus write
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3) L_i)m [(2n 4+ 1) Log 2 — 3 Log(l 4+ n) + 2> Log(l + k)

2n
— > Log(1 + k):] = 1 Log =.
k=0

We shall apply the formula of Lemma 9 to the sums involved
on the left in equation (3). The choice z = 1 in the result in
Lemma 9 yields
@ ¥ Logt + k) = (3 +n) Logt +m) —n 4 [ L
k=0 0 x

By Lemma 9, with z = 1 and n replaced by 2n, we get

‘.InP(x) @.
o 142

2n
> Log(l + k) = <g 4 2n> Log(1 4+ 2n) — 2n +
k=0

Equation (3) can now be put in the form

1 14+n

1 + 2n

"P(z) dx 2"P(x)d_yc:]_l
+2];1+x o 14zl Log m,

lm[(2n 4+ 1) Log 2 + (271 + 3) Log
n-yo

which leads* to

2+2n]
g1+2n

“Px)de 1
—|—j; T+ 2 —2Log1r.

: 3 2_412_75] -
}fg [(2n T 2> Log T75,] =1

Therefore we arrive at the evaluation

Lim [—1 Log 2 + (2n + §)’L
n-y o 2 2

But

b) j; 1(_‘2 dx = —-1+4; Log (2n).

22. The behavior of log I'(z) for large |z|. From formula (3),
page 11, it follows that

(D4 D
F(Z) - Eirolol (Z)n+1

)

*®P(z) dz

Tz see the exercises at the end of this chapter.

*For proof of convergence of f
0
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and so also that
(1) log T'(2)

= L})m[;; Log (1+%) 4+ (2—1) Log (14n) — ZLog (z—l—k)].

Using equation (4) and Lemma 9 of the preceding section, we
may now conclude that, if |arg(z)| < = — §, § > 0,

(2) logr(z) = Lim l:(z +n+ %){Log(l + n) — Log(z + n)}

1 "P(z) dx _ ("P(z) dx]_
+(z )Log + 1+z o 2+

The elementary limit
Lim |:<z +n + %){Log(l +n) —Log(z—}—n)}] =1-—z,
n-»co

together with equation (5) of Section 21, permits us to put (2) in
the form

1 1 _ 1 _ [TP@)dx,
logT(z) =1—2+ (z 2) Logz—1+ 5 Log (27) -
TueorReM 12. If |arg(z)| = = — &, where 6 > 0,
(T 1 _ (P dx
3) log I'(z) = (z ) Logz —z + 5 Log (27) fo P

in which P(x) = ¢ — [z] — 1, as in Section 21.

Let us next consider the integral on the right in (3). Since

fP(x) dr = ; PXz) + ¢,
we may use ¢ = —zy and integrate by parts to find that
f“’P(z) de 1 [P?( ‘J f‘”[P?(x) — 12] dzx
o 24z 2 z+z T3 (z + 2)?
__ 1 f“’[P2 (x) — =] dx
12z (z + )2

Now the maximum value of [P*(z) — ¢5] is & and, in the region
largz| < v — 8,6 > 0,

lz+zl*2 24 |zl5,  for Re(z) 2 0,
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|z + z|* = [z 4+ Re(2)]* + |2|?sin? s, for Re(z) < 0.

It follows that
f“[P?(x) — 7z dx O( 1 )
0 (z + x) 2]
as |z| —» « in |argz| < = —4, 6§ > 0.
We have shown that as |z| — « in |argz| < = —35, 6§ > 0,
4) logT(2) = (z — %) Logz — z 4+ % Log(2n) 4+ o(1).

Indeed we showed a little more than that, but (4) is itself more
precise than is needed later in this book.

From (4) we obtain at once the actual result to be employed in
Chapter 5.

THEOREM 13. As |z| — « in the region where |argz| < = — &
and |arg(z +a)| < = — 5,6 >0,

(5) logT(z4+a) = (z4+a — %) Logz — z + O(1).

EXERCISES

et
1. Start with e~ YT ,.glz-i—n o)

prove that

r'(2) _I"(z) I'(z+3) _
r@) T Tty 282

and thus derive Legendre’s duplication formula, page 24.

2. Show that I"(3) = — (v + 2 Log 2)v/.

3. Use Euler’s integral form I'(z) = f el dt to show that T'(z + 1) = 2I'(2).
0
4. Show that I'(z) = Lj)m n*B(z, n).

5. Derive the following properties of the Beta function:
(a) pB(p,q+ 1) = ¢B(p + 1, q);
(b) B(p,q) = Bp+ 1,9 + B(p, ¢ + 1);
(c) (p+ @B(p, g+ 1) = ¢B(p, Q);
(d) B(p, B(p + q,7) = B(q, ")B(q + r, p).

6. Show that for positive integral n, B(p, n + 1) = n!/(D)ns1-

~1

1
. Evaluatef (1 + 2)P (1 — z)91 dz.
-1

Ans. 2°t771B(p, q).
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8. Show thatfor0 =k = n
_ (_l)k(a)ﬂ
@t = T g — s
Note particularly the special case ¢ = 1.
9. Show that if « is not an integer,
'l —a—mn) (=1

_I_‘(l —a) a (a)n
In Exs. 10-14, the function P(z) is that of Section 21.

10. Evaluate fP(y) dy. Ans. 1P(z) — 1.
0
11. Use integration by parts and the result of Ex. 10 to show that
f “P(z)dx < 1
s 1+z|=80+Fn

Ll o)
12. With the aid of Ex. 11 prove the convergence of f Plz)dz

o 1 + z
13. Show that

“P)dz _ f "P(z) dx 'y — Dy
jo‘ 1+x‘n>;6 S 1AZ=O 1+n+y

Then prove that

. ‘w—Pdy _ _1
2 —
L ) 1Tty - 12
and thus conclude that f Pl dz | is convergent.
0 1 + xz

14. Apply Theorem 11, page 27, to the function f(z) = (1 + 2)7; let n »

and thus conclude that
vy=13%- j: y~*P(y) dy.

15. Use the relation I'(2)T(1 — 2z) = =/sin 7z and the elementary result
sinz siny = § [cos (x — y) — cos (z + y)]
to prove that
_ Tl —ol'(c —a —bla+b+1—¢)
I'c—a)T(a+1—¢)l'(c —d)I'(b+1—r¢)

T2 —-ol(c—=NI'(c—a—bT'(a+b+1—¢)
- C(@)T(1 — a)T(b)I(1 — b)




CHAPTER 3

Asymptotic

Series

23. Definition of an asymptotic expansion. Let us first recall
the sense in which a convergent power series expansion represents
the function being expanded. When a function F(z), analytic at
z= 0, is expanded in a power series about z = 0, we write

(1) F(z) = i a2, |z] <.

Define a partial sum of the series by
Sn(Z) = E Ckz".
k=0
Then the series on the right in (1) represents F(z) in the sense that
(2) Lim [F(z) — S.()] = 0
n-yco

for each z in the region |z| < r. That is, for each fixed 2z the series
in (1) can be made to approximate F(z) as closely as desired by
taking a sufficiently large number of terms of the series.

We now define an asymptotic power series representation of a func-
tion f(z) as z — 0 in some region R. We write

@

3) f&) ~ > az", z—0inR,

if and only if
33
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(4) Lim l.f(z) — 8,.(2)' =0

z»0 in R ,zln ’

for each fixed n, with
(5) 8.(2) = 2 axzh.
k=0

By employing the order symbol defined in Secction 13, we may
write the condition (4) in the form

(6) f(z2) — 8,.(2) = o(z"), asz — 0in R.

Here we see that the series in (3) represents the function f(z) in
the sense that for each fixed n, the sum of the terms out to the
term a.z® can be made to approximate f(z) more closely than
|z|» approximates zero, in the sense of (4), by choosing z sufficiently
close to zero in the region R.

It is particularly noteworthy that in the definition of an asymp-
totic expansion, there is no requirement that the scries converge.
Indeed some authors include the additional restriction that the
series in (3) diverge. Most asymptotic expansions do diverge, but
it seems artificial to insist upon that behavior.

Asymptotic series are of great value in many computations. They
play an important role in the solution of linear differential equations
about irregular singular points. Such series were used by astronomers
more than a century ago, long before the pertinent mathematical
theory was developed.

ExampLE: Show that

o f le“ dxtt ~ 3 nlen, z — 0in Re(z) £ 0.
0 -_ n=0

Let us put
S.(z) = D klz*
k=0
In the region Re(z) < 0, the integral on the left in (7) is abso-
lutely and uniformly convergent. To see this, note that ¢ = 0 so
that Re(1 — 2t) = 1. Hence |1 — xt| = 1, and we have

éfe“‘dt= 1.
0

“e~t dt

o 1 — xt

For k a non-negative integer,
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(8) f etk dt = T(k 4+ 1) = kL.
0
Hence
et di sa(2) = f:.t__cit_ —_ Zf e—ttkrk dt
=0 Yo

o 1 —at o 1 — xt

= fomr'& - ot ,;o (xt)k]dt'

From elementary algebra we have

1 — pn+t

n
Z rk =
k=0

1 -7

[redt gy - [ d
o 1 — xt " 0 1 —at

from which, since |1 — zt| = 1, we obtain

Ce—t dt
j; 1 — a2t 8x(7)

We may conclude that

Ce—tdt
(9) 0 _i — xl

From (9) it follows at once that the condition (4), page 34, is
satisfied, which concludes the proof. Actually (9) gives more infor-
mation than that. Let E.(x) be the error made in computing
the sum function by discarding all terms after the term nlzn
Then |E.(x)| is the left member of (9), and the inequality (9)
shows that |E.(x)]| is smaller than the magnitude of the first term
omitted. This property, although not possessed by all asymptotic
series, is one of frequent occurrence.

The preceding example gives little indication of methods for
obtaining asymptotic expansions. Later we shall exhibit two com-
mon methods, successive integration by parts and term-by-term
integration of power series.

Extension of the concept of an asymptotic expansion to one in
which the variable approaches any specific point in the finite plane
is direct. For finite 2, we say that

, r #= 1,

Therefore

=< Ix]"“f e~ di, in Re(z) = 0.
0

— 8,(x)

< (n 4+ Dz, in Re(x) £ 0.

(o]
f(Z) ~ Z an(z - Zo)", as 2z — 2 ill R,

n=0
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if and only if, for each fixed n,
f(2) — sa(2) = o([z — z]"), asz—>zinR,

in which

n

$a(2) = D a(z — 20)*.

k=0

24. Asymptotic expansions about infinity. Asymptotic series
are often used for large |z|]. We say that

(1) f(&) ~ 2 a.z",as z — « in R,
n=0
if and only if, for each fixed n,
(2) f(2) — sa(2) = o(277), asz — « in R,
in which
3) $.(2) = 2 axz~*
k=0

At times, as in the subsequent example, we wish to work only
along the axis of reals. We then use (1), (2), and (3) for a real
variable z, with the region R replaced by a direction along the real
axis.

One last extension of the term asymptotic expansion follows. It
may be that f(z) itself has no asymptotic expansion in the sense of
the foregoing definitions. We do, however, write

@ &) ~h() + @) S e, asz— o in R,
ne=0
if and only if
@ —h@ L
(5) O ~ an,27", as z in R,

and similarly for asymptotic expansions about a point in the finite
plane.

ExavpLE: Obtain, for real z, as x — «, an asymptotic expansion
of the error function

(6) erf(z) = —2—_fzexp(—t2) di.
V2l

From the fact that T'(2) = +/, it follows at once that
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Lim erf(z) = 1.
z-p®
Let us write

2 [ 2 (®
erf(z) = — | exp(—) dt — — | exp(—1t) dt
vV wj; v wj;

() @
=1- —1:f exp(—1{?) dt.
Ve

Now consider the function
B(z) = f exp(—1?) dt
and integrate by parts to get

B(x)

—~|:t , exp<—t2>] f t2 exp(—t?) dt

= jz~texp(—z?) — %f i~ exp(—t?) dt.

Iteration of the integration by parts soon yields

B(x) =
1 1 1-3 1-3-5
exp(— xg)[zx g T i

L= 1)"+11-3-25’>1;1- -(2n41) f t-n=texp(— ) dt,

—1)#1-3-5- --(‘Zn—l)]

2n+l$2n+1

or

(M B@ = gexp(~z) ¥ e

1 Lo}
+ (-1 n+l<—) t-2n=texp(— ) dt.
(=5 fo exp(—£)

(3)x

x2lc+l

Let

l\Dl»—‘

k=0

Then, from (7),
exp(z?) B(z) — s.(z) = (—1)"*(3),. 1 exp(zc2)£wt-2"‘2 exp(—12) dt.
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The variable of integration is never less than z. We replace the
factor -2 in the integrand by tz—*»—% and thus obtain

( )n+1 exp(xl)

exp (2?) B(z) — s.(x) texp(—-tz) dt,

x2n+3
from which it follows that
®) exp(@) B(z) — s,(x)| < Dest
Hence
exp(2?)B(z) — s.(x) = o(z—?), as Tz — o,

which permits us to write the asymptotic expansion

exp(z?) B(x) ~ E (LG )", r— o

= 21-21:-‘}-1

But erf(z) =1 — —g: B(x). Hence

™

9 erf(z) ~1 — — exp(— xﬂ)z‘,(——ﬁ, z -,

x2ntl
™

Note also the useful bound in (8).

25. Algebraic properties. Asymptotic expansions behave like
convergent power series in many ways. We shall treat only ex-
pansions as z — » in some region R. The reader can easily extend
the results to theorems in which z — z, in the finite plane.

TureorEM 14. If, as z — « in R,

(1) 1) ~ 3 ar

and

(2 o) ~ X bz,

then

3) 5@ + 92) ~ 2 (@ + b~
and

@) F@9@) ~ > 3 asba iz,

n=0 k=0
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Proof: Let

S.(2) = 3 ae*, T.(z) = > byz—*.
k=0 k=0

From (1) and (2) we know that

(5) J(2) — Sa(2) = o(z™),
(6) g(z) — T.(2) = o(z™),
from which

J(@) + g(2) — [8.(2) + Ta(2)] = o(z—),

yielding (3).
To prove the validity of (4), first put

n k
Q.(2) = I; > abi_izk,
= 1=0

which is the ‘“nth partial sum’” of the series on the right in (4). By
direct multiplication,

Sa(2)T.(2) = Qu(z) + o(z77),
and by (5) and (6),
f(2)g9(z) = S.(2)Tu(2) + o(z~).
Hence
[(2)g(2) = Q.(2) + o(z—"),

which shows the validity of (4).
The right member in (4) is the ordinary Cauchy product of the
series (1) and (2).

26. Term-by-term integration. Suppose that for real z we have

(1) @)~ aar o

n=0

Surely we are interested here in large x, so that an integral which it

is natural to consider is f f(x) dx. But f a, dx and f ax~' dx do
v v v

not exist. Therefore we restrict ourselves to the consideration of
an expansion

) 0@) ~ X an x>,

n=2
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and seek f cog(alc) dz. Of course g(z) = f(z) — ay — ayz1.
v

Let
sn(x) = Z akx_k'.
k=2
Then
g(x) — s.(x) = o(z~"), z — ®,
and
[ 0@ dx — [To@ az| = [Tlg) - 5.0 e
v v Y
<f [o(z=")| dx
—_ O(y—n+l).
But
B I R K
j;s,,(x)dx Z_;ak vx dx ;;;(k—l)
Hence
@ i a"y—n+l
® J i@ ar~ 5y,

the desired result.

27. Uniqueness. Since e~= = o(z*), as ¢ — o, for any real £,
whole classes of functions have the same asymptotic expansion.
Surely if

flx) ~ 20 Aa,

n=0

then also

@) + cem ~ 3 Az,

n=0

and numerous similar examples are easily concocted.

On the other hand a given function cannot have more than one
asymptotic expansion as z — z,, finite or infinite. Let ususe z — «
in a region R as a representative example.

TuEOREM 15. If
(1) f&) ~ 3 A, 2w in R,

n=0
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and

(2) f@) ~ 3 Bz, z— o in R,
nel

then A, = B,.

Proof: From (1) and (2) we have

J&) = X At = o(e),

f&) — 22 Biz™* = o(z—n),
k=0
from which it follows that
2 (A — Bz~ = o(z"),
k=0

or its equivalent

n

> (Ar — Byzr* = o(1), z —» in R,

k=0
for each n. Therefore A, = B, for each k. The expansion (1)
associated with z — « in a particular region R is unique. The
function f(z) may, of course, have a different asymptotic expansion
as 2 — o in some region other than R.

28. Watson’s lemma. The following useful result due to
Watson [1;236] gives conditions under which the term-by-term
Laplace transform of a series yields an asymptotic representation
for the transform of the sum of the series. For details on Laplace
transforms see Churchill [1].

Since relatively complicated exponents appear in the following
few pages, we shall simplify the printing by the introduction of a
notation similar to the common one, exp u = e* The symbol
exp.(m) is defined by

exp.(m) = zxm.

Watson’s Lemma. Let F(t) satisfy the following conditions:

1) F@) =2 a, exp,(% — 1>, n [t £ a4+ 8 with a, 5,7 > 0;

n=1

(2) There exist positive constants K and b such that

[F(t)] < Kett, fort = a.
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Then

® = a.T(n/r
® 16 = [Ter i~ 3 L0,
as |s| — o« in the region |arg s| < ir — A, for arbitrarily small
positive A.

Note that (1) implies that F(t) is either analytic at ¢ = 0 or has
at most a certain type of branch point there.

Proof: 1t is not difficult to show (Exs. 1 and 2 at the end of this
chapter) that under the conditions of Watson’s lemma, there exist
positive constants ¢ and 8 such that for all ¢ = 0, whether { < a or
t > a,

F(t) — > ax expt(é - 1)' <c e\pt<—j—_-l - 1>e""
k=1

We know also the Laplace transform of a power of ¢,

(4)

(5) f e=tm dt = T'(m + 1)s—m1 m > —1, Re(s) > 0.
0

In order to derive (3), we need to show that for each fixed n

fls) — Zak ( )s

as |s| — o in Jargs| < ir — A, A > 0.

s{rir = 0(1))

Now

fls) — Z akI‘<k>s—"/' = fome—”I:F(t) — ?:::lak expt(é — 1>:| dt.

Hence, with the aid of (4),

f(s) — Zak < >S kT
< |Sln/rcf ]e“”lexp,<n—i—_—1 - 1>eﬁ' dt
0
< Cls’n/rf e—Re(s)texpt<2_;_}‘—__l. — 1>eﬂt dt
0

< efs (" T Reo) - g 5,

if Re(s) > 8. In the region |arg s| < ir — A, A > 0, Re(s) > 8

l In/r
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as soon as we choose |s| > B(sin A)-1. Therefore, as |s| — « in
the region |arg s| = ir — 4,

76 - 3 aen(H)aer

l lulr

= 0(1),

as desired.

ExampLE: Obtain an asymptotic expansion of

“e—zt (t .
)=fo‘%+_tz, |z| > in |arga| S 4r — A, 4 > 0.

Note that the result will be valid in particular for real x — .
We shall apply Watson’s lemma with F(f) = 1/(1 + ). Then

FO = T (=1)een = 3 (=D, 1] <1,
n=0 n=1

so that we may write

= Sad-y,  inft =2,
7ol (6}

in which a;, =0, a;._; = (-1)**, and we have chosen r = 1,
a = 3, § = % in the notation of Watson’s lemma.
Fort = 4,¢ > 1and 1/(1 + #2) < 1, from which
1

F(t) =m<6t.

We may therefore conclude from Watson’s lemma that

“e—=t dt =
T e T

or
edt | (=DmTEn = 1)

01+t2~Z

= x?n -1

and finally that

“e—=t dt = (=1D)r(2n)!
(6) o 1 + 12 HZU it ’
as[:c|—>ooln|argxl ir — A, 8 > 0.
EXERCISES

1. With the assumptions of Watson’s lemma, page 41, show, with the aid of the
convergence of the series in (1), that for 0 < ¢ < q, there exists a positive constant
¢y such that
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Fit) — X ax exp,(l-c — 1), <¢ exp,(ﬁ—u}_—1 - 1).
k=1 r l r

2. With the assumptions of Watson’s lemma, page 41, show that for ¢t > a,
there exist positive constants ¢, and B such that

lF(t) -3 ax exp,(l;c - 1), < ¢ exp,("_'rf_l — 1>eﬂc_
=1 i

3. Derive the asymptotic expansion (6) immediately preceding these exercises
by applying Watson’s lemma to the function

T

re ==

and then integrating the resultant expansion term by term.
4. Establish (6), page 43, directly, first showing that

(De—rtt2n+2 dt

f@) = T (~DH@k)la = (-1 | R

and thus obtain not only (6) but also a bound on the error made in computing
with the series involved.
5. Use integration by parts to establish that for real z —» «,

f et ldt ~e =y, (—1)mnlz— L

n=0

6. Let the Hermite polynomials H,.(z) be defined by

© n ¢
exp(2xzt — ) = ;lg;(;)—

for all z and ¢, as in Chapter 11. Also let the complementary error function
erfe z be defined by

erfez =1 —erfz = i_f exp(— 8% dB.
\/ms
Apply Wapsou’s lemma to the function F(t) = exp(2xt — t?); obtain

exp(z — %S)Zj:x exp(—p?) df ~ g:o Ha(z)s7, s —> ,
and thus arrive at the result
3 /mexp[(3t7! — z)%erfe(3¢! — z) ~ i H,(z)tr, t— 0+,
7. Use integration by parts to show that if Re(a) > 0, and if z is real,

f e~ U= dt ~ gl—p—z Z (—l)ﬂ(a)n’ z— o,

= gt

of which Ex. 5 is the special case a = 1.



CHAPTER 4

The Hypergeometric

Function

29. The function F(a, b; c¢; z). In the study of second-order
linear differential equations with three regular singular points, there
arises the function

(1) Flabiciz) = 14 3 (@alb)2

n=1 (C)n—vn! !

for ¢ neither zero nor a negative integer. In (1) the notation

@ (@n=ale+D@+2)(at+tn—-1, nzxl,
(a)(): 1) a?ﬁoy

of Section 18 isused. We are here concerned with various properties
of the special functions under consideration; that (1) satisfies a
certain differential equation is, for us, only one among many facts
of interest.

Since

(@) n41(D) npa2+! (¢c).n!

L i + DT (@), (b2
e (a+n)b+nyz| _
= Lm e m | T ED

so long as none of a, b, ¢ is zero or a negative integer, the series in
(1) has the circle |z| < 1 as its circle of convergence. If either or
both of @ and b is zero or a negative integer, the series terminates,
and convergence does not enter the discussion.

45
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On the boundary |z| = 1 of the region of convergence, a sufficient
condition for absolute convergence of the series is Re(c—a—b) > 0.
To prove this, let

6§ =3Re(c—a—-10) >0,

and compare terms of the series

@) »(b) 2"
® R T
with corresponding terms of the series
= 1

4) 2
known to be convergent. Since |z| = 1 and
Lim | 2@ 0),
nyoo (¢)an!

s (a), (b)n (n — Dlne (n — 1)In1+e

- }fﬂ (n—1Dlne (n — 1)nd (¢)n nlne—a—b

1 1 ri)| 1. -
T@) T 1 | H e =0

because Re(c —a — b — 8) = 26 — & > 0, the series in (1) is ab-
solutely convergent on |z| = 1 when Re(c — a — b) > 0
A mild variation of the notation F(a, b, ¢, 2) is often used; it is

a, by
(5) F [ z],
¢;

which is sometimes more convenient for printing and which has the
advantage of exhibiting the numerator parameters a and b above the
denominator parameter ¢, thus making it easy to remember the
respective roles of a, b, and ¢. When we come to the gencralized
hypergeometric functions, we shall frequently use a notation like
that in (5).

The series on the right in (1) or in

©) F[a’ ” ] Z(a) n(0).2"

!
n= C n.
Cy 0 )
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is called the hypergeometric series. The special case a = ¢, b =1

yields the elementary geometric series  2*; hence the term hyper-

n=0
geometric. The function in (6) or in (1) is correspondingly called the
hypergeometric function. Although Euler obtained many properties
of the function F(a, b; ¢; 2), we owe much of our knowledge of the
subject to the more systematic and detailed study made by Gauss.

30. A simple integral form. If n is a non-negative integer,

(®)n _ T+ n)T(c) _ r'(c) (b +n)Tr( —b)
(¢)a T(c+n)T(b) T(b)T(c — b) I'(c + n)

If Re(c) > Re(b) > 0, we know from Theorem 7, page 19, and the
integral definition of the Beta function, that

I'(b 4+ n)T(c —b)
I'(c + n)

Therefore, for |z| < 1,

1
= ftb+n—l(1 —_ t)c—b—l dt‘
0

F(a, b; ¢; 2)

_ I‘(c bt - (a). (zt) dt'
= T T = b)f‘ (1= E

The binomial theorem states that

(1 —pmee P ED(a=D(za =2 (~a—n+ D=1

n=0 n!

which may be written
(1= y)- ia(a + a4+ 2)---(a+mn— Dy

— n!

Therefore, in factorial function notation,
a)n
(1 -y =3O

which we use with y = 2t to obtain the following result.
THEOREM 16. If |2| < 1 and if Re(c) > Re(b) > 0,

F(a, b;c; 2) = F_(bTF(_c_:b_)f p-1(1 — t)e=s-1(1 — t2)~ dt.
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31. F(a, b; c¢; 1) as a function of the parameters. We know
already that if ¢ is neither zero nor a negative integer and if
Re(c — a — b) > 0, the series

(@) n(b)n
(1) F(a, b;¢c; 1) =1 +'§ (c),.n'
is absolutely convergent.

Let s be any positive number. We shall show that in the region
Re(c — a — b) = 26 > 0, the series (1) for F(a, b; ¢; 1) is uni-
formly convergent. To fix the ideas, it may be desirable to think
of Re(c — @ — b) = 25 > 0 as a region in the c-plane, with a and
b chosen first. It is not necessary to look on the region in that way.

The series of positive constants

=1
(2) 2 i

is convergent because § > 0. We show that for n sufficiently large
and for all a, b, ¢ in the region Re(c — a — b) = 25 > 0, with ¢
neither zero nor a negative integer,

(@a(b)] _ 1
® (¢)nn! ni+é
Now (see page 46)
| (@)a(b)ant*el T'(c) . 1 B
I:-I:E (c).n! B ’I‘(a)r(b) };’f_} ;m‘ =0,

since Re(c —a —b — 8) 225 — 6= 6>0. Hence (3) is true
for n sufficiently large, and the Weierstrass M-test can be applied
to the series in equation (1).

TueoreM 17. If c¢ s neither zero nor a negative integer and
Re(c —a —b) > 0, F(a, b; ¢; 1) 1s an analytic function of a, b, c.

32. Evaluation of F(a, b, c¢; 1). If Re(c —a —b) >0,
Theorem 17 permits us to extend the integral form for F(a, b; c; 2),
page 47, to the point z =1 in the following manner. Since
Re(c — a — b) > 0, we may write

Fla, b o; 1) = 3 (e

If we also stipulate that Re(c) > Re(b) > 0, it follows by the
technique of Section 30 that
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F(a, b;c; 1) = O II“((E)— 5 2 Z (a)n ftb+n (1 — t)e=b-1 gt

P(C) b—1 c—b—1 —a
T Tl = b)ft (1 — t)e=>=1(1 — {)—= dt.

Therefore, if Re(c — a — b) > 0, if Re(c) > Re(b) > 0, and since
¢ is neither zero nor a negative integer,

e — F(C> b—1 —_ c—a—b—1
F(a, b;¢c; 1) = FbIT(c = b)f[ (1 {) dt
_ I'(c) Ir(b)T(c —a—1"b)
T TB)T( —b) I'(c — a)

_I(eTr(c —a—b)
T I'(c — a)T(c — b)

We now resort to Theorem 17 and analytic continuation to con-
clude that the foregoing evaluation of F(a, b; ¢; 1) is valid without
the condition Re(c) > Re(d) > 0.

TueoreMm 18. If Re(c — a — b) > 0 and if c 18 neither zero nor
a negative integer,

. T()T(c = a =b)
Fla, bye; 1) = 5= 05 = b)

The value of F(a, b; ¢; 1) will play a vital role in many of the
results to be obtained in this and later chapters. Theorem 18 can
be proved without the aid of the integral in Theorem 16. For
such a proof see Whittaker and Watson [1;281-282].

ExampLeE: Show that if Re(b) > 0 and if n is a non-negative

integer,
- %ny - _12_n + %) n
F[ 1] _20),

(2b)n

By Theorem 18 we get

AT TR L e+ pre 4w
.. b+ in)Tb + n +
b + 2

N
~—

®).TO)Tb+3)
I'(b+ )T + in + 3)
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Legendre’s duplication formula for the Gamma function, page 24,
yields

T(O)T(b + ) = 2'-%4/7T(2D),

T(b + In)T(b + in + 4) = 2:-2-"4/7T(2b + n).
Therefore

F[—%n, —in + % I:I _ ().27T(2b) _ 27(b),

r(2b +mn)  (2b),’

as desired.

33. The contiguous function relations. Gauss defined as con-
tiguous to F(a, b; c; z) each of the six functions obtained by increas-
ing or decreasing one of the parameters by unity. For simplicity in
printing, we use the notations

(1 F = F(a, b; c; 2),
(2) Fla+) = F(a + 1, b; ¢; 2),
(3) Fla—) = F(a — 1, b; ¢; 2),

together with similar notations F(b+), F(b—), F(c+), F(c—) for
the other four of the six functions contiguous to F.

Gauss proved, and we shall follow his technique, that between F
and any two of its contiguous functions, there exists a linear relation
with coefficients at most linear in 2. The proof is one of remarkable
directness; we prove that the relations exist by obtaining them.
There are, of course, fifteen (six things taken two at a time) such
relations.

Put
5 _ (@)
" (c)an!
so that
(4) F=3os
and
_ st s,
Flat) = 2=,

Since a(a + 1), = (a + n) (a),, we may write the six functions
contiguous to F in the form
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S - -1

() Fa+) =X, Fa-) -3 -7,
2 © b1

Fo+) = 2205, pe-) = ST o

Flct+) = ,oEi ~ 8,  Fle—) = Ec—:—}# 5.

A\ g )
E[é)' I'his operator

has the particularly pleasant property that 6z = nz* thus making
it handy to use on power series.

We also employ the differential operator 6 = z<

Since
(6) 0+ aF = 3 (a +n) b,
it can be seen with the aid of (5) that
) (06 + a)F = aF(a+),
(8) (6 +b)F = bF(b+),
(9) (064+c—1)F = (¢c — 1)F(c—).
From (7), (8), and (9), it follows at once that
(10) (a — b)F = aF(a+) — bF(b+),
and
(11) (@ —c+ 1DF =aF(at+) — (¢ = DF(c —),

two of the simplest of the contiguous function relations.
Next consider

_ sn@a®et 5 @Bz
( )

=t (0)un! = (¢)uan!
from which
_ s (a+n)(b+n) s
(12) oF = zg;) par
Now
(@a4+n)b+n _ (c —a)(c =b)
¢+ n =ntlat+b—oc+ c+n

Hence equation (12) yields
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0F=Zin6n+(a+b—0)zi5n+(c_a)(c-b)zi — G,

n=0 n=0 C n=0C + n

or
(13) (1 —2)6F = (a +b — ¢)zF + c1(c — a)(c — b)zF(c+).
From (7) we obtain
(1 —2)F = —a(l — 2)F 4+ a(1 — 2)F(a+),

which combines with (13) to yield another of the contiguous function
relations,

(14) [(1—=2)a+(a+b—c)e]F =a(l1—2)F(a+)
—c1(c—a)(c—b)zF(c+).

The coefficient of F on the left in (14) is in a form desirable for
certain later developments. Equation (14) may be replaced by

(15) [a+(b—c)z]F=a(l—2)F(a+)—c Y (c—a)(c—b)zF(c+).

Next let us operate with 6 on the series defining F(a—). We thus
obtain

6F(a—) = z (@ = Dab)nzr _ Z (@ — 1)npa(b) pprzn®!

(¢).(n — 1)! = () nynt! ’
or = b4
n
(16) 6F(a—) = (a — 1)'2,‘;,5—%7@ B
But
b+n 6= b
c+n c+n
so that (16) becomes
N = - _(a=D=bex ¢
6F(a—) = (a l)zgoén . ,fgac—l-n&"’

which, in view of (5), yields

(17) 6F(a—) = (a — 1)2F — c(a — 1)(c — b)zF(c+).

We return to (7) and replace a¢ by (¢ — 1) in it to get

(18) 0F(a —) = (a — DF — (@ — )F(a —).
From (17) and (18) it follows that

(19) (1 —=2F = F(a —) — c(c — bzF(c+).
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Similarly, since a and b may be interchanged without affecting the
hypergeometric series, we may write
(20) (1 —2)F =F0b—) — c'c— a)zF(c+).

We now have five contiguous function relations, (19) and (20)
together with

(10) (@ — b)F = aF(a+) — bF(b+),
(11) (@—=c+ 1F = aF(a+) — (¢ — )F(c—),
and

(15) [a+(b—c)z]F=a(1—2)F(a+)—c(c—a)(c—=b)zF(c+).

From these five relations the remaining ten may be obtained by
performing suitable eliminations. See Ex. 21 at the end of this
chapter.

34. The hypergeometric differential equation. The operator

6 = z(%), already used in the derivation of the contiguous function

relations, is helpful in deriving a differential equation satisfied by

(1) w = F(a, b;c;2) = i —(agg)(:)r)f".

n=0
From (1) we obtain
60 + ¢ — Dw = in(n 4+ ¢ — 1)(a).(b)n2m

n=0 (C)nn!

_ o (@ub)en
N ,.gl (€)na(n — 1)!

A shift of index yields
i (@) n41(b) ngr2™H!

n=0 (C)nn!

_ & (a+ n)b + n)(a)a(b).zn
= Z% (¢).n!
= 2(60 + a)(6 + b)w.

We have shown that w = F(a, b; ¢, 2) is a solution of the differen-
tial equation

(2) (66 +c — 1) — 2(6 + a)(6 + b)Jw = 0. =z

00 +c— Hw =
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Equation (2) is easily put in the form
(3) 21 —2)w” +[c—(a+b+ DzJw —abw =0

by employing the relations éw = zw’ and 6(6 — Dw = 22w".

The second-order linear differential equation (3) is treated in
many texts* and therefore we omit details here. In order to avoid
tedious repetition, we shall, in this chapter only, refer to the text
mentioned in the footnote as IDI.

In IDE, pages 144-148, it is shown that if ¢ is nonintegral, two
linearly independent solutions of (3) in |z] < 1 are

(4) wy = F(a, b; ¢; 2)
and
(5) wy =z2"Fla+1—-¢,b+1—2¢2—c;2).

We shall also make free use of Kummer’s 24 solutions of equation
(3) as listed in IDE, pages 157-158. In any specific instance,
however, previous knowledge of Kummer’s 24 solutions is not
necessary; the desired solution can be obtained directly with the
aid of simple changes of variable performed on the differential
equation (3). See Ex. 12 at the end of this chapter.

35. Logarithmic solutions of the hypergeometric equation. If ¢
is not an integer, the hypergeometric equation

(1) 21 —2w”" +[c—(a+ b+ 1zjw —abw =0

always has in |z| < 1 the two power series solutions (4) and (5)
of the preceding section. If ¢ is an integer, one solution may or
may not, depending on the values of @ and b, become logarithmic.
In this book we are primarily interested in the functions rather
than in the differential equations. We shall, whenever it is feasible,
avoid discussion of logarithmic solutions.

If ¢ is a positive integer and neither a nor b is an integer, two
linearly independent solutions of (1) are as listed below. These
solutions may be obtained by standard elementary techniques (see
Rainville [1], Sections 92 and 94), and the details are therefore
omitted here.

If ¢ = 1 and neither a nor b is zero or a negative integer, two
linearly independent solutions of (1) valid in 0 < |z| < 1 are

*See, for example, Chapter 6 of Rainville [2].
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(2) wy = F(a, b; 1; 2),

3) — Fla, b; 1; 2)log 2
;“”%ﬁm, )+ Hb, w) — 2H(1, W),

in which

@ Hm =3 1

including the ordinary harmonic sum H(1, n) = H,.
If ¢ is an integer > 1 and neither a nor b is an integer, two linearly
independent solutions of (1) validin 0 < |z| < 1 are

(5) w, = F(a, b; ¢, 2)
and
(6) wy = Fla, b; ¢; 2)log 2

+ 3 OO 0, 0) + Hb, ) — Hie,m) — H, )

_ g nl(l — ¢)uyp1 )
n=0 (1 - a)n+l(1 - b)n+12n+l

If ¢ is an integer, ¢ < 0, equation (1) may be transformed by
using w = z'=<y into a hypergeometric equation for y with new
parameters @’ =a+1—¢, b’ =b+4+1—¢, and ¢’ =2 —¢c. If
neither a’ nor b’ is an integer, the y-equation can be solved by using
(5) and (6).

36. F(a, b; c; z) as a function of its parameters. We have
already noted that the series in

o (@).(b) .z
1) F(a, b ¢; 2) = 2;0 (C)m'
is absolutely convergent (ratio test) for |z| < 1, independent of
the choice of a, b, ¢ as long as ¢ is neither zcro nor a negative in-

teger. Recall that (¢), = T'(c + n)/T(c). Consider the function

F(a b; ¢; z) o *(_a_)_,,(b),‘z"
2) T(c) ,‘?_;6 I'(c + n)nV

in which the possibility of zero denominators on the right has been
removed. In any closed region in the finite a, b, and ¢ planes,
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.| (@)a(b) a2t
}1_1)12 T'(c + n)n!
T (@)n (b)n (n — Dlne  gzin
B nL—;Ig (n — 1)!7L“ (n — D!nt T(c 4+ n) nite—e?
. zin _
= Ty U e =0 forlel <1

Therefore, for any fixed z in |z| < 1, there exists a constant K
independent of a, b, ¢ and such that

(@) (b) 2"

T(c + n)m < K|z|tn

Since D_ K|z|*" is convergent, the series on the right in (2) is ab-

n=0
solutely and uniformly convergent for all finite a, b, ¢ as long as
lz] < 1.

We know the location and character of the singular points of
I'(c) and are now able to stipulate the behavior, with regard to
analyticity, of the hypergecometric function with z fixed, |z| < 1,
and a, b, ¢ as variables.

TuEoREM 19. For |z| < 1 the function F(a, b; ¢; z) is analytic
n a, b, and ¢ for all finite a, b, and ¢ except for stmple poles at ¢ = zero
and ¢ = each negative integer.

Reference to Theorem 19 will enable us to simplify many proofs
in later work.

37. Elementary series manipulations. A common tool to be
used in much of our later work is the rearrangement of terms in
iterated series. Here we prove two basic lemmas of the kind
needed. When convergent power series are involved, the infinite
rearrangements can be justified in the elementary sense. In our
study of generating functions of sets of polynomials, we sometimes
deal with divergent power series. For such series the identities of
this section may be considered as purely formal, but we shall find
that the manipulative techniques are fully as useful as when applied
to convergent series.

Lemma 10.
M) S5 Ak w) = 33 Ak 0 = b,

n=0 k=0 n=0 k=0
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and
) 2P
Proof: Consider the series

®3) > Z A(k, n)tr+*

n=0 k=

IIM:

B(k, n) = i > B(k, n + k).

in which ¢»+* has been inserted for convenience and will be removed
later by placing ¢ = 1. Let us collect the powers of ¢ in (3). We
introduce new indices of summation j and m by

(4) k=]: n=m——],

so that the exponent (n + k) in (3) becomes m. The old indices
n and k in (3) are restricted, as indicated in the summation symbol,
by the inequalities

(5) nz0, k=0
Because of (4) the inequalities (5) become

or 0 £ j £ m with m, the exponent on ¢, restricted only in that it
must be a non-negative integer. Thus we arrive at

(6) > Z Ak, n)tri = Z ZA(J, m — j)tm,

n=0 k= m=0 =0

and the identity (1) of Lemma 10 follows by putting ¢t = 1 and
replacing the dummy indices j and m on the right by dummy
indices £ and n.

There is no need to use & and n for indices in both members of
(1), but neither is there harm in it once a small degree of sophistica-
tion is acquired. We frequently employ many parameters and
prefer to keep to a minimum the number of different symbols used.

In Lemma 10, equation (2) is merely (1) written in reverse; it
needs no separate derivation.

Lemma 11.
™) 55 Atk = X X Gk n - 20),
and
®) 55 Bk, m) = 5 3 Bk, n + 26)

n=0 k=0 n=0 h=
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Proof: Consider the series

(9) > DAk, n)trrek
n="0 k=0
and in it collect powers of ¢, introducing new indices by
(10) kE =y, n=m— 2j,
so that n + 2k = m. Since
(11) n =0, k=0,

we conclude that
m— 27 =0, i=0,

from which 0 £ 2j <m and m =2 0. Since 0 <7 =< }m and j is
integral, the index j runs from 0 to the greatest integer in 3m. Thus
we obtain

o [4m]

(12) Z kz Ak, n)tr+ee = Z A(F, m — 2))tm,

= =0 m=0J=
from which (7) follows by placing ¢ = 1 and making the proper
change of letters for the dummy indices on the right in (12). Equa-
tion (8) is (7) written in reverse order.

There is no bound to the number of such identities. The reader
should now be able to obtain whatever lemmas he needs along these
lines.

Note also that a combination of Lemmas 10 and 11 yields

o [n/2]

(13) > Z Ckym) = X35 Clk,m = h),

ne=0 k= =

38. Simple transformations. It is convenient for us to write
the ordinary binomial expansion with the factorial function notation,

e _ 3 (@)n2
(1) (1 - Z) = n;)— n!
and to recall the result of Ex. 8, page 32,
() (@ = (DD <<y

(1 —a—mn)y
In particular « = 1in (2) yields

(=1)*n!
(—n)«

(3) n— k)! =

=]
IIA
IIA
N
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Consider now the product

a, ¢ — b;
—ap| ’ 2 (a) (e — b)i(—1)kz*
(1-2) F[ = :| N NG R

. k=0
C!

With the aid of (1) we may write

(1_2)_(,}7[%0—17; —_—zi| i i (a)e(c—b)e(a+1), (—.1)kzn+lc

— h!
o 1-—-2 (¢)kh!n!

Now (a)i(la 4+ k), = (a).;s, so that

a,c — b;
R LA B B N e O IO PRV G Dl
(1 z) 1’[ :’ = Z Z (c)kA'n’

=0 k=0

and we collect powers of 2z to obtain

a,c—b;
Y ’ T =2 (¢ — b)rl(a).(—1)kzn
-2 F[ jJ p> (©ckl(n — )]

n=0 k=0

_ i Z": (—=n)ilc — b), ) (a)nzn

n=0 k=0 (C)/(/{! n! "’

by (3). The inner sum on the right is a terminating hypergecometric
series. Hence

a,c—b; —n,c — b; (a).zn
(1 — 2)—°F L T- Zr 3 L

Since F(—n, ¢ — b; ¢; 1) terminates, we may write

a, ¢ — b;
Y ’ T =z = T(e)T(b + n)(a).z
1 =2 F[ 1—2} 2 T(c + n)TO)n!

. n=0
¢,

_ Z )n(@) 2"

n=0 C) n'
= F(a, b; c; 2),

a result valid where both |z| < 1 and |2/(1 — 2)| < 1 (for which
see Figure 3, page 60).
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TrHEOREM 20. If |2]| < land |2/(1 — 2)| < 1,

a,b; a,c—b; —,
(4)F[ zl=0 —2)—F =
c; c;

. The roles of @ and b may be in-

| z-plane terchanged in (4).

! The type of series manipula-
tions involved above in arriving

at the identity (4) will be used

% frequently throughout the re-

7 mainder of this book, and such

steps will be taken hereafter
without detailed explanation.

Let us use Theorem 20 on

the hypergeometric function on

the right in (4). Put

(=)
Ni—

Figure 3 y = 1 — z.
Then

a,c—b; ¢ —a,c— b, _
Fl y | = (1 =y —+F _~Y |
. . 1 -y
C} C?

Butl —y = (1 —2)tand —y/(1 — y) = 2. Hence

a, ¢ —b; —, c—a,¢c—b;
F T = (1 — z2)°F z |,
c, C,

which combines with Theorem 20 to yield the following result due
to Euler.

TureoreMm 21. If |z| <1,
(5) F(a, b;¢c;2) = (1 — 2)tF(c — a,c — b c; 2).

The identities in Theorems 20 and 21 are statements of equality
among certain of the 24 Kummer solutions of the hypergeometric
differential equation. In the terminology of IDE, pages 1571538,
we have shown that Illa = Va = IIlb. Alternate proofs of
Theorems 20 and 21, making use of the differential equation, are
left as exercises.
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39. Relation between functions of z and 1 — z. The hyper-
geometric differential equation

(1) 21 — 2w +[c— (a+ b+ 1)zlw — abw =0
has, in |1 — z| < 1, the solution
(2) w=Fla,b;a+b+1—¢1-—2),

as indicated in IDE, page 157, formula IVa. The solution (2) can
be obtained independently by placing z = 1 — y in the differential
equation (1) and observing that the transformed equation is also
hypergeometric with parametersa’ = a,b’ = b, ¢’ =a 4+ b +1—c¢,
and argument y = 1 — 2.

We already know thatin |z| < 1, the equation (1) has the linearly
independent solutions

(3) wy = F(ay b; cy 2),
(4) wy =2"Fla+1—¢,b+1—10¢2—c;2).
Then there must exist constants A and B such that

b)) Fla,b;a+b+1—¢c1—2 = AF(a,b;c; 2)
+Bz—Fla+1—¢,b+1—¢2—c¢2)

z-plane

Figure 4

is an identity in the region (Figure' 4) where both [z| < 1 and
|1 — 2] < 1. If we insist that Re(1 — ¢) > 0 and let z — 0 from
within the pertinent region, (5) yields

Fla,b;ja+b+1—¢1)=A4A-14B-0,
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from which, by Theorem 18, page 49,
Tla+b+1—-0)TU —¢)
Ma+1—-¢Tb+1—2c)

Again from (5) if we let 2 — 1 from inside the region and insist that
Re(c — a — b) > 0, we obtain

1 =AF(a,b;¢;1) + BFla+1—¢,b+1—¢2—2¢1),
or, by Theorem 18,

I'(c)T(c —a — b)A
@) I'(c — a)T(c — b)

(6) A=

r@ —ore—a=bB _
'l —ar(l -5

+

Employing (6) in (7) leads to
2 —¢)T(c—a—>b)B
8) T — a)T(0 = b)

fla+b+1—¢)I(1 —c)T(c)T(c —a —b)
FMla+1—-¢)Tb+1—¢)T(c —a)T(c—Db)

=1 -

In Ex. 15, page 32, we showed that the right member of (8) is

equal to

9) r2—¢)r(c—Nrc—a—bTla@a+b+1-—0
r(a)T(l —a)T(h)T(l — b)

From (8) and (9) we obtain

Frla+b+1—c¢)T(c—1)
T'(a)T(b) ’

(10) B =

which completes the proof of the following statement.

THEOREM 22. If |z| <1 and |1 —z| <1, if Re(c) <1 and
Re (¢ — a — b) > 0, and if none of a, b, ¢c,c —a,c —b,c—a—1b
18 an integer,

(11) F(a,b;a+b+1—¢1—2)
_ rfa+b+1-—-c11 —C)-F
rla+1—-—¢rb+1-0c)

(a, by c; 2)

Trla+b+1—0T(c—1 . _ o
+ I'(a) T(b) s~ Fla+1—cb+1—¢2—c2).

The restrictions on a, b, ¢ can be relaxed somewhat, if desired.
The expression of F(a, b; ¢; z) as a linear combination of functions
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of (1 — 2) is left as an exercise; see Ex. 15 at the end of this chapter.

Theorems 20, 21, and 22 exhibit only three of the numerous rela-
tions among the 24 Kummer solutions. For other such relations
see volume one of the Bateman Manuscript Project work, Erdélyi
[1; 106-109].

40. A quadratic transformation. In any detailed study of the
hypergeometric differential equation

(1) 2(1 — 2w’ + [c— (a+b+ 1zJw — abw = 0,

the derivation of the 24 Kummer solutions is a natural result of the
study of transformations of equation (1) into itself under linear
fractional transformations on the independent variable. It is rea-
sonable to attempt to use a quadratic transformation on the in-
dependent variable for the same purpose. Such a study shows that
the parameters a, b, ¢ need to be related for the new equation to be
of hypergeometric character. Since differential equations are not
our primary interest, we bypass the fairly simple determination of
all such quadratic transformations and corresponding relations
among a, b, and ¢. Here we move directly to the particular change
of variables which leads to the relation we need for our later work.
In equation (1) put ¢ = 2b to get

(2) 2(1 — 2w + [2b — (a + b + Dz]Jw’ — abw = 0,
of which one solution is w = F(a, b; 2b; z). Next let

(3) p=

and obtain, after the usual labor involved in changing independent
variables, the equation

@ z(1 —2)(1 + x)z‘% +2(1 + 2)(b — 2az + bat — xﬁ)fg
— 4ab(1 — 2)w = 0,
of which one solution is therefore
a,b;

) ) 4x
(5) w=F S .

op; T
In (4) put w = (1 4+ x)*y to obtain the equation
6) z(1—z2)y”’+2[b—(2a—b+1)2*]y’ —2ax(1+2a—2b)y =0,
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of which one solution is

a, b; .
@) y=0Q+ x)"“Fl: . (1—_;*5)‘5:,

The differential equation (6) is invariant under a change from z
to (—z). Hence we introduce a new independent variable v = 22
The equation in y and v is found to be

dzy 1 3\ |dy 1
®) (1 —7))%5+|:b+§_ <2a - b+§>v:l?ifv-—-a<a —b+§)y =0,

which has, in |»| < 1, the general solution
aya_b+%; a—b-}—%,a—i—l—?b,
(9) y=AF v | 4+ Bui-bF v |.
b+ L

We now have the following situation. The differential equation
(6) has a solution (7) valid in

as long as 2b is neither zero nor a ncgative integer. At the same
time, equation (6) has the general solution® (9) with v = z?, this
solution valid in |z| < 1.

Therefore, if both || < 1 and < 1 and if 2b is neither

‘_ﬂ_
1+ z)
zero nor a negative integer, there exist constants A and B such that

a, b;

aa—b+4;
4]) ’ 2

(10) (1 + x)—“F[ ————J = AFI: xz]
op; 1+ b+ 3;

a—>b+ 3 a+1—2b
+ Bua'-2F r?

3 .
f_br

In (10) the left member and the first term on the right are analytic
at x = 0, but the last term is not analytic at « = 0 because of the

*If 2b is a positive integer, the second term on the right in (9) may or may not need
to be replaced by a logarithmic solution. If such a logarithmic solution is involved in
(9), reasoning parallel to that following equation (10) shows again that B = 0.
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factor z'—?*. Hence B = 0 and A is easily determined by using
z = 0 in the resultant identity

a, b; Az a,a—b+ %
(11) (1 + z)—2<F EE = AF x? |
2b; b+ 3

Thus A = 1, and we are led to the following result due to Gauss.

THEOREM 23. If 2b is neither zero nor a negative integer, and if
both |z| < 1 and |4z(1 + )2 < 1,

a,b; . a,a —b+ 3;
(12) (1 + x)—2°F Tl F z? |.
2b; b+

41. Other quadratic transformations. For variety of technique
we shall now prove the following theorem without recourse to the
differential equation.

THEOREM 24. If 2b is neither zero nor a negative integer and 1f
lyl < 3and ly/(1 —y)| <1,

3a, sa + 3; , a, b;
1 (L =y)~F as| = F 2y |
b+ 3 v 2b;

Proof: Let y denote the left member of (1). Then

= (b 4 1)kl (1 — y)atek k(b + 1) k(1 — y)ote
with the aid of Lemma 5, page 22. Also

v = i (3a0)(3a + 3)y?* - (a)uy**

21. n
(1 = yyeee = 3 @E IO

n=0
and (a)sx (@ + 2k)» = (@).42x. Hence

(a) +2kyn+2k

n, k= 0—'2kkb+ )A'n

Using Lemma 11, page 57, we may collect powers of y and obtain

@

Y =

o [n/2]
_ (a).y"
V=2 X b 1) = 2R

We know that (n — 2k)! = n!/(—n), and that
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(—n)er = 22%(—=3n) (=40 + 1)
Therefore we have

J = i[z/](_zn) W(=in+ D (@.yn

n=0 k=0 (b + 2) ! n!
o [—in —in+
- ; (a)ny™,
2 Jee
b+ 4

In the example on page 49 we found that the terminating hyper-
geometric function above has the value 27(b),/(2b),. Hence

a,b;
o~ 27(b) (@) y" T
E ' - F 2y ’
n=0 (2b) 2. 2b,
which completes the proof of Theorem 24.

In Theorem 24 put y = 2z/(1 + z)?. Then

N e o y_ _ 2
(14 2)? 1—y 1+ a2

1 —

and we may write

30, 50 + 3 a, b;
42 4x
1 2)—e(] 2aF F .
(1422 (1+2) ': bii: (1+xz):| [ ob; <1+x)2]

In view of Theorem 23 we may now conclude that

%a; ilza“l‘%; 42 a;a—b—'—%;
(1 + :c2)"“F m‘z = F x? |.
b+ 3 b+ 3

Now put 22 = z and replace b by (3 + a — b) to obtain

ia, ja + %; 4z a, b;
(2) (1 4 2)—°F — | =F 2|
14+a—0; 1+ 2)° 14+a—0b;

By Theorem 20, page 60, with appropriate substitutions for the
a, b, ¢ and 2z of the theorem,

P 2Q, %a+%} 4z 3 (1_z>~aF %a) %+':!a—b) — 4z ’
e (1422 |  \l4=z o (1—z)2

14a 14+a—b;
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We may therefore rewrite (2) in the form

a3 tie—0b a, b;
(3) (1 —Z)_“F m =F z |,
1+a—b; 14+a—0b;

which will be useful in Section 42.
Let us next return to the differential equation to establish one
more relation involving a quadratic transformation.

TueorREM 25. If a + b + 1 is netther zero nor a negative integer,
and if |z| < 1and |42(1 — 2)| < 1,

a, b; 2a, 2b;
(4) F 4x(1 —z2) | = F x|
a+ b+ 3; a+b+3;

The function

a, b;
(5) y=F z
a+b+ 3

is a solution of the differential equation
d? d
©) 2(1-2FF+la+b+3—(a+b+ D) —aby=0.
In (6) put z = 4x(1 — z), and with some labor thus obtain
(7 r(1—=2)y" +[a+b+3— (2a+2b+1)z]y’ —4aby =0.

Equation (7) is hypergeometric in character and has the general
solution

2a, 2b; i+a—-0b3%+b—aq
y = AF x| + Baxi—edF x|,

a+b+3; §—a—b;

as well as the solution

a,b;
y = F 42(1 — x)
a+ b+ i

from (5) above. By the usual argument it is easy to conclude the
validity of (4).
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42. A theorem due to Kummer. Let us return to equation (3)
of the preceding section and let z — —1. The result is

30, 3 + 20 — b; a, b;
2-aF 1| =F -1
14+ a—b; 14+ a—b;
We can sum the series on the left and thus obtain
b.
0 r{ “ b _1} . M+a-bro
a 1y — 1 1
| +a—b: 2¢:T(1 4+ a — b)T(3 + ia)

Legendre’s duplication formula, page 24, yields
L(H)T( + a) = 27T(; + 30)T(1 + 30),
which may be used on the right in (1).

Turorem 26. If (1 4+ a — b) 1s neither zero nor a negative
integer, and Re(b) < 1 for convergence,

a,b;
; 7 _rd+a—brd+ ja)
) F[l +a —b; 1} 'l + %a—br1 +a)

43. Additional properties. Further results applving to special
hypergeometric functions appear in later chapters, where we shall
find that the polynomials of Legendre, Jacobi, Gegenbauer, and
others are terminating hypergeometric series.

We now obtain one more identity as an example of those resulting
from combinations of the theorems proved earlier in this chapter.
In the identity of Theorem 25, page 67, replace a by (3¢ — %a) and
b by (3¢ + 3a — 3) to get

%C"%G,%C‘l‘%a—%; C—-—(I,C‘*—a—l;
F| 4z(l —z) | = F x|
C; C;

Theorem 21, page 60, yields

c—a c+a—1; a,l — a;
F z|=(1—2x)-F x|,
c; c;

which leads to the desired result.
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THeOREM 27. If c is neither zero nor a negative integer, and if both
lz] < 1and |[4z(1 — 2)] < 1,

a,1—a; jc —ia, 3¢+ ja — 3
F z|i=({1—2a)"'F 4x(1 — x) |.
c; c;
EXERCISES

1. Show that

d a, b; b e+ 1,0+ 1;
sz z|=—=F z |
c; ¢ c+1;

2. Show that

F[ 2a, 2b; ] Fat JLi%H
Y D(a+ Hro +

)
)

N

N
N I

3. Show that

T e
? (e + 30)'(Ge — 2a + 3)

¢;

-n, b; .
{ ngmﬁ.
c; "
5. Obtain the result

F[“”’ o 1} ()t a =0,

o (€)n

’

4. Obtain the result

6. Show that

. —n, 1 =b —n; N U
o (a) (a + b— Dn

a;

N

Prove that if g» = F(—n, a; 1 +a — n; 1) and « is not an integer, then
0forn=1,g0 = 1.

8. Show that

jn[x““*"F(a b;¢c; x)] = (@).x*'F(a 4+ n, b; ¢c; x).

gn

9. Use equation (2), page 66, with z = —z, b = —n, in which = is a non-
negative integer, to conclude that
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—-n, a; 30, 30 + 3;
—4
F|: —x:l -1- x)‘“Fl: U—_——%{I-
1+ a+n; 14 a+ n;

10. In Theorem 23, page 63, put b = v, a = v + }, 4z(1 + z)~? = 2z and thus

prove that
vy + 5 R o
F z|=01— Z)_% —
27; 1+ \/i - 2

and further that
Y Y~ 5 < o )27_1
F| | = ——"_—: .
92 1+4/1—2

11, Use Theorem 27, page 69, to show that

a,1 — a; lc — 1q,lc — a4 &,
_ _ T 4x(z — 1)
1—c = a—c¢ . —Z |
1 -2 F[ 3 x—J (1 — 2z2) F|: =22 '

12. In the differential equation (3), page 54, for
w = F(a, b; c; 2)
introduce a new dependent variable u by w = (1 — 2)7%, thus obtaining
21 — 2" + (1 —2)[c+ (¢ — b — DzJu + alc — b)u = 0.
Next change the independent variable to x by putting £ = —z/(1 — z). Show
that the equation for u in terms of z is

2.
x(l—x)dgﬁ—%[c—(a+c—b+1)x]§—z—a(c—b)u=0,

and thus derive the solution

a, ¢ — b; _,
w = (l - Z)—"F . 1—:—"2 .

13. Use the result of Ex. 12 and the method of Section 40 to prove Theorem 20,
page 60.

14. Prove Theorem 21, page 60, by the method suggested by Exs. 12 and 13.

15. Use the method of Section 39 to prove that if both [z2] < land |1 — 2| <1,
and if a, b, ¢ are suitably restricted,

a, b; i a, b;
Fl: {| = %Q{_((__T(i;%) p{ 1 - z]
. cmale =0 4 pr1—0¢

. — — b;

T()T(a+b —c)(1 —z) b, c=ac !
+ F@) () g [ TR

c—a—b+1;
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16. In a common notation for the Laplace transform

L{F@)} = J; etF(t)y dt = f(s);  L{f(s)} = F().

1 a, b; a, b;
L EF z:lg = F| 2(l — e—‘)].
s+ 1; 1;

17. With the notation of Ex. 16 show that

Show that

Lo [LHAn g+
L{t~sin at} = 9-1(”7+*2—Q_)F[ _é]
s s
3 -
2
18. Obtain the results
Log (1 + 2) = 2F(1, 1, 2; —2),
Arcsinz = zF (3, 3; §; 2%),
Arctanz = zF (3, 1. 3; —2%).
19. The complete elliptic integral of the first kind is
k- [t
\/*— k2 sin? ¢
Show that K = ixF(3, %; 1; k?).
20. The complete elliptic integral of the sccond kind is
o Vi T
0
Show that E = ixF(3, —4%; 1, k%).
21. From the contiguous function relations
(1) (a — b)F = aF(a+) — bF(b+),
2) (@ —c+ 1)F = aF(a+) — (¢ — 1)F(c—),
3) [a + (b — ¢)z]F = a(l — 2)F(a+) — ¢7'(c — a)(c — b)zF(c+),
4) (1 —2)F = F(a—) — ¢ (c — b)zF(c+),
(5) (1 —2)F = F(b—) — ¢™'(¢c — a)zF(c+), derived in Section 33,
obtain the remaining ten such relations:
6) [2a —c+ (b — a)2]F = a(l —2)F(at+) — (c — a)F(a—),
) (a+b—0oF =a(l —2)F(a+) — (c = OF(b—),
(8) (c—a—bF =(—aF(a—) —b(1l —2)F(b+),
9) (b—a)(l —2F =(c—a)F(a—) — (c = bF(b-),

(10) [1—a+(c—b—12]F =(c—a)F(a=) — (¢ — 1)(1 — 2)F(c—),

(11) [2b — ¢+ (a — b)2]F = b(1 — 2)F(b+) — (¢ — O)F (b—),

(12) [b+ (@ — c)2]F = bl — 2)F(b+) — c'(c — a)(c — b)zF(c+),
(13) b —c+ DHF =bF(b+) — (c — DF(c—),

(14) [1—=b+(c—a—Dz]F = (c—bFb—) — (c =1 —2)F(c—),

(15) [e—14(a+b+1—20)2]F = (c=1)(1— 2)F(c—) — ¢™e — a(c—bzF(c+).
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22. The notation used in Ex. 21 and in Section 33 is often extended as in the
examples
Fla—,b+) = Fla — 1,b 4+ 1;¢;2),
F(b+, c+) = F(a,b + 1;¢c + 1;2).

Use the relations (4) and (5) of Ex. 21 to obtain
Fla—) — F(b—) 4+ ¢c'(b — a)2F(c+) =0
and from it, by changing b to (b + 1) arrive at
F =Fa—,b+) + c b+ 1 — a)zF(b+, c+),

a relation we wish to use in Chapter 16.
23. In equation (9) of Ex. 21 shift b to (b 4 1) to obtain the relation

(c—1—=bF = (c—a)F(a—,b+) +(@a—1-0b(A —2)F+),
or

(c =1 —="0)F(a,b;c;2)
=(—a)F(a—1,b+1;¢c;2) + (a—1—b)(1 —2)F(a, b+ 1;¢;2),

another relation we wish to use in Chapter 16.



CHAPTER 5

Generalized

Hypergeometric

Functions

44. The function,F,. The hypergeometric function

a,b;
) ) _ [e5) (a),.(b),.z"
(1) Fl: Z:| =2 (¢)un!

. n=0
c}

studied in Chapter 4 has two numerator parameters, a and b, and
one denominator parameter, ¢. It is a natural generalization to
move from the definition (1) to a similar function with any number
of numerator and denominator parameters.

We define a generalized hypergeometric function by

ay, Qg t v, Qp, ™ II (O“)ﬂ z"
(2) qu 2 =1+ZI_? 'm’

Bry Bry- -+ B T (89
=1

in which no denominator parameter 8; is allowed to be zero or a
negative integer. If any numerator parameter a; in (2) is zero or
a negative integer, the series terminates.

An application of the elementary ratio test to the power series
on the right in (2) shows at once that:

(a) If p < g, the series converges for all finite z;

(b) If p = q¢ + 1, the series converges for |z| < 1 and diverges
for |z| > 1;

73



74 GENERALIZED HYPERGEOMETRIC FUNCTIONS [Ch. 5

(¢) If p > q+ 1, the series diverges for z # 0. If the series
terminates, there is no question of convergence, and the conclusions
(b) and (¢) do not apply.

If p = q + 1, the series in (2) is absolutely convergent on the
circle |z| = 1if

q P
RQ(E B; — Z a¢> > 0.
J=1 1=1
The proof can be made to parallel that used in Section 29 for the
corresponding result on the ordinary hypergeometric series. The
proof is left as an exercise.

When we wish to indicate the number of numerator parameters
and of denominator parameters but not to specify them, we use the
notation ,F,. For instance, the ordinary hypergeometric function
of Chapter 4 is a .F.

We permit p or g, or both, to be zero. The absence of parameters
is emphasized by a dash. The most gencral oF,, for example, is

@

3) Fi(=ibi2) = Ty

We shall see later that the function in (3) is essentially a Bessel
function.

For more results on the ,F, seec Erdélyi [1; 182-247] and Bailey
[1]. Additional references may also be found on pages 103-108 of
Bailey [1] and on pages 199-201 and 246-247 of Erdélyi [1].

45. The exponential and binomial functions. Two elementary
instances of the ,F, follow. If no numerator or denominator para-
meters are present, the result 1s

@ zn
(1) oFo(—; —;2) = 2 i exp(z).
n=0 .

If we use one numerator parameter and no denominator para-

meter, we obtain

(2) Folas —:z) = 3 @2

n=0 ’n!
Hence, by the argument on page 47,
(3) Fola; — 5 2) = (1 —2)™

46. A differential equation. Recall that the ordinary hyper-
geometric function F(a, b; ¢, z) satisfies the differential equation
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(1) z(l—z)d2+[c—a+b+1)z]———abw=0

or, in terms of the differential operator 6 = z%, the differential
equation
(2) [6(6+c—1) — 2(6 +a)(6 + b)Jw = 0.

With the suggestion of equation (2) before us, we can proceed

as follows. Let
: (ap)k 2k

— (12) I
w - L

Since 6z* = kz*, it follows that

. o KTL G+ b= DT (@),
oI (0 + b, — Dw = > —= = Pl

i=1 k=1 ]I;Il (bj)k
~ 1Ij (@) 2k
= Z ? k = DT
II (65 e-s

1=1

Now we replace k£ by (k + 1) and have
H (a )k+1 k+1

0]I=Il(0+b,-—l)w l; =q T
I_Il(b:
o LI] (a: + k)g (@) k4
= Ig i

ﬁwm

= ZI_pI (0 + a,*)w.

1=1

Thus we have shown that w = ,F, is a solution of the differential
equation

(3) [BI:I(B—f—b,»—l)—zﬁ(0+a,)}w=0,
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when no b; is a nonpositive integer. The solution is valid for all
finite z when p < ¢. If p = ¢ + 1, the solution is valid in |z] < 1.
We are not concerning ourselves with the case p > ¢ + 1, when the
series for ,F, has a zero radius of convergence unless the series
terminates.

47. Other solutions of the differential equation. If p < ¢ +1,
the equation (3) of the preceding section is a linear differential
equation of order (¢ + 1). We have, in the neighborhood of the
origin, one solution,

W = Wy = F(al’ Qay - -+, Qp; bl) b2) Tty bq; Z).

Naturally we wish to obtain ¢ other solutions near z = 0.

Let us turn for the moment to the one case, the /i, about which
we already have quite a bit of information. The differential equa-
tion for p = 2, g = 1, is

(1) [6(6 +bi— 1) —2(06 + a)(6 + ax)]w = 0.

We know that if b, is not integral, the general solution of (1) in
the neighborhood of z = 0 is

w = Aw, + Bw,,

where A and B are arbitrary constants and w, and w, may be taken
to be

wo = F(ay, as; by; 2),

w, = 2% F(a;, — by 4+ 1,a, — b, +1;2 — by;2).

When we have determined just what it is that makes the w,
satisfy equation (1), we shall be in a better position to move on to
the generalized case.

Now

= (ay — by 4+ 1) (a, — by + 1), PR

W= 2 @ = b il

so that

0(0 + b, — Duwy,
_ f‘. (k4+1—=b)(k+1—=b+b—1)(a;—b+1)i(ar—b,+1), 2"
k=0 (2 — by)s k!

= i E(k4+1—b)ay, — by + 1)i(az — by + 1), 2k+l_b‘_
k=1 (2 = by)s A
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But the last factor in 2 — b))y is2 —-by+k—1=k+1-0b,
so that

=) _ _ k+1-b,
60+ by — Dy = S = bt Dl = b + D 2

k=1 (2 - bl)k—] (k — 1)!
= f‘_’ _(gl_,__ by + 1)i1(as — by + 1), zk+2_b,‘
k=0 (2 = by)s ]

The last factorin (ay — by 4 Deprisa; — by +1+k+1—-1=
k+1— b, + a,. Hence

0(0 + bl - l)wl
i (k4-1—=b+a) (k+1—b+a.)(a;—b;+1) i (as—b+1), St2-b
k=0

2 = by)s o
© , — bl 1 k — b 1 . k41-b,
=0+ a0+ a) 2 * )_<(Z?)k et

= 2(0 + a,)(6 + ax)w,.

Therefore w; is a solution of equation (1).

Notice the way in which the operator 6 introduced a factor
(k + 1 — b)) which canceled the last factor in (2 — b,) » and the
way in which the operator (6 + b, — 1) introduced a factor k
which canceled the factor &k in k!. If we were dealing with the
generalized case, other operators in the form (8 + b; — 1) would
occur. Such an operator would introduce a factor

k+1—b1+b,—1=b1"‘b1+1+k_1,

which is the last factor in the product (b; — b, + 1) x. Hence, in
the solutions we seek, a denominator parameter b; in the ,I”, should
be replaced by the parameter (b, — b, + 1) for the solution cor-
responding to the parameter b, in the original ,F,. Of course each
of the b; should play a role like that of by, each yielding a different
solution of the differential equation.

Thus we are led to the desired generalization. That is, the
generalized hypergeometric equation,

(2) [eljll(e-i-b,—1)—zfll(0—f—ai)]w=0;p§q+1,

has, when no b, is a nonpositive integer and no two b,’s differ by an
integer, the solution
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q
(3) W= D Culm,
m=0

where the ¢, are arbitrary constants, where
wo = Flay, @y, -, @y, by by -+, by 2),
and where, form = 1,2, ... q,

(4) w, =2""

a,—b,+1,a—b,+1,---,a, — b, +1;
XF z
nt1

bl_bm+1, t ‘,bm—l_bm+1,2_bm,bm+l—bm+1,' : ',bq

(@i = by + 1), 27"

_pam T P

k=0

L (0 = b+ 1

[lenty[jent

Whenever, in addition to the above restrictions, no b; is a positive
integer, then the linear combination (3) is the general solution of
equation (2) around z = 0. Note also that if p £ ¢, then the series
for wn.; m =0, 1, 2, -.., g, converges for all finite z and that for
p = q + 1, the series for w, converges for |z] < 1.

It is important to realize that the procedure we are now using is
not necessary. All (¢ + 1) solutions of the differential equation (2)
can be obtained by the standard series methods, the method of
Frobenius, keeping in mind that, for p < ¢ + 1, the equation (2)
has at worst a regular singular point at the origin. The whole
point to the method of the present section is an attempt to gain
some insight into the way in which the parameters in /', must be
altered to preserve its property of being a solution of equation (2)
and, perhaps most of all, the method is an attempt to obtain some
small practice in the technique of manipulating genecralized hyper-
geometric series.

We shall now verify that w, satisfies equation (2). Let, as
before, for m any one of the integers 1, 2,3, ..., g,

o I: (a; — bm 4 1) g fH1=bn
(%) =& @ =5
I (b, = bw + 1.

J=1

)-—1"

—
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Note that the mth factor in the product

IT (b — b + 1),

i=1

is (1), which furnishes the factor k! needed to make the right side
of (5) a hypergeometric series.
From (5) we get at once

0ﬁ 040 — Dwn

(lu+l—'bm) I_]; (k"—l "'bm+b]—‘1) I:Il (az—bm+1)k zk+l—bm
” (2=ba)x

@
k=

<

[Il(bJ—bm+ l)k

Now (b; — b + k) is the last factor in the product (b; — b,, + 1)
and (k + 1 —b,) is the last factor in the product (2 — b,)..
Hence

E’G

(@i — b, 4+ 1), S EHbn

(2= b
(bj - bm + 1)k—-l

q @

0] (6 + b; — Dwn = 2

J=1 k=1

1

Q|-
[

—_

I=

where the £ = 0 term dropped out because of the numerator factor
k+1—0b,+b,.— 1=k, which was later canceled.
Next, with a shift of index from & to (k + 1), we get

/4

H (ai—bm+ 1) k41 zk+2_b,..
1=1
2—=b.)x

Ms

.
]

0

0H (04+b,—Dw,=
7=1 2
T (b=but 1)

7

- H (@ai—bn+1+k) I_I (@;—=bm41), 1=
=2z, 2=t

T1 (b= bat1)s
Therefore "
O,I:II (6 +b, — Dw, = zf[l (0 + a;)wnm,
sothat w., m = 1,2, ... g, satisfies the generalized hypergeometric

equation.
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If the exponents of the differential equation at z = 0 are such that
one or more of their differences are integral, then the presence of
logarithmic terms is to be expected in the general solution. For
» = q + 1 the logarithmic solutions are obtained in F. C. Smith [1].

48. The contiguous function relations.* In this section the
parameters are fixed, and the work is concerned only with the func-
tion ,F, and its contiguous functions. Hence, we are able to use
an abbreviated notation illustrated by the following:

(1) F = qu(Otx, as, -, ay; By B, -, B 13),
F(al +) = IIFfI(al + 1, a, “eey apy By By oty B .’II),
F(Bl —) = qu(O‘lv s, -y ap; B — 1; B2, -y Ba; l‘)

There are, of course, (2p+2¢) functions contiguous to F. Corre-
sponding to Gauss’ five independent relations in the case of .F,, there
is for F' a set of (2p-+¢) linearly independent relations, which we shall
obtain. The canonical form into which we put this basic set may be
described as follows:

First, there are (p+¢—1) relations, each containing F and two of
its contiguous functions. These will be called the simple relations.
Each simple relation connects F, F(a,+), and F(a «+) for k = 2, 3,

-+, p, or it connects F, F(a1+), and F(B;—) forj =1,2, ..., q.
The simple relations are immediate extensions of two of Gauss’
five relations and are not novel in any way.

Second, there are (p+1) less simple relations, each containing F
and (¢+1) of its contiguous functions. In our canonical form we
shall select these so that one of them connects F, F(a;+) and all the
functions F(8;+) forj = 1, 2, ---, q. Each of the other p relations
will contain F, all the functions F(8,4+);7 = 1,2, - -+, g, and one of
the functions F(a y—) fork = 1,2, ..., p. The less simple relations
are generalizations of three of Gauss’ five relations but differ from
them in one essential aspect in that each relation contains F and
(g + 1) of its contiguous functions. For Gauss’ case ¢ +1 = 2,
and the less simple relations contain the same number of contiguous
functions as do the simple ones.

Since we shall actually exhibit the (2p<4q) relations, it will be
evident upon looking at them that, just as in the case of the ordinary
hypergeometric function, the coefficients are polynomials at most
linear in z.

*This section is taken from an article (Rainville [3]) published in the Bulletin of the
American Mathematical Society. Reproduced here by permission.
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It is convenient to use the following notations:

m k-1 m
(2) HA3=HAS. HAM
s=1,(k) s=1 s=k41
a symbol denoting a product with a particular factor deleted,
II (e — 8)
©) A i

q

8, 11 (B.—8)

«=1,0)

I1 (a0 — 85
(4) Wj,k — s=1,(h)

B IlI (B — Bj)

s=1,(7)

(ar)n(ea)n- - (ap)n

) e = (BB (Bo)
_ (al + n)(a2 + n) i '(0‘17 + n)
©) S = (Br+ n)(Bz+ n)---(Bg + n)
(7) Tn,k = %i—n)
(8) A= Z sy
9) B = g Bs.
An examination of (5) and (6) shows that
(10) Cny1 = SiCy.

The relation a(a+1), = (a+n)(a),, together with the definitions
of the contiguous functions, yields the formulas:

=3

—= nl’

a n c,x" ar — 1 cuz”
e o
“Sar+n—1 n!

(11) Flar +) = i

’
n=0 [ 7 TZ!

B et s Betn = lewr
F(ﬁk+)_nz=:oﬁ—k:i‘n ,n!y F(Bk )‘“z::o Bk_l 71!
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Using the operator 8 = z(d/dx), we see that
(0 + ap)lF = i_% (ay + n) (i;;;—n
Hence, with the aid of (11),
(12) (0 + an)F = arF(ax +); k=12 ..., p.
Similarly, it follows that
(13) (0 + B — DF = (B — DF (B —); k=12 - q.

The (p+q) equations (12) and (13) lead at once by elimination of
0F to (p+q—1) linear algebraic relations between F and pairs of its
contiguous functions. Let us use F(a;+) as an element in each
equation. The result is the set of simple relations,

(14) (al - ak)F = aIF(aI +) bl akF(ak +), k= 2, 3, ce D,
and

(15) (1 — Be + 1DF = anF(ay +) — (B — DF(Bx —);
k=12, -+, q.

From

it follows that

Thus, because of (10) and (6),
oF = x i 8,&2

n=0 n! ’

where

_ (e et ) (o ),
(Br+n)(Ba+1n) - (B, + 1)

Now, if p<gq, then the degree of thc numerator of S, is lower than
the degree of the denominator, and the elementary theory of rational
fraction expansions yields, for no two g’s equal,
q
_ 5 BU;
Sn—ZBjJrn, p<4q

=1

S,

in which the Uj is as defined in (3).
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Therefore,

B;U; cnxm
F-cyy B o

n=0 jm=l Pj

which in view of (11) becomes

(16) OF = 3 UF(8; +)

The elimination of 6F, using (16) and the case & = 1 of (12), leads to
(17) af = aF (e +) — i UK, +), P <q.

J=1

If p = ¢, the degree of the numecrator of S, equals that of the de-
nominator. However, when p = ¢,

q

H(as+n) H(Bs+n)
Sp=1-4- ;

Hl (B, + n)

in which the fraction on the right has the desired property that its
numerator is of lower degree than its denominator. Thus

U,
S-1+ZB+H P =4q

and it is easy to see that in this case
q
OF = aF + 2 >, U,;F(8; +),
7=1

so that (17) is replaced by the relation
(18) (a1 + 2)F = asF(en +) — x Z UF(g; +), P =4q.

If p = ¢+1, then with the notation of (8) and (9) we may write

P

IT(a+n) —(n+4—B) Il +n
Se=n+A— B+ - ;

I=I] (B, + n)

in which the fraction on the right has the desired rational fraction
expansion, so that

B,U;
S, —n+A—B+JZ=;B]+n
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Thus we conclude that, when p=q+1,

0F = x6F + (A — B)xF + 2 >, U,;F(B; +),

so that (17) is this time to be replaced by the rclation
(1 —=2)ay+ (A — B)x]F = (1 — ) (cy +)

(19) -2 UF@B;+); p=g+1

J=1
From equation (11) we obtain
— ay — 1 near
OF (e =) = Sar+n—1 nl

or

Now, with the notation of (7),
Crr1

ak—{—’n

where 7, has, for p < ¢, its numerator of lower degree than its de-
nominator. Thus

0[’(cu ——)—-(ak-‘l)l‘ZTnk"

= CnTn,k,

xr

where

B;W
T"‘_;B;+n

in which the W; ; is as defined in (4).
We now have

GF(ak _) = (ak - 1).’6 Z IV]kF(ﬁl +), p = q,]C = ]_, 2’. s, D
But, from (12),
F(ay — ) = (ar — D[F — Flay —)].

The elimination of 6F(a . —) from the preceding two formulas yields
the p relations:

(200 F=F(ar—)+xy W;.F(8,+); p=qhk=12--- p.
1=1

When p=q+1, the fraction r,,, has its numerator and denomina-
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tor of equal degree. Then we write

p q

H (a8+n)—H(Bs+n)

s=1,(k) s=1
Tn,k — 1 +

I1 (5 + )

and conclude in the same manner as before that

0F (ax —) = (ax — 1)aF + (ax — 1)z Zl W F(8; +).
Therefore, for p=g+1, (20) is to be replaced by
@1) (1 —2)F = Flay —) + =z le W F(8,+); k=1,2---,p.

We have shown that for
F(al) ag, + ey ap; B, 62, tt Yy 6«1; .’17)

in which no two g’s are equal and no 8 is a nonpositive integer, a
canonical set of (2p+¢q) contiguous function relations is as described
below.

If p<gq, (14), (15), (17), and (20) hold.

If p=gq, the relations are (14), (15), and (20) together with (18)
to replace (17).

If p=g+1, the relations are (14), (15), (19), and (21).

49. A simple integral. It is an easy matter to extend the work
of Section 30 to obtain the following result.

THEOREM 28. If p =< q + 1, of Re(b)) > Re(a;) > 0, if no one
of by, by - - -, by s zero or a negative integer, and if |z| < 1,

Ay, Qgy - * vy Qp;
PF‘] 4
bly b2)' ) bq;

a2 e Ayt

—_— I‘(b]) fl a1 _ by —ay—1 ) ) Py
= P(al) F(bl - al) ot (1 t) p—qu—l bz b 2t |dt.

4 y Yy

If p £ q, the condition |z| < 1 may be omitted.

50. The ,F, with unit argument. We have already found much
use for the evaluation of .F, (a, b; ¢; 1). We know that if no denom-
inator parameter is zero or a negative integer, the series
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Qyy A2y - -y Ap;
(1) oy 1

bl) b2)' ) bq;
is absolutely convergent whenever p < ¢ and for p = ¢ + 1 is
absolutely convergent if

q P

Re(3 0, - Sa) > 0.

1=1 1=1
It is natural to seek the value of (1), at least for p = ¢ + 1. For
p = g, the point z = 1 is not a singular point of the differential
equation for ,F,, and there is less reason to hope that (1) will have
a relatively simple value. Compare Theorem 28 with Theorem 16,
page 47, to see why the method of Section 32 does not carry over
to the more general case. In several special instances the desired

evaluation has been accomplished. This book contains a few of
the more widely used theorems along these lines.

51. Saalschiitz’ theorem. Irom Theorem 21, page 60, we see
that

(1) Fle—a,c—b;c;2) = (1 —2)tv=—F(a, b; c; 2).

Equation (1) may be interpreted as an identity involving three
power series:

R e e D

n=0 n=0 n! =0

& (@b)ilc —a — b), sz
a Zo (¢)k!(n — k)!

We know that

_ _(=D*e)n
(a)n—k = (_1__:—7_“_ n)kr

which we now use both for « = ¢ —a — b and « = 1. Thus we
find that

i(c——a)n(c—-b)nz" _ 2 - (@) r(B)(—n)s (c—a—b).z"
Azt (c)an! S (o) (l—cta+b—n) k! n!

® —-n, a, b7 P n
5] Jomegne

nl
» n!
0 ¢, 1—c+a+b—mn;
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TaEOREM 29. If n is a non-negative integer and if a, b, ¢ are
independent of n,

—m ab; (¢ — a)(¢c —b),
oA "= —a=b.
¢,1—c+a+b—n; " "

The ;F, of Theorem 29 has the property that the sum of its
denominator parameters excceds the sum of its numerator para-
meters by unity. Any .7, with that property is called Saalschiitzian.

The proof given above for Theorem 29 requires that a, b, ¢ be
independent of n. Bailey [1; 21] gives a general form for the
Saalschiitz thcorem. Here we need only the simple special cases
exhibited in the preceding Theorem 29 and the subsequent Theorem
30. See, however, the discussion at the end of this section.

TueoreM 30. If n is a non-negative integer and if a and b are
independent of n,

-n,a + n, % + %a - b,
F[ 1} NG

l4+a—b la+}; (Htae=0b.
Proof: On page 67 we showed that

a)b; %a) % + %(l - bv — 4z
zFl | = (1 - 2)_" 2F1 H_jﬁ .
1+ a—b; 14+ a—b;

Then
S @.0)zr _ $5 (0 + ja = b= D 2t

n=0 n!(l + a — b)n - k=0 /x!(l + a — b)k(1 — Z)u#'_’»k

2 (—DF3a)u(3 + la — b)2%(a 4 21) 2r+
0 /\,'7”(1 +(L—b>;;

=

n,

- (7_']2(1>k(% + 1a — b) (@) o ( —1)k22kgntk

) “n!(l + a — b)k(a)zk

_ Z (3 + 3a — b)p(a) yor(—1)kzntk

T I+ a = b)u(la + 1)

-3 S (DG 4 da = @)zt
S kln — /u')!(l +a — b)k(:ﬁa + f,)k

Now (@)nsr = (a)n(a + n)r and (=1)*%/(n — k)! = (—n)i/nl.
Therefore we may write

n
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i (@ab)e2n s (=n)ila +n)u( + da = b), | (@)
“nl(1+a—b)., =% k(1 4a—=0b)Ga+ ) n!

. —n,a+n, 3+ 2a—0;
=Z:;I"2 1

n =l

(a)nzm

n! "’

l1+a—b ia+73;
from which Theorem 30 follows.

Results such as those in Theorems 29 and 30 may be extended
in the following way. Suppose that we have established the identity

2) fla, n) = g(a, n)
for an arbitrary a which is independent of n and for every non-
negative integral n.
Now consider an @ which depends upon n, @ = h(n). Equation
(2) yields
f(a, 0) = g(a, 0)
for arbitrary a. Therefore
J[h(0), 0] = g[h(0), O].
Again from (2) we obtain

fla, 1) = g(a, 1),

from which

JTR(1), 1] = g[A(1), 1],
ete. It follows readily that (2) leads to
(3) f[h(n), n] = glh(n), n],
so that (2) is also true for a dependent upon n.

52. Whipple’s theorem. Later we shall nced the following
theorem due to Whipple[1].

TueoreM 31. If n is a non-negative integer and 1f b and c are
independent of n,

_nybrc;
3F2 x
1—b—n,1—c¢c—n;

—in, —in+ 3,1 —-b—c—n;
’ ’ ’ — 4z
= (1 —2x) 3F2|: (—1—_—‘5}

1—-b—n1—¢—n;
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Proof: Consider the ordinary hypergeometric function

b, c;
oIy t(1 — x + =t)

b+ c;
_ o (0)n(0)a[(1 = x) + wt]mt
B Z n!(b + c)n

E\ e (B)n(C)n*(1 — x)n—Ftnth
ék:o Fln — &I + ¢)n

_ i[nlzl (b)n_k(C)n-kl'k(l — x)n——2ktn
=00 kl(n — 2R)1(b + ¢)nes

B if"/” (=n)2x(®) () (1 — b — ¢ = n)(=1)kxk(l — x)"—24"
T Ea Eml(I — b — n)(1 — ¢ — n)i(b + ¢)n

—in, —int+3, 1=b—c—n;

-4TJ(MK®Jﬂ

= g(l—x)"aFZIZ (1—ua)? nk’(b‘%c)n

1-b—n,l1—c—n;

We next expand the same hypergeometric function in powers of
¢t in another way:

b, c;
o (1 —z + at)
b+ c;

& (0)a(0)a[1 — 21 = )]t
=L b+

& = (0)a(©) (= D)kaE(1 — )kt
- Z ~kKln — B+ o).

= ‘af: () ngk(€)nyr(— 1) kxk(1 — t)*kgntE

2o Ent(b + ¢)ny
OB S O HCE (B)(c) s (— 1) kxk(1 — £)¥t*
B k=0 n=0 n'(b+c+ lC)n /»!(b"f"(ﬁ)k
N L N (OO e L
= KI(b + o)x
b+c+ k;
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¢, b
S (1 — =k T n (B) (e) o(— 1) Exk(1 — t)*¢
> (1= m[b ein t] RRSEAS

i (c)ﬂ(b)"(b)k(c)k(‘_l)kxktk+ﬂ
o knl(b + ¢)(b + ¢ + k)

=3

n

(D) () k(D) nle) n(— 1) Faktnt*

n,kZ=0 k!n!(b + C),,+k

- i 5 (0)k(€) k(D) nor(€) nok(— 1) kite
7=0 k=0 Eln — B)Ib + ¢)n

-3 S (=) (b) lc) k(h) (c) ax it
T A kntb 401 = b —n)(l —c—n)
—-n, b, c; ~
- R b).(c)atr
- pzl: x} (b .
= 1—b—n1—c¢c—mn; nl(b + o)

Theorem 31 now follows by equating coefficients of ¢ in the preced-
ing two expansions.

In Whipple’s work [1] the  F.'s involved are not necessarily
terminating. We now prove Whipple’s theorem for nonterminating
series.

THEOREM 32. If neither (a — b) nor (a — c¢) nor a is a negative
integer,

a7b?CY
(1)  &Fe T
l14a—-5b14+a—c;

ja,3a+ 5,1 +a—>b—c

(1 —a)

= (1_x)—a 3F2l: —4x }.
l1+a—-51+a—c;

Proof:

a, b, c;
3Fz X
l1+a—-5b1+a—c;

.Y (a)(b)i(c)x®
= X M0 Ta=b,l+a=o;
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Il4+a—=0T(l +a—c) & (a)ib)ilc)wz®
rl4+ar(d4+a—5b-—2c) i k1 + a)u

rl+4+a+20)rl4+a—5-—¢c)
rl4+a—5b+ kr(l+a—c+ k)

_T(l4+a—brl+a- Zl'b+k’c+k; 1
e R 1+ a+ 2k

(@)x(0)s(c) 2

k(1 + a)ex

Fl+a—-brl+a—c) & (@b)ni(c)nisz®
rl+ar(dl+a—>b—c) .5 knl(l+ a).u

rflM+a—-bvrld+a—c < Z (a) ¢ (b)n(c) . x*
r14+a)T(1+a—b—c) =i kl(n — £)IA + a)nik

rl+a—-5rl+a—c
rll4+ard+aea—>b—c

—n, a;
© y Wy _ b)n_(C)" )
,,ZEUZF1|:1+a+n. xj|n! 1+ a)n

By Ex. 9, page 69, we know that

—n, a; la, 1a + %;
) b 2 ) _4
oI —x:| =(1—-2a) QFII: (f‘fﬁcﬁ:l
[ 1 + a + n; 1+ a4 n;

Therefore we may write

[~ a, b, c;
3F2 X
l14+a—b,14+a—c;

_I‘(l—i—a—b)I‘(l—l—a—-c)ZF et h gy
rQ+aT(dl+a—>b— : L+ a4 n 1 = 2)

(b)n(C)n
nl(1 4+ a).(1 — x)°

_ F(l + a — b)l"(l + a — C) = (_l)k(a)u(b)n(c)ﬂxk
Tl +a)T(1+a—b—c) 52 knl(1 4+ a), (1 — z)o+*
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=F(1+a—b)r(1+a_c)iF b, c; 1
rl+ard4+a—-b—c ™' etk

(=1)*a)sx*
T F a) (1 — z)erer

P(1+a—b)I‘(1+a—c).
rl+ard+ae—>5-rc

e rl+a+ ATl 4+a—>b—c+ k(=1 a)ux*
SET(l4+a—-b+ Tl +a—c+ HEA + a)p(1 — x)ot2

= R (—=D*a)u(l +a — b — c)ix*
= 0= D™ 2T Fa— 01 T a = ol — 2

ja,3a+ 5 1+a—b—c 4 }

= (1 —zx)e 3F2|: a :“I_)E

14+4a—-0b,1+a—c;
which completes the proof of Whipple’s theorem.

53. Dixon’s theorem. We shall obtain one more theorem on a
special ;F;. The series

is said to be well poised if
1+a0=al+b1=a2+b2= ...:aq_{_bw

Note that the left members of the relations in Theorems 31 and 32
are well poised ;F.’s.
Dixon [1] summed the well poised ;F. with unit argument.

THEOREM 33. The following is an identity if a, b, and c are so
restricted that each of the functions involved exists:

a, b, c;
oF 1
l1+a—-b1+4+a—c;

Tl +4+iT0 +a-=bT(0+a—0o)T( +3a —b—c)
T Il 4+a)T(1+ ta—-bTl+ la—c)T(1+a—-b—c)
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Proof: Let

a, b, c;
Y = I, 1]
l1+4a—-5b14+a—c;
Then

z‘”: (@) (1)) T(1+a —bT(l +a— ¢
ZTI+a—-b+ Il +a—c+ k)

_rd+a-0bra +a—c)z(a) (D) ()x
T rl4+a—-b—0or{d+a " KN A4 a)a

r(l+a+4+2k)rl14+a—->bb—c)
r(l4+a—-b+krl4+a—c+ k)

But

rt+at2nrita-b—o _ [0FReTH
TA+ae—b+khrd+a—c+k ° |+ a +2k:

Z(b+k) e+ k)n
tn!l(l +a+ Zk),.

Hence
y = Tl4+a—-brl+a—c & (@id)niilC)nsr
F(l + a — b —_ C)r(l + a) no k=0 ]C!?l!(l + Cl)n+2k
_ I‘(l—}—a—b)l‘(l—}—a—c)i i (a)i(b)n(C)n i
Tl4+a—-bb—c¢)T(l 4+ a) i kln — D)1 + @)nps
Therefore
¢=rﬂ+a—wﬂl+a—ci" (=1 (—n)i(a)i(b)a(c)x
rl4+a—5b—¢r(l 4+ a) =0t nl(1 + a4+ n)i(1 + a)n

_rl4+a—-bT(l+a—0c SN RO
- (1+a—b—0)1“(1+a)22p[1+a+n- 1}"-(1+a)n

By Theorem 26, page 68, with b replaced by (—n),

F —ma;_1==N1+a+nwa+%@=(1+wu
Lita+n: T+ ia+nrd+a 1+ 30,
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Therefore we have

rl4+a =0Tl +a—2c) < (b).(c)n
rl4+a—-5b—cr 4+ a)=nl(l + ia).

¢=

I‘(l+a—b)1‘(1+a~c)zF by ¢; 1
r'(l4+a—5b-—c)T(l + a) 11+la'

Tl+a—-bTr(1+a—c)T(1+ 2a)T(1 + Ja —b —¢)
rl4+aea—-b—crd+ard+ ja—56r1+ ia—c)
which completes the proof of Dixon’s theorem.

For another form of Dixon’s theorem see Ex. 3 at the end of this
chapter.

54. Contour integrals of Barnes’ type. Consider the integral

1 [ﬁ T'(am + s)] I'(—s)(—z) ds
(1) é—;& n=s )

N H r'(b; + s)

where B is a Barnes path of integration: that is, B starts at —1e
and runs to 47« in the s-plane, curving if necessary to put the
poles of T'(a, + 8);m = 1,2, ..., p, to the left of the path and to
put the poles of T'(—s) to the right of the path. The assumption
that there exists such a path precludes the possibility that any a.
is zero or a negative integer. A representative Barnes path with
m = 3 is shown in Figure 5.
Let the integrand in (1) be y(s),

r(=9)(~2 I] Nan + 9)

q

II rv; + )

1=1

(2) ¥(s) =

We wish to determine the behavior of y¥(s) as s recedes from the
origin along the upper portion of the pure imaginary axis and along
its lower portion. We know from Theorem 13, page 31, that

(3) logT(a +8) = (s+ a — %) Logs — s+ 0 (1)

as |s| — » in a region in which we have both |arg s| < = — é and
larg(s + )| < = — 8, 6 > 0. Also, by (2) above,
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4) U(s)

p
-

m=

logT(a,+s)— Y logT(b;+s)+logT'(—s)+s log( —z)].

7=1

For the moment let s be on the upper imaginary axis. Then
s =1t |s| =t args = ir. Using (3) we have, ast — o,

s-plane

[—il
Figure 5

log T (@, + s) = (it + a,. — ) Log(it) — it + O (1)
= (l+ a.— 3(Logt + Lxt) — 4t + O (D).

Since |exp(iy)| = 1 for real y, we are completely uninterested in
any pure imaginary terms involved in the exponent in y(s). Hence
any such terms will hereafter be lumped together and designated as
PI (pure imaginary).

We now have, as t — «, s = 1t,

log T (an + s) = [Re(an) — %] Logt — ixt + PI + O (1).

Then also



96 GENERALIZED HYPERGEOMETRIC FUNCTIONS [Ch.5

log T (b; + s) = [Re(b;) — 3] Logt — 3xt + PI + O (1)
and
log T (—s) = (—it — 3)(Logt — im) + 1t + O (1)
= —3}Logt— int+ PI + O (1).
Finally,
s log(—z) = 1t [Log|z| + i arg (—2)]
= —targ(—z) + PL

We are now prepared to examine ¢(s) as s — t. Indeed,

log y(s) = mZ=l (Re(a,) — 3] Logt — ipxt + PI + O(1)

— 3 [Re(b;) — #] Log ¢ + ignt + PI + O(1)

— L Logt — ixt — targ(—2) + PI 4+ O(1).
Let

A = Sp; Re(a.), B = i Re(b;).

m=1

Then, for s = it, t — o,

(5) log ¢(s) =[A—B+i(g—p—1)] Log t+3(g—p—1)nt—t arg(—z)
+PI+40(1),

or
(6)  ¥(s) = Ofta-B+ite=r=D) exp{— targ(—2) + jxl(g—p—1)}].
We turn next to a consideration of the behavior of ¥(s) on the

lower portion of the imaginary axis. Let s = —it, |s| = ¢, and
arg s = —ir. Thenast— o, s = —1i,

log T(@m + 8) = (=it + an — 3)(Log t — 3m2) + it + O(1),

so that

log T'(am + 8) = [Re(an) — 3] Log ¢t — 3=t + PI 4 O(1),

log T'(b; +s) = [Re(b;) — 3] Log ¢t — 3=t + PI + O(1),

log T(—s) = (¢t — ) (Log t + 3m) — 1t + O(1)
= —1Logt— ixt + PI + O(1),

—1it[Logl|z| + 7 arg(—2)]
t arg(—z) + PI.

Il

s log(—2)

I
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Therefore, as t — », s = —1it, we have
) log ¢(s) = [A — B + §(¢g—p—1)] Log ¢
+ 3(g—p—1nt + targ(—2) + PI + O(1),
or
(8)  ¥(s) = O[ta-B+ita=—»=D exp{t arg(—z) + jrt(g—p—1}].

We wish to impose conditions which will insure that ¢(s) be
dominated by an exponential with negative exponent. Equations
(6) and (8) show that we nced both

9 arg(—z) + ir(g—p—1) <0
and
(10) —arg(—2) + iw(¢g—p—1) <0.
If (9) and (10) are satisfied,
Y(s) = O(e—clel), |s| — © on B, ¢ > 0.

Then in any z-region in which (9) and (10) are satisfied

1
5 L‘lz(s) ds

represents an analytic function of z.

Ifp=q+1, tx(¢g — p — 1) = —=, and we require only that
larg(—2z)| < = — 8, § > 0 to obtain (9) and (10).

If p=gq, inx(¢g—p—1) = —ir, and we proceed to choose
|arg(—2)| = ix — 6, 6 > 0 to obtain (9) and (10).

If p<gq, ir(¢g — p — 1) = 0 (since p and ¢ are integers), and
there is no region in the z-plane for which both (9) and (10) are true.

THEOREM 34. If p =q+ 1 and no a. s zero or a mnegative
inleger,
P
r(—s)(—z)* ][ r(a. + s) ds
m=1

(11) -

q
B II v, + )
7=1

is an analytic function of z in the cut plane |arg(—2)| < =. If p = q
and no a. 1s zero or a negative integer, (11) s an analytic function of z
in the open half-plane |arg(—z)| < ir [i.c., in Re(z) < 0]. The
contour B is to be a Barnes contour as in Figure 5, page 95.
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55. The Barnes integrals and the function ,F,. We next relate
the Barnes integrals of Theorem 34 with the function ,F, for
p = ¢+1 and for p = gq.

Once more let

r(—s)(—2)° IPI T(am + 8)
(1) ¥(s) = = :

II r(b; + 9)
=1
Let n be a non-negative integer, and consider the integral

1
(2) D L"w" ¥(s) ds

over the closed path (B, + C.) shown in Figure 6. The semicircle
C. is defined by s = (n + 3)e?, —ix < 0 < 3x. The path B, is

s-plane

Figure 6

one of Barnes’ type but is terminated at s = (n + )t and
s = —(n+ 1)i. Asn — », B, — B, the Barnes path of Figure 5.
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The value of the integral (2) is the negative of the sum of the
residues of ¥(s) at the simple poless = k, k = 0, 1, 2,- - -, n within
the closed contour. Now

r(—=s)T(1 + s) _ 1 -
(1 + s) " T(1 4 s) sin 78’

T(—s) =

and it is convenient to write y(s) in the form

(—2) IPII I(an + s)

—-_T
sin s

(3) ¥(s) = -
N1+w[lmm+$

Since Lim #(s — k)/sin ws = (—1)*, the negative of the residue of
s>k
Y(s) at s = kis

(D*=2* [T Pen+ B I] Mm@,
4) ;"“ = '"=q‘ ~ o
I+ &) IL TG, + &) I1 0(6)(b;)s

Therefore

1 1
@ om ] v ds ok [ v as
H F(am) n Hl(am),, 2k
= - E — . m'

n

-0 ¢
F(bJ) H <bi)k
1 =1

3

2

J

[l

As n — =, the first integral in (5) approaches the Barnes integral
of the preceding section, and we now show that the second integral
in (5) approaches zero.

Let p=n-44% so that the path C, becomes s=pei?, —ir <0< 1inr.
Let us determine the behavior of the y(s) of (3) for s on C, and n
large. Sinces = pcosd + 7psin 6, we have, as p — =,

logT(am 4+ 8) = (pcos 8 + ipsin 0 + a, — 1)(Log p + 10) — pcos §
— 1psin 8 + O(1),
or

log T'(an+8) = [p cos 8 + Re(a,.) — %] Log p — p cos § — pf sin ¢
+ PI + O(1).
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Again we use PI to denote all pure imaginary terms. The real
term —6Im(a..) is bounded by the constant i=Im(a,) and is there-
fore included in O(1). Of course

logT'(b;+s)=[pcos 8+Re(b;)— 3]Log p—pcos 8 — pfsin 6+PI+0O(1),
log T(14s)=[p cos 6+1—3%]Logp— p cosd— pb sin 6+PI+O(1),
and

log(—2)* = pcos 0 Log|z| — psin 6 arg(—2) + PI.

It is an elementary matter (consider |sin =s|-!) to show also that

log = — = —xp |sin 8] + PI 4+ O(1).

sin s
For the ¢(s) of (3) it follows that
(6) logy(s)=[A—B—14(pcosb—3)(p—qg—1)]Log »p
— p(cos 0+ 6sin 6)(p—q—1)+ p cos 8 Log|z| — p sin 6 arg(—=z)
—7rp|SiI1 0] +PI+0(1),
in which
P q
A = > Rel(an), B = > Re(b)).
m=1 1=1
Because of Theorem 34, page 97, we are interested only in
Pp=¢q+ landinp = q. Firstlet p = ¢ + 1. Then (6) yields
logy(s) = (A — B — 1) Logp + pcos 8 Log |z| —psin 6arg(—2)
—ap|sin 8] + PI + O(1),
from which
(7) ¥(s) =O[ pA~B-1exp{p cos 6 Log|z|— psin 6 arg(—2) —7p|sin 8]}].

Since —4r £ 0=<1ir, cos § = 0. If we choose |z| < 1, Log|z| < 0.
For |arg(—2)| < #—3, § > 0, the term — xp|sin 8|, never positive,
dominates the term — p sin 6 arg(—z). Hence for p=¢+1, |z| <1,
larg(—2)| < =, ¢(s) = O[exp (—cp)], ¢ > 0, as p — o, and there-
fore

1
(8) 5.7

Then reference to equation (5) leads us to the following result.

f y(s)ds - 0asn — o,
Ca

THEOREM 35. If |2| < 1, if |arg(—2)| < = — 6, 6 > 0, and of
N0 @, or b; 18 zero or a negative integer,
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q+1

(—2)'T(—3s) I_I r(a, + s) ds

9) 5 -
» 11 16, + )
q+1
II F(am) A1, A2, - =y Agya;
= ﬂ:l—— * 4I+1Fq[ Z
H P(b,-) by, by, - -, bq;
j=1

in which B s the Barnes path of integration, Figure &, page 96.
Theorem 35 states the equal-
ity of the two members of z-plane
(9) in the region shown in
Figure 7, a region in which
both members are analytic.
Since the left member of (9)
is analytic in the larger re- 5
gion, the cut plane with the 9 1
non-negative axis of reals de-
leted, that left member of (9)
furnishes an analytic contin-
uation of the right member
of (9).
Let us now return to equa-
tion (6), page 100, and put
p = q. The result is that as p — «, son C,,

(10) logy(s) = (A—B—3%—pcos 8) Log p + p (cos 6 + 6 sin 0)

Figure 7

4+ pcos 6 Log|z| — psin 6 arg(—z2)
—mp|sin 8] + PI + O(1),

from which

(11) ¥(s) = O[pt=B-4=r s fexplpcos 0(1+Log|z|)
+p6sin § — psin farg(—z) — wp|sin 4] }].

Now |6]| £ %=, and we choose |arg(—2)| < ir—35, 6§ > 0, in order
to conclude that

pfsin 6 — psin 0 arg(—z) — wp|sin 8] < —6p/sin 6].
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If we also choose |z| < e~!, Log |z| < —1, we may conclude that,
for 6 # +3mn,
pcos 0 (1 + Log |2]) < 0.

Since sin? 6 + cos? 8 = 1, the coefficient of p in our exponent is
always negative.

Once more, for s on C,, y(s) = ()[ekp(—Cp)], c>0,as p— .
Again (8) holds true, and we may let n — « in each member of
equation (5), page 99. Since p = ¢, the right member of (5) ap-
proaches an entire function, a series convergent for all finite z. The
first term on the left approaches a Barnes integral known (Theorem
34) to represent an analytic function for Re(z) < 0. We may now
drop the unnecessary restriction |z| <t e~!, which was merely a
tool in our proof, since two analytic functions shown to be identical
in some region are identical throughout their common region of
analyticity.

TuroreM 36. If Re(z) < 0 and if no a. or bj is zero or a negative
integer,

1 (—2)T(—s) H I'(a, + s) ds
2l -
B H T'(b; + s)

q
II r(a.) ay, Gz - -+, Ag;
m=1
=7, T qF') c |
H] bl) b2y"'7bq;

1=

in which B ts a Barnes path of integration, Figure 5, page 95.

56. A useful integral. Consider the integral

¢ aly Ty aP;
(1) A@®) =fx"—‘(t — )b F, cxk(t — x)* | dx
’ by -+, by

in which the parameters are subject to the conditions that

(a) Re(a) > 0, Re(g) > 0;

(b) % and s are to be non-negative integers not both zero;

(¢) No b, is to be zero or a negative integer;

(d) p = q + 1, unless some a,, is a nonpositive integer, in which
case p may be any positive integer.
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We evaluate A(f) by term-by-term integration. Let z = tv.
Then

1 al) T aP;
A(t) = ta+a—1f va-l(l — p) -1 ,,F,, cteteapk(1 — v). dv
0 bl, R bq7

P
1 o II (am)ntn(k+a)cnva.._l+kn(1 _— U) B_H,ndv

= fat+h-1 me=1l -
0 nz..;o ’

n! H (b,)n

so that

- H (am)nc"t"(”’”B(a + I, B + sn)
@) AQ) =g 3 T S

2 T (),

M

in which B(z,, 2;) is the Beta function of Chapter 2. Now

‘ _ Ila+ kn)T(B + sn)
B(a A+ kn, g + sn) = (e + B+ In + sn)

— F(C!) F(B) . (a)kn(B)sn .
T(a + B) (a4 B)kson

In Lemma 6, page 22, we found that

— In : a + =1
(@)in = F kH( i )
which permits us to write
(3) B(a+ kn, B + sn)
B(a, B)krtse H (3_'*'_/’:_“1> H (,@ +u = 1)

= RS ——

(k + S‘)”‘“’”H <a -+ B +tf)— 1>n

The use of (3) in the right member of (2) vields a hypergeometric
function with (p + £ + s) numerator parameters and (q + & + s)
denominator parameters. The precise result follows.

TrEOREM 37. If Re(a) > 0, Re(B) > 0, and if k and s are posi-
tive integers, then inside the region of convergence of the resultant series




104 GENERALIZED HYPERGEOMETRIC FUNCTIONS [Ch. 5

¢ Ayt v 0y Gp;
4) fx'—l(t — )81 F, cxk(t — x)* | dx
’ bl’ T bq;

= B(a, )t kpel gkt

a at+1 at+k—1 E B+1 i+§i

A1y 0y Gy 7, AEEREE) R Y y ) ’
Kok k s s s Jokgeolk e

(b7 |

atB at+p+1  atptlts—1
Y h+s k4s k+s !

If either, but not both, of &k and s is zero, it is a simple matter to
modify the steps in the derivation of (4) and thus arrive at the
pertinent result.

TureoreMm 38. If Re(a) > 0, Re(B) > 0, and if k 1s a positive
integer, then inside the region of convergence of the resultant series

¢ Qi -y Ap,
(5) ];x“—l(t — )1 F cz* | dx

bl" ) bq;

by -, b

= B(O‘) B)ta+ﬂ_l ¢

an oy ap S 3%_1,. . ﬂ%:_l

)

p+qu+k ctr |.
po... p otBatptl atpti—l
¥ y Yy I3 ) /. ) ) I8 ’
The reader can easily write the corresponding theorem for & = 0,
s > 0.

ExampLE: In equation (4) of Theorem 37 choose p = 0 (no a’s),
g=1(omeb),by=1a=1,=1,k=1s=1,¢= —% The
result is

(6) j:OFI|: 1, —%x(t—x)i| dx = B(]., l)t 2F:5[ - 14—'12.—;—2i|

I
L
s
=
o
|
—
>l
I
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The reader may already know, or will discover in the next chapter,
that Jo(2), the Bessel function of the first kind and of index zero,
is given by
Jo(2) = oF1(—; 1; —i2).
The oF; in the second form of the right member of (6) is elementary.
Indeed
_.3 )y s (D
t"F‘( & 16) = 2 5l

=0

_ e (_1)nt2n+l _ i (__l)nt2n+1
B Z 201(2)y, 2 n§22n+1(zn + 1!

= 2 sin L.

Therefore (6) may be rewritten in the form
(7) f Jo(A/x(t = x)) dz = 2 sin 3.
0

EXERCISES

1. Show that

- - ba+ 3, o+ 30— };
OFI x 0F1 X =2F3 4z |.
a; b; a,b,a+b—-1;

You may use the result in Ex. 6, page 69.
2. Show that
3.
4

t %7 ’
fx*(t — )1 — 22(t — z)?]"¥dx = int QFI[ £j|
0 1. 16

’

3. With the aid of Theorem 8, page 21, show that

I'(l + 3a) _ cos jral'(1 — a)
I'l+a = T -ia

and that
I'l+a—05 _sinw(b— $a)T'(b — 3a)
Il +%a—0b  sina(d— a)T(b — a)

Thus put Dixon’s theorem, Theorem 33, page 92, in the form

a,b,¢c;
F 1
l14a—-0b14+a—cg

_cos jrasinw(b — ja) . r(l —ar® — il +a — ATl + 2a—b—¢)
- sinw(d — a) I'(l —ia)rb—a)f(d +3a—c)i(l +a—>b—c)
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4. Use the result in Ex. 3 to show that if n is a non-negative integer,

. -2n,a,1 — 8 — 2n; 11 2 @U@ = o)
a2 g n!(a)2n(B)n

5. With the aid of the formula in Ex. 4 prove Ramanujan’s theorem:

«; a; B = a; 2
lFll: I]1F1|: *x:l = 2F3 IJ
B; B; B, 4B, 48 + %;

6. Let v, = gFt_,(—n, l—a-n1—-b-=mn;a b;1). Use the result in Ex. 3
to show that vs,.1 = 0 and

_(=Dr@m)la+b = s
TS @) (W)nla + b — Do

7. With the aid of the result in Ex. 6 show that
oFfo(—; a, b; t) oFa(—; a, b; —1)

$a+b—-1),3a+0),i@+b+1);

— 27t
= 3Fs|: _@_:]
a,b,3a,3a + 3, 3b,3b + 3, 3(a + b — 1), }(a + b);

8. Prove that

; —k, b, c;
> (=D (y=b—=0)ni(y=b)a(y — ) sx""* » b, c i
k=0 kt(n — k)1 (v) . .
1—y+b—k, 1—y+c—k;
—1 —1 1 -
_ (v=b)(y—c)n(1—2)" v n, —gn+3, 1—vy—n, _43:‘
- n'(’Y)n stz (1_2)2 y
l—y+b—n, 1 —y+c—n;

and note the special case vy = b + ¢, Whipple’s theorem, page 88.
Exs. 9-11 below use the notation of the Laplace transform as in Ex. 16, page 71
9. Show that

i,y Ap; 1+01a11”'1ap;
rQ
L;tc qu[ zt:'s = —(s-,g%i)qu[ g}
blr' "y bq;

blr‘ "y bq,
10. Show that
1 ay," "y Ap, ay,- ", Ap;
L S oF g1 2| = F o 2(1 —e?) |
s+ 1,by, -, by 1,by, -, bg;
11. Show that
sk k+1;
L_X{ZS_—T)m = 1F1 Zt .

1;
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12. Show that

P
d [aly"'rap; } Ham l:al + 1,8, + 15 }
2 F z | =1t F z |
dzp q q rt q

bl,"'ybq; Hbl bl+1y""bq+1;

Jj=1

13. In Ex. 19, page 71, we found that the complete elliptic integral of the first
kind is given by
K(k) = im.Fi(3, 35 1, k7).
Show that

f; tK(\/w =7)) dz = = Arcsin (3f).



CHAPTER 6

Bessel

Functions

57. Remarks. No other special functions have received such
detailed treatment in readily available treatises® as have the Bessel
functions. Consequently we here present only a brief introduction
to the subject, including those results which will be used in later
chapters of this book. 4

For a discussion of orthogonality properties and of zeros of Bessel
functions, see Churchill [2] and Watson [1]. An extremely simple
result on zeros of Bessel functions appears in Ex. 13 at the end of
this chapter.

58. Definition of J,(z). We already know that the o/, is an
exponential and that the ,F, is a binomial. It is natural to examine
next the most general (', the only other /', with less than two
parameters. The function we shall study is not precisely the oF,
but one that has an extra factor as in (1) below.

We define J.(2), for » not a negative integer,

If n is a negative integer, we put

*The most striking example is Watson’s exhaustive (804 pages) work; Watson [1].
An exposition sufficiently thorough for most readers will be found in Chapter 17 of
Whittaker and Watson [1].

108
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(2) J.(2) = (—=1DrJ_.(2).

Equations (1) and (2) together define J,(2) for all finite z and n.
The function J,(2) is called “the Bessel function of the first kind of
index n.”

Since

the relation (1) is equivalent to

_ @ (_1)k22k+n .
(3) Ja(2) = ké;]zw"/\,-!r‘(l +n 4 k)

Note also the immediate result
(4) Ja(—2) = (=1)"J.(2).

59. Bessel’s differential equation. We know a differential
equation satisfied by any oF; by specializing the result in Section
46. The equation

(1) (606 + b — 1) — ylu = 0; e=y;§iy,

has u = F1(—; b; y) as one solution. Equation (1) can also be
written

d*u du
(2) Yy @ +b gy* —u =
Wenowputb =1+ n,y = —22/4 in (2) to obtain
3) au” + 2n 4+ Du' 4+ z2u = 0,

in which primes denote differentiations with respect to z. One
solution of (3) isu = F\(—; 1 + n; — 22/4). We seek an cquation
satisfied by w = z»u. Hence in (3) we now put u = z="w and arrive
at the differential equation

(4) 2w’ + 2w 4 (22 — n)w = 0,

of which one solution is w = z"F(—; 1 4+ n; —22/4).
Equation (4) is Bessel’s differential equation. If n is not an
integer, two linearly independent solutions of (4) are
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(5) w = J.(2)
and
(6) we = J_(2)

and they are valid for all finite z.

If n is zero or a positive integer, (5) is still a valid solution of
Bessel’s equation, but then (6) is not linearly independent of (5).
For integral n, a second solution to accompany J.(z) is logarithmic
in character and can be obtained by standard procedures.® The
result is

(= 1)k (n = 1) g2k

(M) wi= Yae) = Ju(@) logz + X

bl (-1)k+l<Hk + Hk+")z2k+n
RIS g

k=0

for n > 1. In (7) the common convention H, = 0 has been used.
For n = 0, the first series on the right in (7) is to be omitted;
for n = 1, the first series on the right in (7) is to be replaced by
the single term (—z-1).

60. Differential recurrence relations. In the equation

bl <_1)k22k+n

(0 To®) = Z v § 0+ B

we may multiply both members by 27 and then differentiate through-
out with respect to z to obtain
hd (_1)k22k+2n—1

d
@) dz [enJu(2)] = ZQ””"“/:!I‘(n + k)

k=0

in which we have canceled the factor (2k 4+ 2n) in numerator and
denominator, using I'(1 +n + k) = (n + k)I'(n + k). Equation
(2) can be rewritten as

N (_1)k22k+n—1

d
5 )] =z Zzzm_lk!m Tn—1+Fk

k=0

and we thus see that the right member is 2/ ,._:(2). We conclude
that

3) % (] (2)] = 27T 0 r(2).

*In Rainville [1], pertinent techniques are explained on pages 285-291 (for n = 0)
and on pages 299-303 (for n > 0).
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Equation (3) may also be put in the form
(4) 2], (2) = 2J.1(z) — nda(2),

which is called a differential recurrence relation, differential because
of the differentiation involved, recurrence because of the presence
of different indices n and (n — 1).

Next we return to equation (1), insert the factor z—» on each side,
and again differentiate each member with respect to z to obtain

@« <__1)_kz‘2k_l

d —-—n —_— - e —————— e ——, ®
®) & @) = R S YT A R

k=1 =

A shift of index from % to (L + 1) yields

(_l)kilzﬂc'}l

d —_n e = - ———
e CR A O Rl D ety G Ry Ry

from which we obtain
d
(6) P [z .(2)] = —27"Jwia1(2).

Equation (6) can be expressed equally well as

(7) 2J.(2) = —2d.(2) + nd.(2).
In equations (7) and

(4) 2J.(2) = 2J._1(2) — nJ.(2)

we have two differential recurrence relations. I'rom them it follows
also that

) 2J,'(2) = Jaa(2) — Jni1(2).

61. A pure recurrence relation. Elimination of J.'(2) from the
relations (4) and (7) of the preceding section gives us at once the
pure recurrence relation

(1) 2nd ,(2) = z[Jn_1(2) + Jaa(2)].

It is also instructive to obtain (1) from the sole contiguous function
relation possessed by the o/, function.

Consider the set of Bessel functions J.(z) for non-negative integral
index. If we write (1) in the form

(n

@) I =2y ) = 1),



112 BESSEL FUNCTIONS [Ch.6

we obtain each J, of the set in terms of the two preceding it; J.
from Jo and J,, Js from J; and J., etc. In this way we can, for
integral n, write

(3) Ja(2) = A.(2)Jo(2) + Ba(2)J1(2).
The coefficients A4 ,(2) and B,(z) are then polynomialsin 1/z. These
are simple special cases of Lommel’s polynomials R ...(z) which may

be encountered* by applying the same process to (2), with n re-
placed by (v + m) to arrive at the result

(4) J7+m(z) = Rmvl’(z)JV(z) - Rm—l.v+l(z)v]1«_l(z)-
The Lommel polynomial is a .F; (sce Watson [1:297]):

—in, —in + 3
(5) R(%) = (»)a(22)" F[ _LJ.

22
V,—n,l—V—n;

62. A generating function. Our approach (Section 58) to the
function J.(z) was from the hypergeometric standpoint, which is
natural here because this book is largely concerned with functions
of hypergeometric character. Some authors approach J.(z) by
first defining it, for integral n only, by means of a generating func-
tionT relation which we shall now obtain.

Lemma 12. Forn = 1,
(n/2] [(n-1)/2]

(1) éoA(k:n) e é Ak, n) + kZ:o A(n — k,n).

Proof: First note that for integral n = 1,
(2) n =1+ [in] + [3(n — )],

in which [ ] is the usual greatest integer symbol. Equation (2) is
easily verified separately for n even and for n odd.
Next note that

n [n/2] 1+ (n/2]+ [(n-1) /2]
(3) 2 Ak, n) =3 Ak, n) + 2 Ak, n).
k=0 k=0 k=1+(n/2]

In the last summation in (3) replace & by (n — k); that is, k£ by
1+ [n/2] + [(n — 1)/2] — k. Then

*See Watson [1:294].
tSee Chapter 8 for some detail on the generating function concept.
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(n/2)
ZAkn)—ZA(kn)+ Z A(n — k,n),

k=[(n-1)/2]

from which Lemma 12 follows by reversing the order of the second
summation on the right.

TureoreM 39. For ¢t # 0 and for all finile 2,

@ ol i - 7)] = £ s

Proof: Let us collect powers of z in the summation

i J.(2)tr = Z J. ()t + Z Ju(2)tr

n=—o n=—co n=4

= > J a2t + 3 Ja(2)tn

We defined J ..(z) for negative integral m in Section 58. Using that
definition we get

> L0 = 3 (— )@+ 2 e

Nn=—co n=
(_1)n+k+lt—n—lzn+2k+l sl (_l)ktnzn-f-zk

= n;o 2n+2k+lk!(n +1+k)! + n;() 2rt2kfl(n 4 k)!

(—1)n—k+1f=nt2k=1gn+1 o [n/2] ( l)kln 2kyn

- g 0 k=0 2"+1k'(n + 1 l)' ne0 k= 02 /’(n - A)’

o [(n-1)/2] w [n/2]
_ (_l)n—ktk—(n—k) zn ( )kln k—k . Z_"'
=2 X Hm =0 et 1+ Z N =T

We now use Lemma 12 to conclude that

i Ja(2)tr 1+ZZ —l)ktn;:)tk ';—::

n=-co n=l k=

o " n—k(_t l)k an

=ZZUM—M’W

See also Ex. 23 at the end of this chapter.
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63. Bessel’s integral. Theorem 39 of the preceding section
may be interpreted as giving the Laurent expansion, valid near the
essential singularity ¢ = 0, for the function exp [z(t — {1)]. The
Laurent series coefficient is known. Indeed,

(1) J.(z) = 1 f(0+)u-"-‘ exp[%z(u — u—l)} du,

271

in which the contour (0+) is a simple closed path encircling the
origin v = 0 in the positive direction.
In (1) let us choose the particular path

u = e = cosf -+ 7sin 0,

6 running from (—=) to . Then uw~' = cos § — 7 sin 6, and (1)
yields

Ja.(2) = :2—1; ]: exp[ —nif + 4z sin 0] d6

1 (" . 1 (7. .
= —f cos(nf — zsin ) dg — ~—f sin(nf — z sin ) dé.
27 J_, 20 J_,

In the last two integrals the former has an even function of 6 as
integrand, the latter an odd function of 6 as integrand. Hence

1(" .
J.(2) = ;rfo cos(nd — zsin 6) do,

which is Bessel’s integral for J,.(2).

THEOREM 40. For integral n,
(2) J.(z) = —};f cos(né — zsin 6) dé.
0

Bessel’s integral representation of J,(z) can be* extended to non-
integral n. The result, called Schlifl’s integral, is

T sinnw [©

3) J.(2)= %f cos(nf—zsin 6) d0———~;— exp(—né—zsinh ) de,
0 0

valid for Re(z) > 0. Equation (3) will not be used in our work.

64. Index half an odd integer. Let us put into hypergeometric
form the elementary expansion

*See Whittaker and Watson [1:362].
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b _l)kz2k+1
& 2k + DI
Since (2k + 1)! = (2)ux, equation (1) yields

(1) sin 2

ol —_ k
ine = 3 202
-0
kel =
21(3)
or

(2) sin 2 = z JF\(—; %; — }z%).
Now
(2/2)* 1
J;(Z) F( ) OPI( %) ";Z)
and T'(3) = i4/7. Hence

(3) Ti(z) = (%)’ .

In much the same manner the elementary expansion

= (2n)!
or
(4) cosz = oF\(—; 3; —12%)
leads us to the relation
(5) J_i(z) = (%)écos 2.
In Section 61 we derived the pure recurrence relation
(6) J.(z2) =2(n—1)z"J,._1(z2) — J._s(2).
In (6) replace n by (n + %) to obtain
(7) Josi(d) = @n — Deooy(2) — Jasy(2).
Let n be a positive integer and iterate (7) to see that
(8) Jniy(2) = Pi(z7)J 4(2) + Pa(z7)J - 4(2)

in which P, and P, are polynomials in their arguments.
From equations (3), (5), and (8) it follows that for integral n

Jor3(2) = A(2) cos z + B(z) sin 2z
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in which A(z) and B(z) are polynomials in z-%.

Bessel functions of index half an odd integer are often called
spherical Bessel functions. They, as well as most other Bessel
functions, are encountered in various physical problems. Spherical
Bessel functions led to the definition and study of Bessel polynomials
which we discuss to some extent later in this book.

65. Modified Bessel functions. Many physical problems lead
to the study of Bessel functions of pure imaginary argument. This

in turn leads to the definition of such functions as
I ) LI <_. z)
(1) I1.(z) =i J.(iz) = M1+ ) ol i1 4 n; i)

n not a negative integer. The function I.(2) is called a modified
Bessel function of the first kind of index n. A study of J.(2) for
complex z includes corresponding properties of I.(z) by simple
changes of variables. The function I, is related to J. in much the
same way that the hyperbolic functions are related to the trigono-
metric functions. Some elementary properties of I.(z) will be
found in the exercises below.

66. Neumann polynomials. From Theorem 39, page 113, we
obtain, for w # 0 and for all finite 2,

(1) expizw — w)] = 3 Ju(wn

which can equally well (Ex. 2, page 12g);mbe written

() explie — w )] = Jua) + 3 Ju@wr + (=D
because J_a(z) = (—=1)"J.(z). In (2) put w =t + /& + 1 and
note that (—w=') = t — o/ + 1. The result is

(3) et = Jo(2) + i T+ VEFD 4+ (1 — VEF D).

Let us define f.(t) by
@) fult) = C+VEF D+ —/E+D, w20

Then f,(t) is a polynomial in ¢ and (3) now appears as

(5) ert = 3fo(t)Jo(2) + ;f,.(t).l,.(z).
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The Laplace transform (Churchill [1]) of a polynomial in ¢ is a
polynomial in s-1. Let 20.(s) be the Laplace transform of our

fa(t):

(6) 20.(s) = L{f.(t)} = j;me—”f,,(t) dt.
Then from (5), since L{et] = (s — z)~!, we obtain
™ L = 0)oD) + 2 3 0.6 (o).

The polynomials O,(s) arc called Neumann polynomials.

Let us assume that the series in (7) is sufficiently well behaved
(proved below) that the manipulations to be performed are legit-
imate. Differentiation of (7) yields

) —@—@4=W@hm+2§mmww)
and
) (s — 2)= = Ou(s)Js'(2) + 2 ”i]()n(s)J,.’(z).

Now 2J.'(2) = J._1(2) — J.pi(2) and Jo'(2) = —Ji(2), so that (9)
may be written as

(s = 9 = —0u(8)(2) + 2 0u(5)un(2) — 3 0u(s)wa(2)

= —0u)(2) + 3 0un($)Tn(2) — 3 Os(s)Ja(2),
}
(10) (s = 9 = 0,(5)Ju(2) + 3 [Ons) = Oaa(5)1J(2):
From (8) and (10) it follows that
[00(8) + 0u(&)]Ju(2) + 3= [20,/(5) + Ousals) = Ous(s))Jn(2) = 0.

Since for each m the function z-"J,.(z) is nonzero at z = 0, it
follows that an expansion of the form

i and +(2)

n=0

is unique.
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Hence O,(s) = —0,/(s) and
(11) On+1(8) = On_l(s) - QOnI(S), n = 1.

We know that Oy(s) = s~! and now that O,(s) = s~% The
Neumann polynomials may now be described as follows:

(12) Ou(s) = 571, Ou(s) = s,
(13) 0.(s) = 0,_2(s) — 207_4(s), n 2
The O.(s) are uniquely determined by the description (12) and (13).

THEOREM 41. The Neumann polynomials defined by (12) and (13)
above are given by O,(s) = s~ and

P — 1 - ! n+1—2k
(14) 0.(s) = = > (n 1 /;L)' (2/s) o=l

Proof: From (14), O,(s) = 3(2/s)? = s~2. Also, forn = 2,

L]

n—2 — 3 — k)1(2/s)rm1-2k
Ou_als) = Z (n /{)!( /8)
n—2"'T (n—2— k)l(2/s)r1-2

="4—k§ (k= D!

[]
bt —_— o —_ —_ (= 2 n—1—2%
Ol_\(s) = n . 1 Z (n — 2k)(n — 2 /A{?'V(_,,,,,,Q/S,)(Q/AS,) 1-2k
1 B (n — 2k)(n — 2 — K)1(2/s)n+1-2k

B Z k!

Therefore, for the O ,,(s) of (14),
0._2(8) — 20, _.(s)

=1 [nZ/‘i] (n—2k+ (n—1(n—20]n — 2 = k)1(2/s)rH1-2k

k=0 k!

= 0,(s),

as desired.
By Theorem 41 the dominating term in O, (s) is 2»='n! s=»=1. The
dominating term in J.(2) is (%z) »/n!l. Therefore, as n — o,

and

‘n! 2n
9"“ " ol (1 )

0.()J(2) =
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in whiche, — 0. For |2]| < r,choose [s| = R where R > r. Thus
for n sufficiently large,

0.(s)J4(2)

- T "
<c (R) , ¢ & constant.

Then the expansion (7) is absolutely and uniformly convergent, and
the manipulations performed on it are justified.

For the moment let F denote the right member of (7). Because
of (11) the right members of (8) and (9) have zero as their sum.
Hence

oF | oF _

= 0
as 9z

from which it follows that the right member of (7) is a function of
the single argument (s — z). But at z = 0, that right member is
O¢(s) = s~'.  Hence, once again, the left member of (7) is (s — 2)-.

67. Neumann series. On the basis of the expansion

(1) L 0us)u) + 2 i 0.()J 4 (2)

s —2z

and the Cauchy integral formula

=1 [ Js)ds
2) & =5-) 5=
where C' is |s| = r described in the positive direction, we obtain
at once

1 d 1 &
1@ = g [ L8 4 L5500 [ 1900.09) as
or
®) @) = T auu(@),
in which a, = f(0) and
1

(4) a,.=;;£f(s)0,,(s) ds, n=1.

That is, if f(2) is analytic in |z| < r, then f(2) can be expanded into
the Neumann series (3), with coefficients as described, and the ex-
pansion is valid for [z| < 7.

Some of the expansions in the exercises may be obtained by this
method, if it seems desirable.
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EXERCISES

1. By collecting powers of z in the summation on the left, show that

$ o) = 4 [ T au.
2. Put the equation of Theorem 39, page 113, into the form
) expl3a(t = )] = Jo@) + TJa@) e + (~1)re]
Use equation (A) with ¢ = 7 to conclude that
cos 2 = Ji(2) +2 2 (~1)Wn(@),
sinz = 2 ki] (=D R 3541(2).
3. Use t = e¥ in equation (A) of Ex. 2 to obtain the results
cos (zsin 0) = Jo(2) + 2 kil Jax(2) cos 2k,
sin (z sin 6) = 2 ki]Jg;m(z) sin(2k + 1)4.
4. Use Bessel’s integral, page 114, to obtain for integral n the relations

(B) [14 (=D)")a(z) = g‘f,rcos nf cos(z sin 6) dé,
T Jo

(9 [1—(=D"la(2) = % j; ‘sin n@ sin(z sin 6) dé.

With the aid of (B) and (C) show that for integral k,

Jak(2) }r j; cos 2k cos(z sin 6) dé,

1

Jak1(2) = ;j; sin(2k 4 1)8 sin(z sin 6) dé,

f cos(2k + 1)8 cos(z sin 6) dd = 0,
0

f sin 2k6 sin(z sin 6) d6 = 0.
0

5. Expand cos(zsin §) and sin(zsin 8) in Fourier series over the interval
—m < 6 <w. Thus use Ex. 4 to obtain in another way the expansions in Ex. 3.

6. In the product of exp[3z(t — t™)] by exp[—3z(t — t™)], obtain the co-
efficient of ¢ and thus show that

J2(@) + 23 Jaxz) = 1.

For real z conclude that [Jo(z)| £ 1 and |J.(z)| < 24 forn = 1.
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7. Use Bessel’s integral to show that |J.(z)| =< 1 for real z and integral n.
8. By iteration of equation (8), page 111, show that

sz%.Jﬂ(z) = 2 (=)™ +Com, i mim-2(2),
k

=0

where C,, i is the binomial coefficient.
9. Use the result in Ex. 1, page 105, to obtain the product of two Bessel func-

tions of equal argument.
in+m+1),5(n+m+ 2);
n+m 2 2
(2/2) 2F'3l: — 22] :

(1 +n)T(1 + m) L4+n14+ml+n+m

Ans. Jo(2)In(2) =

10. Start with the power series for J.(z) and use the form (2), page 18, of the
Beta function to arrive at the equation
_ 26"
r(Hr(n + %)

in
Ja(2) J; sin?" ¢ cos(z cos ¢) de,

for Re(n) > —3.
11. Use the property
d 1du
d—zoFl(—;a;u) = 517£°F’(_;a + 1; )

to obtain the differential recurrence relation (6) of Section 60.

12. Expand
T o
OFI[ —7”—4—‘]
1+ a;

in a series of powers of x and thus arrive at the result

(t,—_z@) N () = 5 a0
t n=0 n!

13. Use the relations (3) and (6) of Section 60 to prove that: For real z, be-
tween any two consecutive zeros of r—"J.(z), there lies one and only one zero of
Z_"Jn+1(13).

14. For the function I,(z) of Section 65 obtain the following properties by using
the methods, but not the results, of this chapter:

2l,'(2) = 2l,.,(2) — nl,(2),
21,/ (2) = 21,.(2) + nla(2),
21./(2) = Ina(2) + In(2),
2nln(2) = 2[Ini(2) — Inp(2)].

15. Show that I,(z) is one solution of the equation
2w’ + zw’ — (22 + n®)w = 0.
16. Show that, for Re(n) > —4,

o 20 f -
I,.(2) RONCESA sin?" ¢ cosh(z cos ¢) de.
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17. For negative integral n define I,(2) = (
definition in Section 65. Show that I.(—2) = (

—1)"I_,(2), thus completing the
—1)"1,(2) and that
exp[3z(t + )] = X L.(2)t".

N=—m

18. Use the integral evaluated in Section 56 to show that
t
j; Wzt = 2 I"I.(\/Z(t — 7)) dz = 2774/7 7" Wy (B0).
19. By the method of Ex. 18 show that

and, in general, that

j;]‘\/ 1 — zsin (a\/;:) dr = ma~1J3(a),

1 c
j;(l — z) iz, (an/7) dz = F(C)(§>

Jnye(a).
20. Show that

fexp[-—2z(t — 2)]11[2z(t — z)] dz = J;exp(—Bz) dB.
0
21. Show that

]O‘t[z(t — z)]"Yexp[4z(t — z)] dz = = exp(3?) Iy(3t3).

22. Obtain Neumann’s expansion

n @ — '
(%) S ik D)W ns2(2)

n=1.

23. Prove Theorem 39, page 113, by forming the product of the series for
exp(3zt) and the series for exp(—3zt™).



CHAPTER 7

The Confluent

Hypergeometric

Function

68. Basic properties of the F,. The functions F, (the ex-
ponential) and ,F, (the binomial) are elementary. We have devoted
some time to the study of the (/,, a Bessel function, and to the ,F,,
the ordinary hypergeometric function. Except for terminating
series, we are interested in the ,F, mainly when p < ¢ + 1 so that
the series has a region of convergence. To complete the introduc-
tion to special properties of the ,#, when ¢ = 0, 1, we need only to
consider the F|.

The series

(1) Fi(a; by 2) Z . n' ,

in which b # zero or a negative integer is convergent for all finite z.
This function is also known as the Pochhammer-Barnes confluent
hypergeometric function. An equation satisfied by the ,F, can be
obtained by confluence of singularities from a Fuchsian* equation
with three singular points. Other common notations for the ,F, are

(2) ®(a; b;2) = M(a, b, 2) = \Fila; b; 2).

There are certain properties of the \F, which follow from the fact
that it is a generalized hypergeometric function; these properties

*Fuchsian equations and the concept of confluence are treated in Chapters 5 and 7
of Rainville [2].

123



124 CONFLUENT HYPERGEOMETRIC FUNCTION [Ch.7

are not peculiar to the F,. By specializing results obtained in
Chapter 5, we obtain the following facts.

The function w = Fi(a; b; 2) is a solution of the differential
equation

(3) 6 +b—1 —z6+a)]w=0; O—z-c—l%
an equation which may also be written
(4) 2w’ + (b — 2w — aw = 0.

If b is nonintegral, the general solution of (3) or (4) is
(5) w=A 1F;(a; b, Z) -+ Bz~ 1F1(a + 1 — b,' 2 — b; Z),

with A and B as arbitrary constants. If b is integral, the general
solution may involve log z in the usual way, since z = 0 is a regular
singular point of the differential equation (3) or (4).

There is a canonical set of three relations between the ./, and
pairs of its contiguous functions. They may be written in the form

(6) (a—b+1).Fi(a;b;2)=a,F\(a+1;b;2)—(b—1) \Fi(a; b—1;2),
(7)  bla+z2) Fi(a; b;2)=ab ,Fi(a+1;b;2)—(a—b)z \Fi(a; b+1; 2),
(8) b.Fi(a; b;2)=b,F,(a—1;b;2)+z,Fi(a;b+1;2).
If Re(b) > Re(a) > 0,
F(b) ztfa—1 —_ a—1
() T(b = a)f (1 — et dl.

If neither a nor b is a nonpositive integer, if Re(z) < 0, and if the
path of integration is one of Barnes’ type, page 95,

(9) WFi(a; by 2) =

I'(b) I'(a 4 8)T(—s)(—2)* ds

(10) WFi(e;b72) = 5o ), rb +s)

69. Kummer’s first formula. We next obtain results which are
characteristic of the 1F; in the sense that they are not held in common
by all ,F’s.

Consider the product

e~ F(a; b; 2) = (i "2")(2 (ﬁﬂﬁ)

n=0 nn'

C - —1 n— "(a)kz"
=22 b) i — &1
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Since 1/(n — k)! = (—1)¥(—n)/n!, we may write

Raibig = T B e (O

= S Fi(=n, a; by ) 1)"’-

n=0

But we already know (page 69) that

b n
M Fi(=n, 08 1) = O
Then
e Farh ) = 20— a)u(=2)",
e~ Fi(a, b; z) = ’g (b),,n’
THEOREM 42. If b is neither zero nor a negative integer,
(2) 1Fi(a; by 2) = e# \Fi(b — a; b; —2).

This is Kummer’s first formula.

70. Kummer’s second formula. Examination of Kummer’s
first formula soon arouses interest in the special case when the two
1F'y functions have the same parameters. This happens when
b—a=a,b=2a We then obtain

Fi(a; 2a; 2) = e \F\(a; 2a; —2),
or

(1) e~ F\(a; 2a; 2) = et Fi(a; 2a; —2).
More pleasantly, (1) may be expressed by saying that the function
e* Fi(a; 2a; 22)
is an even function of z. Since, by straightforward multiplication,

© — 1) n—kQkyn
e~ F\(a; 2a; 22) = Z=: AEO (;L)( /ur(; _Q}jl

o)

a & @u=m)2t (=2
- SO

k=0 n!

= ZzF( —n, a, 2a; 2)( )
n=0
we may conclude, from the fact that the left member is an even
function of z, that for & a non-negative integer
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(2) JJ(—2k — 1, a;2a;2) =0,
and also that

i 2k
3) e~ \Fi(a;2a;22) = 3 oF\(—2F, a; 2a; 2) ot
k=0 (21\).
Next let us determine a differential equation satisfied by the
function w = e+ F\(a; 2a; 22). We know thaty = ,I",(a;b;x) isa
solution of the equation

dy oW =
(4) xdx2+(b x) e ay = 0.

In (4) put b = 2a, x = 22, and y = e2w. The result is
(5) 2w’ + 2aw’ — 2w = 0,
of which one solution must be w = e~2 \F\(a; 2a; 22).

In equation (5) change the independent variable to ¢ = 122 and
thus arrive at the equation

d?

(6) azd:f + (a + %)a’%%) —ow = 0,
or
7) 06 +a+3—1) —olw=0: ozadi-

Equation (7) is a differential equation for the F, function with
denominator parameter (a + %) and argument ¢ = 1z2. Hence, if
a + % is nonintegral (that is, if 2a is not an odd integer), the
general solution of (7) is

(8) w=AF\(—;a+ };i2) + B(@) = oFi(—;% — a; i2).

But (7) is also satisfied by w, = e~ \F.i(a; 2a; 22). Therefore there
exist constants A and B such that the right member of (8) becomes
e~*Fi(a;2a;22). In the usual manner it is easy to see that B = 0

and A = 1.
TraEOREM 43. If 2a s not an odd integer < 0,
(9 et Fi(a; 205 22) = oFi(—; a + §; 322),

If 2a is an odd positive integer, the second term on the right in (8)
is replaced by a solution involving log z, and the same argument
again shows that B = 0, A = 1, so that (9) holds. Equation (9)
is known as Kummer’s second formula.
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We may use (9) and (3) to conclude that

S gy A
kZ—O2Fl(_2k, a, 20, 2)(2k)! - Eozzkk!(a + %)k,
from which it follows that
o ooy Bk
(10) =2k, a;2a;2) = CESR

Theorem 43 may be interpreted as a relation between a particular
F, and the modified Bessel function of the first kind of index
(@a—1%).

Many other propertics of the F, will be found in Chapter 6 of
volume one of the Bateman Manuscript Project volumes, Erdélyi
[1].

The Whittaker functions* W,,,. are expressible as linear com-
binations of \F.’s. Two subsidiary solutions of the basic Whittaker
equation

AW 1 k 3
(D) W+[_Z+E+

s _-’12] W =0

22

are, if 2m is not an integer,
M n(2) = zntie=¥ \Fi\(3 +m — k;2m 4+ 1;2)
and My _.(2). See also Chapter 8 of Rainville [2] for more detail

on equation (11).

EXERCISES
1. The function

2 z
erf(z) = —-—_f exp(—1t?) dt
ad

was defined on page 36. Show that
erf(z) = \2_} 11&(%; g; - x2>.
™

2. The incomplete Gamma function may be defined by the equation

v(a, z) = fe"t"_‘ dt, Re(a) > 0.
0
Show that
(e, 2) =a 2% Fi(a; e + 1; —2).

*See Whittaker and Watson [1] and Whittaker [1].



128 CONFLUENT HYPERGEOMETRIC FUNCTION [Ch.7

3. Prove that

(b)kdi:,; [e" 1Fy(a; b; Z)] = (=D*b — a)we1Fi(a; b + k; 2).

You may find it helpful to use Kummer’s first formula, Theorem 42.
4. Show that

Fila; b;2) = F(IT).[O‘ e~ oF\(—; b; 2t) dt.

5. Show, with the aid of the result in Ex. 4, that
® o T'(a)z" ( z2>
— 12)f2a—n—1 —_ iy — . . — ).
J‘: exp(— )¢ Ja(z2t) dt = 3T (n «—I)IF. a;n+ 1; i

6. If k and n are non-negative integers, show that

—k,a + n;
F 1]1=0, for k > n,

a;

=—(;n)~", for0 £k = n.
(@)«



CHAPTER 8

Generating

Functions

71. The generating function concept. Consider a function
F(x,t) which has a formal (it need not converge) power series ex-
pansion in ¢:

(1) F(z, ) = 3 f.(@)en

The coefficient of ¢» in (1) is, in general, a function of z. We say
that the expansion (1) of F(x,t) has generated the set f.(x) and that
F(z,t) is a generating function for the f.(x). If for some set of
values of x, usually a region in the complex z-plane, the function
F(x,t) is analytic at { = 0, the series in (1) converges in some region
around ¢ = 0. Convergence is not necessary for the relation (1) to
define the f.(z) and to be useful in obtaining properties of those
functions.

Before proceeding to a discussion of some of the uses of generating
functions, we wish to extend the foregoing definition slightly. Let

ca;,m=20,1,2, ... be a specified sequence independent of z and ¢.
We say that G(z,l) is a generating function of the set g.(x) if
(2) Gz, t) = Z Cagn(T)tm,

If the ¢, and ¢.(x) in (2) are assigned, and we can determine the
sum function G(z,t) as a finite sum of products of a finite number of
known special functions of one argument, we say that the generating
function G(z,t) is known.

129
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The question arises as to what is a “known special function.” It
is, of course, a matter of opinion or convention. We consider as
known any function which has received individual attention in at
least one research publication. In this terminology we follow the
late Harry Bateman (1882-1946). Bateman, who probably knew
more about special functions than anyone else, is sald to have
known of about a thousand of them.

The necessity for some terminology such as that defined above
can be appreciated after examination of certain publications purport-
ing to obtain new generating functions for classical polynomials.

Generating functions will play a large role in our study of poly-
nomial sets. For example, we shall define the Legendre poly-
nomials P.(z) by

(3) (1 — 2zt + )~ = 3 P.(x)tr,
ne=0

and the Hermite polynomials H,(z) by

(4) exp(2xt — £2) = ZI—J—":TJ:—)Q
n=0 .

We shall find (page 201) that the Laguerre polynomials L, (z)
possess the generating relation

hid (a) n
(5) etoFl(— ,1 + o) —.’Iit) = rg%}y*—l_(—xﬁ%

One of our major problems will be the search for generating
functions for known polynomial sets. Certain purely manipulative
techniques will be found to accomplish much in this direction, but
more systematic attacks are highly desirable. Unfortunately the
box score to date reveals that no known systematic theory has
produced results comparable to those attained by manipulative
skill. Since the latter usually requires long practice and training,
it is hoped that in the future the tide will swing toward theoretical
developments capable of producing practical new results. Some
start in that direction has been made by Sheffer [1] (see Chapter
13) and Boas and Buck [1], the latter to be touched upon in this
chapter. See also Weisner [1].

We shall find that if polynomials f.(z) are generated by

(D) F(x, t) = if,.(x)t",

n=0
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certain properties of f.(x) are readily deduced from known prop-
erties of F(z,f). This idea will be used frequently in the study of
specific polynomials in Chapters 10, 11, 12, 16, 17, and 18. In the
present chapter we seek properties held in common by many poly-
nomial sets.

72. Generating functions of the form G(2xt — ¢). Each of the
generating functions in (3) and (4) of the preceding section is a
function of the single combination (2zt — #?). By studying the
generating relation

(1) G(2xt — ?) = i g.(z)tr,

in which G(u) has a formal power-series expansion, we arrive at
properties held in common by P.(z) and H.(z)/n!, where P.(x) is
the Legendre polynomial and H.(x) the Hermite polynomial. Let

(2) F = G2zt — 7).
Then

oF , oF _ ,
(3) _31-12 = 215G, (9? = (Ql 2t)G,

in which the argument of G is omitted because it remains (2zt — #2)
throughout. From equations (3) we find that the F of (2) satisfies
the partial differential equation

orF

(4) ) %g — % =0

Since

F = G2zt — ) = gux)tr,

n=0

it follows from (4) that

[ @

2 xg./ (x)tr — Zogn'(x)t"“ — > ng.(x)tr = 0,

n=0 n=0

or

@ @

(5) 3 g (x)tr — 3 ng.(x)tr = i:l gt

n=" n=

In (5), equate coefficients of {» to obtain the following result.
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THEOREM 44. From
G(2at — &) = 3 ga(a)te
it follows that g/ (x) = 0, and for n = 1,
(6) zg./ (2) — nga(x) = gn_i(2).

The differential recurrence relation (6) is common to all sets
g.(x) possessing a generating function of the form used in (1). For
the choice G(u) = (1 — u)~ % the g.(x) become the Legendre poly-
nomials P,.(z), as stated in (3) of Section 71. Hence the P.(z)
satisfy the relation

(7) zP,'(z) — nP.(z) = P,_s(x).

For the choice G(u) = exp(u), the g.(x) become H.(z)/n! by
(4) of Section 71. Hence the Hermite polynomials satisfy the
relation

zH,' (x) nH.(x)  H,(x)
T nl T =1

or
(8) zH, (z) — nH,(z) = nH,_(z).

73. Sets generated by e (xt). The generating function in (5)
of Section 71 suggests that we consider sets ¢.(x) defined by

©

(1) ey(xt) = 2 anl@)tn.

n=0

For a short discussion of these polynomials, see also Rainville [4].
Let

(2 F = ew(zb).
Then

oF ,
(3) ‘55 = te’,

oF ,
4) —a?—e'//-i‘fve“ﬁ-

We eliminate ¢ and ¢’ from the three equations (2), (3), (4), and
thus obtain

(5) == — t— = —1F.
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Since

©

F = ey(xt) = X aa()tr,

n=0

equation (5) yields
> 20, ()t — D noa(x)tr = — D oa(2)irH
n=0 n=0

nm=0

= zr::o’n 1(I

from which the next theorem follows.

@™

THEOREM 45. From ety (zt) = Y o.(x)tm, it follows that oo’ (x) =0,
and forn = 1, i

(6) 2o, (2) — noa.(x) = —o._1(x).

Next let us assume that the function ¢ in (1) has the formal
power-series expansion

(7) v(uw) = Z,Ovnu"-
Then (1) yields

n=0 n=0 n=0
_ o L A
,; k=0 (n _ /v)”
so that
¢ ‘ka rs .
(8) on(z) = Z;J (n — 01

Now consider the sum

)f (©non(@tr = 23 ((CZLZ_%%

— i i (C + A’)"t” . (c)k'yk(xt)’c
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TureoREM 46. From
et‘p(xt) = Zoo'"<x)t"’ 'l’(u) = Z{)'Ynu")

it follows that for arbitrary c

(9) 1 =18 1"(1-%{—[) = f;o (€) non(T)t",
in which
(10) Fw) = 3 @y

The role of Theorem 46 is as follows: If a set ¢,(z) has a generat-
ing function of the form ¢ty (zt), Theorem 46 yields for ¢,.(x) another
generating function of the form exhibited in (9). For instance, if
Y(u) is a specified ,F,, the theorem gives for ¢.(x) a class (c is ar-
bitrary) of generating functions involving a ,..F,. Furthermore, if
¢ is chosen equal to a denominator parameter of the original ,F,,
the second generating function becomes one involving a ,F,_,.

Let us now apply Theorems 45 and 46 to Laguerre polynomials.
As stated in Section 71, we shall show in Chapter 12 that the
Laguerre polynomials possess the generating relation

& Lozt
n=0 (1 + a)n

We use Theorem 45 of this section to conclude that L, (z) is a
constant, and forn = 1,

d nL,'(x) L' \(x)
85Ln( ’(x) —

(11) ety (—;1 4+ a; — 2xf) =

(1 + a)n - (1 + a)n—l’

_xr
(14 o),
or

(12) xa%L,,(“)(x) = nL,(z) — (a + n) L3 \(2).

In applying Theorem 46 to the Laguerre polynomials, note that
a.(z) = L, (x)/(1 + ), and that
& (=D

y(u) = Fi(—;1 4+ a; —u) = E)Wl—?}—"aﬁ

Then v, = (=1)/[n!(1 4 a).], and

Fa = 3 (n—_!(li)—"f);;‘: = Fi(e; 1+ o; —).

n=0
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Therefore Theorem 46 yields

- : .=t} _ o (9L 2@t
(13) (1 t) lFl(C,]. + a, 1 _ t) = ;} (l + a)n y
a class of generating relations for L, (x).
In (13) the choice ¢ = 1 + « is appealing. With that choice we

obtain

(14) (1 =11« exp<1 }{t) = i L, (x)tn.

n=0

74. The generating functions A(f)exp[—xt/(1 — t)]. Equation
(14) suggests that we consider sets y.(x) generated by

(1) A exp<1—_f—tt> = 2 ya(@)ir.
From
(2) F =A@ exp(lif—t)
1t follows that

oF
(3) (1 — t)a_x = —tF.
Hence

2y @t — 2y @)t = — 3 ()i,
n=0 n=0 n==0

which readily yields y,’(z) = 0. and for n = 1,

(4) Ya'(x) = yra(®) — yaa().
Now (3) can be rewritten as
or ¢
(5) o - 1=

so that we obtain

IPREIE —(i t)( > ynu)tn)

n

= — 2 2yl
n=0 k=0

3

n-1
= — 2 yrl@)tn.
1 k=0

n
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Hence, forn = 1,
© 1@ = ~ 3 .

Of course (6) can also be obtained from (4) by iteration and
summation.

THEOREM 47. From
A1) exp(l—_f—t) = io Ya(x)tr
if follows that y'(x) = 0, and for n = 1,

(4) Yo' (@) = Yna(x) — yau(2),

(6) Yo' (x) = — ji yi(z).

c=0

Since, by (14) of the preceding section, the choice A (f) = (1 —¢t)—1-«
yields y.(x) = L, (x), we have shown that the Laguerre poly-
nomials satisfy, for n = 1,

d d 7 (a «
(7) gl @ = ZLat) — L(@)
and
d n-—1
8) EEL"(DI)(J;) = — ;;;Lk(a)(x)'

In equations (7) above and (12) of Section 73 we have two differential
recurrence relations for L,((z). These polynomials are com-
pletely determined by the two relations once L,(=’(x), a constant, is
specified. The value of L,(=)(z) is easily found by putting { = 0
in a generating relation. Indeed, L, (x) = 1. Thus we see that
the Laguerre polynomials are essentially determined by the fact
that they have both a generating function of the form

e'y(xt)

and a generating function of the form

10 o)

without specification of the functions ¢ and A. For more detail
on Laguerre polynomials see Chapter 12.
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75. Another class of generating functions. Later we shall en-
counter many polynomial sets each of which has a generating func-
tion of the form next to be considered. Let ¢(u) have a formal
power-series expansion

(1 y(u) = ZO YU, vo # 0.

Define the polynomials f.(x) by
@ a0~ 7EL) = e

n=0

THEOREM 48. The polynomials f.(x) defined by (1) and (2) have
the following properties:

(3) fn(x) (C) Z ( n) (C + n)k"/kxk

o (Go)kie + 5
(Q)2n s~ (=D*(c + 2k)fi(z)

2y, 20 (0= BN nakn

(6) f(x) = nfalx) = —(ctn—Dfua(z)—afin(@), n21,

(4) zn =

© /@) - @) = —e S f@) -2 T @, nzl

(D) 2@ — @) = 5 (—DvHe+ 2000, 0z L

For ¢ = 1, equations (3) and (5) appear in Sister Celine’s work,
Fasenmyer [1].
Proof: To obtain (3), consider

- . N (—4) by xktE
,;f"(x)t = ];) (1 ___Z)c+2k

© (—4)"(C)n+2k7k$kt"+k
AZ=0 (¢)gxn!

n

A (—=1)*(¢) nyavaht®
=2 2 = G0 - DY

from which (3) follows by equating coeflicients of ¢~
Next, in (2) put
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Then
_ 2 _ —v
1441 =0 (1+4/1-0

and (2) becomes
2 Silx) (—1)Fv*
(1 + \/1_’—_5> B0 (1 4+ /1 — )2

or

l)kf/‘((l')lﬂ‘ 2 42k
'P(xv) Z D2k (1 _**‘:\/1 — v> .

In Ex. 10, page 70, we found that

— 1.
(8) __—‘_2____ 2y1 2F Y Y 2 .
[ - 1 7 B
(1 +4/1 — v) Oy

The use of (8) with 2y = ¢ + 2k + 1 leads to

[%(1 + ¢+ 26), 1c + 24); } (—1)4.(z)o*

vlav) = 2 oF, ork
1 4+ ¢+ 2k;

k=0

_ i (¢ + 2k)on(—=1)*f(x)om+E
T 222(1 ¢ 4 2k).nl22

— i (c)2n+2k(c + 21“)(—1)"/.};(1:)1)”""‘.

o 22n+2k(c)"+l+2kn!

Therefore

g — S (¢ 4 28 (= 1) 4/ ()0
E YoV = g prae 2 (C)n+1+k(n _ A)' )

which yields equation (4).
In order to derive (5), (6), and (7), put

(9) F=a -0 4*":)2)'

Then

or emap?
(10) 5; = _4“1 - [) ‘lz/)
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oF

(11) o= c(1 — )~y —4x(1 + (1 — )~/
Therefore F satisfies the partial differential equation
oF oF
(12) I(l + t)‘ég — t(l - t):_)? = —ctF.
Equation (12) can be put in the forms
GF GF 8[’ (')P
oF oF —ct 2rt oF
(14) Tor e T T Siaw
oF  oF —ct 20 aF
(15) Tow "l TUEL T4t

Since
F =3 @
equation (13) yields
20 [af./ (x) — nf.(x)]t"
= —cC ni;qfn(x)t"“ -~ i nfa(x)in+ — i f /()

= — il (c +n — Df, ()" — ilxj',i_‘,(:r)t",

which leads to (5).
Equation (14) yields

3 [of./(@) = nfu(@)e

(L Eror) - e Err)

_Ci[HZf" tﬂ+l _ QxZka (x)tn+

n n=0 ~L=0

n-1

fr(@)tr — 2z Z Efk (x)tm,

1 k=0 n=l k=

= —C

[\/]8

n

which leads to (6).
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From (15) we obtain

> [af () = nfu(@)]e

(£ o) (S rr) - 25 (~vee)(E mnee)

= = 25 (~ D + 20
-5 = (—1)t(e + 2R

which gives (7).
Equation (7) was obtained by Dickinson [1] by a somewhat
different method.

76. Boas and Buck generating functions. In 1956 Boas and
Buck [1] studied a large class of generating functions of polynomial
sets. Some of their work appeared also in their earlier mimeo-
graphed reports which are not generally available. A rough state-
ment of one of the main results in Boas and Buck [1] is that a
necessary and sufficient condition for the polynomials p.(z) to have
a generating function of the form

(1) Ay (zH(1) = Z,Opn(x)t"
is that sequences of numbers a: and Bi exist such that, for n = 1,
(2)  zp.'(x) — npa(z) = — Z_; aipn1i(T) — LZO Bipr 1 k().

We now present, with minor variations in notation, that part of
Boas’ and Buck’s work which we wish to have available for later

chapters.
Let
(3) 'l/(t) = Zo 'Yntny Yo # Oy
(@) AW = Sadn, a0,
n=0

(5) H(t) = 3 hatrt,  hy 5 0.
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THEOREM 49. If p.(x) is defined by (1), with (3), (4), and (5)
holding, p.(x) 1s a polynomial in x and p.(z) 1s of degree precisely n if
and only if v. # 0.

Proof: Put
(6) pa(z) = ;)S(k’ n)xk.
Then

@™

Ay (H®W) = X sk, n)zkr,

n, k=0

so that m differentiations with respect to z, followed by our putting
z = 0, yield

) AWIHO]7y ™ (0) = 3 m! s(m, )t
Because of (3), (4), and (5),
8)  ADH]™O) = ahymmlynim + 5 Clm, n)ir,

n=m+1

in which the precise nature of C(m,n) is not important to us.
Comparison of (7) and (8) leads to

(9) s(m,n) =0 forn < m,

(10) s(m, m) = aoho™ym.

The condition (9) shows that p.(z) is a polynomial of degree < n.
The condition (10), with m replaced by n, shows that p.(z) is of

degree precisely n if and only if v, # 0, since ash, # 0 by (4) and
(5).

TueorEM 50. For the polynomials p.(x) defined by (1), with (3),
(4), and (5) holding ,and v, # 0, there exist sequences of numbers ay
and By such that, forn = 1,

(2) xp.'(x) — npa(x) = — "Z::O arPu1-x(T) — X ;;o BiPn-1-£(Z).
Indeed,
tA'(t) _ - N
(11) A 5:‘6 ant™t,
(12) D _ 1 4 3 gam,

H(t) byar’
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Proof: Put
(13) F = AQu=H ).
Then
(14) A HwAww,
(15) O~ A + 2 () AWDY .

As usual, we eliminate ¢ and ¢’ with the aid of equations (13),
(14), and (15). The result may be written in the form

otH'(t) oF  oF tA'(t)
(16) H) e e~ T aw T

If we define a, and B8, by (11) and (12) and recall that
F =3 pa@tn

equation (16) leads us to

[1 + é Bnt"“][ 20 xpn’(x)t"] - f‘,o npa(x)tr
= — [i ant"“][i pn(x)t"],

n=0
or

a1 3 [opa'(@) = npa@]e
= = 53 wpes@rn = 23 3 Bk (@)

® n-1

= — Z Z AkPr_1-k x)t" - g kz ﬁkpn 1—- k(x)t

n=1 k=

8

from which
n—1 n—1
(2) zp./(x) — npa(x) = — ,;) aPn-1-x(T) — kZ_:o BiDa-1-x(x)

follows at once. It is important that the «; and B in (2) are in-
dependent of n.
ExampLE: Consider the polynomials f.(x) of Section 75 in which

(18) (1 t)“‘¢(( 4xf)2) = g‘,ofn(x)t".
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The f.(z) fit into the Boas and Buck theory with

AWy = (1 — 1~ H() = (1—"_—43)—
A _ tH'() _ S ot
A - = g C A

Hence a. = ¢, 8, = 2, and the relation (2) bccomes

n-1

(19 #./@) = nful@) = —¢ T fars@) = 20 3 for a(0)

which is equation (6) of Theorem 48, page 137, with the right
member written in reverse order. Any one of equations (5), (6),
and (7) of Theorem 48 can be obtained from any other. For the
Boas and Buck generating function, the results corresponding to (5)
and (7) of Theorem 48 are complicated and are therefore omitted.

The Boas and Buck work applies to the polynomials considered
in Sections 73, 74, 75 but not to those of Section 72.

77. An extension. Consider the generating relation

1) AWt + 90) = X 1@
in which

@) W = St w0,
3) A(t) = f;]a,,t", ay 5 0,
(4) H@) = S hatrv, o =0,
and

(5) 90 = 3 gate

Note that g(f) is permitted to be identically zero. It is not neces-
sary to require that g’(0) = 0, but this involves no loss of generality,
as can be seen by employing a translation in the z-plane.

THuEOREM 51. If f,.(x) 1s defined by (1) with (2), (3), (4), and (5)
holding, f.(x) is a polynomial in z, and f.(x) is of degree precisely n
if and only if v, # O.
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Proof: We parallel the proof of Theorem 49. Put

(6) falz) = gs(/c, n)xk.
Then

@™

Aty (H() + () = Zk:OS(k, n)xkr,

n,K=

from which we obtain

™) AOH] (1) = 3 mlsOm, n)en
Because of (2), (3), (4), and (5),

8)  AWHDI¥™(9®) = adhermlyntn + > Clm, n)tr,

n=m+41

in which the nature of C(m,n) is, fortunately, unimportant to us.
Comparison of (7) and (8) leads to

(9) s(mm) =0 forn < m,
(10) s(m,m) = aoho™ym,
from which the conclusions in Theorem 51 follow.

THEOREM 52. For the polynomials f.(x) defined by (1), with (2),
(3), (4), and (5) holding, and v, = 0, there exist sequences of numbers
ax, Br and 8 such that, forn = 1,

(1) af (@) ~ (@) = = T aforr1la) = 2 (87 + 8)fhs-4(2).
Indeed,

tA(Y) _ S~ e
(12) 71(0 = ;;oant R
tH,(t) = S n+1
(13) H - LT X e
g't) _ S~ 5 e
(14) i = I o
Proof: Put
(15) F = Ay(zH () + g(D)).

Then
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oF

(16) o~ awHOW,
(a7) O~ Ay + AOEH D) + g O

Eliminate ¢ and ¢’ from (15), (16), and (17) to obtain

[ﬁw tg'(t)] oF _pF AW
Hy THQO

(18) ox a Al

Since

F =3

n=0

it follows from (18) with the aid of (12), (13), and (14) that

22}

(14 Z o) Garon) « (£ G )

- ﬁ;‘o nfu(z)tr = —(f; a,.ll"“)(g f,.(x)t").

n=0

Therefore,
3 [,/ (@) — ()]t
= - g} Aﬂ [(@Bi + 8:)fn-i(x) + arfa_i(x)]t7*,

from which (11) follows after a shift from n to (n — 1) on the right.
The polynomials g¢.(z) of Section 72 fit into the above scheme
with @, = 0, 8, = 0, § = —1, and 8, = 0 forn = 1.

EXERCISES

©

1. From ety(xt) = Y on(2)t", show that
0

Nl

k —_ n-—kd
Un(xy) =kz=:0y (1 (n—y__) k)' k(x)!

o (L) = 50 _0x®@
2 d"(2x> N kz=o (n —k)!
2. Consider the set (called Appell polynomials) a,(x) generated by

and in particular that

@

etA(L) = 3 an(2)tr.

n=

Show that ao(z) = 0, and that for n = 1, a,'(z) = a,_1(2).
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3. Apply Theorem 50, page 141, to the polynomials ¢,(x) of Section 73 and thus
obtain Theorem 45.
4. The polynomials ¢.(z) of Ex. 3 and Section 73 are defined by

©

(A) ety(zt) = 3 on(z)t",

Ties

but by equation (9), page 134, they also satisfy

®) a-o-<r(,%) - £ 0ator,

n=0

for a certain function F. By applying Theorem 50, page 111, to (B), conclude that
the o,(x) of (A) satisfy the relation

@alzen'(x) = 10a(2)] = = X (@sleos@) + 204 (@),

for arbitrary c.

5. Apply Theorem 50, page 141, to the polynomials y.(z) defined by (1), page
135. You do not, of course, get Theorem 47, since that theorem depended upon
the specific character of the exponential.

6. Apply Theorem 50 to the Laguerre polynomials through the generating rela-
tion (14), page 135, to get

n—l1

DL (@) — nLy@(@) = — 3 [(1 + a)Ls®(@) + DLi(2)],
k=0
in which D = d/dzx. Use the above relation in conjunction with equation (8),
page 136, to derive the differential equation
DL, @ (z) 4+ (1 + o — 2)DL,*®(2) + nL,'*(z) = 0
for the Laguerre polynomials.
7. The Humbert polynomials h,(z) are defined by
(1 = 3t + 83)=" = 3 ho(2)tn.
n=0

Use Theorem 52, page 144, to conclude that
zh,(z) — nha(x) = hn_o(z).
8. For the y.(x) of Section 74 show that

F=AQ exp(T:—_x—l)
satisfies the equation
oF 9F _  OF (1 — )tA'(t)

Tor ter T Tl A

and draw what conclusions you can about y,(z).
9. For polynomials a,(z) defined by

a- t)—CA<T:_x—tt> = i aq(x)t

n=0

obtain what results you can parallel to those of Theorem 48, page 137.



CHAPTER 9

Orthogonal

Polynomials

78. Simple sets of polynomials. A set of polynomials {¢.(z)};
n=20,1,2 .. is called a simple set if ¢.(x) is of degree precisely
n in z so that the set contains one polynomial of each degree. One
immediate result of the definition of a simple set of polynomials is
that any polynomial can be expressed lincarly in terms of the ele-
ments of that simple set.

THEOREM 53. If {¢.(x)} is a simple set of polynomials and if
P(x) 1s a polynomial of degree m, there exist constants c; such that

M P) = 3 cuouo)

The c; are functions of & and of any parameters involved in P(x).

Proof: Let the highest degree term in P(z) be a,x™, and the
highest degree term in ¢.(x) be b,x™. Note that b, % 0. Form
the polynomial

(2) P(x) - cm‘Pm(x)

in which ¢,, = a../b.. The polynominal (2) is of degree at most (m—1).
On this polynomial use the same procedurc as was used on P(x),
thus reducing the degree again. Iteration of the process yields (1).

79. Orthogonality. Consider a simple set of real polynomials
oa(x). If there exists an interval a < z < b and a function w(z) >0
on that interval, and if

147
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) [o@e@en@ dz=0, m=n

we say that the polynomials ¢.(x) are orthogonal with respect to the
weight function w(z) over the interval ¢ < r < b. Because we
have taken w(z) > 0 and ¢.(x) real, it follows that

fw(x)<p,,2(x) dx # 0.

With due attention to convergence, either or both endpoints of
the interval of orthogonality may be taken to be infinite. The
concept of orthogonality used here has been extended in many
directions, but the simple version above is all we use. A large
number of the sets of polynomials encountered later in the book are
orthogonal sets. The limits of integration in (1) are important but
the form in which the interval of orthogonality is stated (open or
closed) is not vital.

80. An equivalent condition for orthogonality. The following
theorem is of use in our study of polynomial sets.

THEOREM 54. If the ¢.(x) form a simple set of real polynomials
and w(x) > 0ona < x < b, a necessary and sufficient condition that
the set .(x) be orthogonal with respect to w(zx) over the interval a< z <b
s that

(1) fbw(x)xk‘xo"(x) dz = Or k = O’ 1,2, (n — 1)'

Proof: Suppose (1) is satisfied. Since z* forms a simple set,
there exist constants b(k,m) such that

2) om(T) = kzzob(k, m)z*.
For the moment, let m < n. Then
b m b
fw(x)wn(z)wm(x) dz = 23 b(k, m) | w(z)z*e.(2) dx = 0,
a k=0 a

since m, and therefore each %, is less than n. If m > n, interchange
m and n in the above argument. We have shown that if (1) is
satisfied, it follows that

(3) fw(x)go,‘(x)go,,.(x) de = 0, m # n.
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Now suppose (3) is satisfied. The ¢.(z) form a simple set, so
there exist constants a(m,k) such that

k

4) gk = 3 a(m, k)en(2).

m=0

For any k£ in therange 0 £ k < n

ﬁwwwmwdx=;amwﬂﬁmw4wWde=a

=0

since m < k < n so that m % n. Therefore (1) follows from (3),
and the proof of Theorem 54 is complete.

From Theorem 54 we obtain at once that the orthogonal set
¢a(x) has the property that

5) Jr@e@PE o,

for every polynomial P(z) of degree <m.
It is useful to note that since

b
f w(x) ea?(x) dx # 0,
it follows that also

(6) fbw(x)x"ga,,(x) dr # 0.

81. Zeros of orthogonal polynomials. Certain elementary in-
formation about the location of the zeros of any set of real orthogonal
polynomials is easily obtained.

THEOREM 55. If the simple set of real polynomials o¢.(x) 1s
orthogonal with respect to w(zx) > 0 over the interval a < x < b, the
zeros of o.(x) are distinct and all lie in the open interval a < x < b.

Proof: Since, for n > 0,

Jw@en@ da =0

the integrand must change sign at least once in the open interval
a <z <b Since w(x) > 0, ¢.(x) must change sign at least once
ina <z <b. Let the polynomial ¢.(x) change sign at precisely
the points aj, ag, -+, a, in @ < £ < b. The o's are the zeros of
odd multiplicity of ¢.(x) in @ < z < b. Since ¢.(z) is a poly-
nomial, s S n. Now form the polynomial
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4@ = I @ = .
If s < n,
(1) [[v@en@ dz = o,

since ¢(z) is a polynomial of degree less than n. But the integrand
in (1) cannot change sign in a < z < b because ¢.(x) and ¥(z)
change sign at precisely the same points and w(zx) > 0. Therefore
s < n is impossible, and we must have s = n. Thus ¢.(x) has n
roots of odd multiplicity in @ < z < b. Since ¢.(z) is a polynomial
of degree 7, it has exactly n roots, multiplicity counted, so that its
roots are distinct and all liein @ < = < b.

82. Expansion of polynomials. Let f(z) and h(z) be any two
functions for which the integrals to be involved exist, and let an
interval a < z < b and a weight function w(xz) > 0 on that interval
be stipulated. We define the symbol (f, h) by

(1) () = [ w@f@h(z) da.
The symbol (f, ) has the properties

f, h) = (b, ),

(fr + fo, b) = (fi, B) + (fo, D),
(¢f, h) = c¢(f, h), for constant c,
(fg, b) = (f, gh).

For a simple set of real polynomials ¢.(z) orthogonal with respect
to w(x) on the interval a < z < b, we already know that

(2) (¢ny om) =0,  m =,
and
(3) (ﬂom ﬂ"n) # 0.

For convenience let us also define a sequence of numbers g, by

4) Gn = (@ny @n) = j;w(x)go,,z(x) dx # 0.

Theorem 53, page 147, becomes particularly pleasant when the
¢n(z) form an orthogonal set, for we can then obtain a simple
formula for the coefficients in the expansion.
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THEOREM 56. Let o.(x) be a simple set of real polynomuals orthog-
onal with respect to w(zx) > 0 over the interval a < z < b, and let
P(z) be a polynomial of degree m. Then

(5) P(@) = 3 Cuox(a),
wn which Ci = g (P, oi); that is,

] "0(@) P@) oulz) da

(6) Ck = - b
];w(x)m?(x) dx

Proof: We know the expansion (5) exists (Theorem 53). From
(5) we obtain, for 0 = n < m,

faw(I)P(x)«on(x) dr = kZi; ¢ kJ; w(x) p(x) on(2) d,

or

™ (P, ) = 3 Clon, o)

from which, by (2) and (4),

(P, ) = Culen, ¢n) = Cufn
Thus C, = ¢. (P, ¢.) which is equivalent to (6).
The statement in equation (5) of Section 80 can now be expressed
by writing
(8) (P1 ‘Pn) =0
for every polynomial P of degree <n.
83. The three-term recurrence relation. Every orthogonal set

of polynomials possesses a three-term recurrence relation of a
simple nature.

THEOREM 57. If ¢.(x) is a simple set of real polynomials orthog-
onal with respect to w(x) >0 on a <z < b, there exist sequences of
numbers A ., B., C. such that forn = 1,

(n T (T) = Anpni1(2) + Brpa(®) + Chpni(T)
in which 4, # 0and C, # 0.
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Proof: Since x¢,(x) is a polynomial of degree (n + 1), we know
by Theorem 56 that

n+41

35(,01.(11?) = Z a(k) n)‘Pk(x))

k=0
in which
a(k,n) = g (@en, o) = G @n, Ton).

By (8) of Section 82 we see that (., zei) = 0 for £ < (n — 1).
Therefore the relation (1) of Theorem 57 exists.

If A, were zero for any n, the right member of (1) would be of
degree =n and the left member of degree (n + 1). Hence 4, = 0.
We still must show that C, = 0.

It is now convenient to introduce a symbol =, to denote a poly-
nomial of degree <m. The symbol =, is not to stand for a specific
polynomial but merely to stipulate that the degree of the poly-
nomial does not exceed the subscript used. When =, occurs more
than once in a discussion, there is no implication that the poly-
nomials indicated are related in any manner other than the fact
that none of them is of degree >m.

Let h, denote the leading coefficient in our ¢.(x). Then

(2) en(T) = haX™ + 7wy

and h, # 0 because ¢.(x) is of degree precisely n. Now
Pz
3) Ton1() = _h——l%(x) + o,

as can be seen by examining the leading coefficient on each side.
In equation (1) of Theorem 57 we know, by Theorem 56, that

C. = gzil(xﬂom ‘Pn—l) = g;il(ﬁom x<Pn_1)
so that by (3),

— g} hay > :| TS
Cn = gn—l[<<ﬁm hn P@n + (‘Pm 7rn—l) = hngn—l(wn’ ﬂoﬂ)
from which
gnhn—l
4 C, = Gefet,
( ) gn—lhn

Thus C, # 0 for n = 1, and the proof of Theorem 57 is complete.

That B, in Theorem 57 can be zero, even for all n, will be seen in
specific examples in later chapters.
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By comparison of leading coefficients in equation (1) we find that
(5) A, = I

hn+l

Now (1) can be written

hn
2ea(@) = @) + Bupalz) + 500 (3),

or in even more promising form as

x<p,.(:c) hn E Pon_
(6) o gnhn“‘p"“(x) + son(l') + . 1/In

“Pn- I(I)

in which the coeflicients of ¢n, ,(:v) and ¢,_(x) are the same except
for a shift of index.

In our treatment of specific polynomial sets in later chapters we
shall obtain the pure recurrence relations explicitly and thus have
no direct need for Theorem 57. That theorem is useful in the
general discussions, as in Section 84, and is a powerful tool for show-
ing that a polynomial set is not an orthogonal set. If a set of
polynomials ¢.(z) does not possess a three-term recurrence relation
of the form in Theorem 57, the set ¢.(z) is not an orthogonal set.

A widely known theorem of Favard [1] states essentially that
any real polynomial set which satisfies a pure recurrence relation of
the type in Theorem 57 is orthogonal with respect to some weight
function over some interval with Stieltjes (not necessarily just
Riemann) integration used. No method of finding the weight func-
tion and interval is given. Recently Dickinson, Pollak and Wannier
[1] have, for a special subclass of such polynomials, constructively
shown orthogonality over a denumerable set of points.

84. The Christoffel-Darboux formula. In equation (6) of the
preceding section put

(1) tw = ,

Gnhni

The three-term recurrence rclation may then be written

(2 90 20n(2) = tapar1(2) + ga7'Bron() + laoi0n-1(2).

Then

901200 (2) 0n(Y) = ta@n1(2) 0n(Y) Ftaz10a(Y) 00 -1(2) + 927" Bron(T) 0a(y)

and
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Fn Y0 (2) 0n(Y) =tnoni1(y) 0n(Z) Ftn_10(2) 0n_1(Y) + g2 Broa(2) 0a(y)
from which it follows that

7Y = 2)0n(2) 0n(Y) = talnr1(W) 0n(2) — @ni1(@)0a(y)]
—_ tn—l[ﬁon(y)qu—l(x) — ‘Pn(x)ﬂon—l(y)]'

Next put
(3) jﬂ(z7 y) = ln[§0n+l(y)¢’n(x) - ‘Pn+l(x)ﬁon(y)]'
Then
7Ny — D) ea(@)on(y) = julx, ) — Jur(z, y)
so that
(4) kEﬂ gy — 2)eul@)or(y) = Julx, y) — Jolz, Y).
Now, by (3),

Jo(z, ) = tler(® eo(x) — 01(2)0o(y)]

and ¢o(x) = @o(y) = ho, a constant. Also & = hgo~'h™'. Let
o1(x) = hix + ¢, in which ¢ is constant. Then

Jolx, ¥) = hogo~thi [ (hiy + ¢)ho — (hux + ¢)ho)
= he*go(y — 2) = go~ (¥ — Z)@o(T) eo(Y).

We then transfer the j,(z, y) term from the right to the left in equa-
tion (4) and obtain

(5) ;)gr‘(y — @) ou(@) ei(y) = jalz, ¥).

Using (1) and (3) in (5), we arrive at the desired result, the Christof-
fel-Darboux formula, equation (6) of the following theorem.

THEOREM 58. Let ¢.(z) be a simple set of real polynomials
orthogonal with respect to w(z) > 0 on a < x < b. Let h, be the
leading coefficient in ,(x) so that

‘Pn(x) = hnxn + Tn-1
and let

b

gr = (ox, o) = j;w(x)m?(:c) dz.

Then

(6) i 9:"'or(2) 0r(y) = & * ¢7L+l('1/")"@(x) — ¢n+']($)¢n(y)'

k=0 gnhn+] I/ — X
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85. Normalization; Bessel’'s inequality. Ior theoretical dis-
cussions it is convenient to replace the orthogonal polynomials
on(z) by polynomials

1 ¥n(z) = g den(2)
which are called orthonormal polynomials. Note that

(‘pn, ‘pn) = (gn_ i‘Pm gn~ 5‘é’ﬂ) = gn_l(‘PM Son) =1

The use of (1) increases the neatness of many formulas. When
specific polynomials are being used, the normalization process is of
little help. We shall concentrate on specific polynomials in most
of the later chapters.

Let ¢.(x) be an orthonormal polynomial set over the interval
(a, b) with weight function w(z) > 0. Let

(2) @) = 2 can(a),
where
3 e = (v = [ dy

f(y) as yet unrestricted except that the integrals involved exist.
Consider

@) [w@ U@ — s.@

= fbw(x)f“’(r) dr — 2 fbw(a:)f(x)s,.(x) dx + fbw(x)s,,2(x) dzx.
Now
[o@r@s@ de = 3 e[ w@s@m d = 3 e

and, since the ¢,(z) form an orthonormal set,
b b n 2
fw(x)s,ﬁ(x) dx = fw(x)[z ckwk(x):| dx
a a k=0

n

= Csz w(x)yi(x) do = ?:‘661‘2'

k=0

It follows that equation (4) becomes

G  [e@Ue - s@kd = [w@pe d - 3 e
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Since the left member of (5) is never negative,

n b
®) > e = [ @@ de,
k=0 a
which is Bessel’s inequality. The right member of (6) is inde-

pendent of n. Hence > c,? converges, and it follows that ¢, — 0

n=0

asn — «,

THEOREM 59. If the polynomials y.(x) form an orthonormal set
on the interval (a, b) with respect to the weight function w(x) > 0 and

iffbw(ac)f?(:c) dx exists,

(7 Lim fbw(x)f(x)‘p,.(x) dr = 0.
n-po vYa

If we wish to state the result corresponding to (7) for orthogonal
polynomials ¢.(x), not necessarily normalized, we need merely to
define

b
gn = fw(x)‘p,.z(x) dz
and then replace (7) by

(8) Lim g,.—ifbw(x)f(x) on(z) dz = 0.
n-po a

For much additional material on general orthogonal polynomials
the reader should consult the following: Szegd [1], Chapter 10 of
Erdélyi [2], Jackson [1], and Shohat [1].



CHAPTER 10

Legendre

Polynomials

86. A generating function. We define the Legendre polynom-
ials P.(z) by the generating relation

(1) (1 — 201 + )= = i P.(x)tr,

in which (1 — 2zt 4 ¢)-% denotes the particular branch which
—1 as t - 0. We shall first show that P.(z) is a polynomial of
degree precisely n.

Since (1 — 2)~= = Fy(a; —;2), we may write

,.\th — 9)n

(1 — 2zt + ) fj

T (3)n(— 1) E(2)n—kgn+k
N n;U k=0 /\'(n - /v)'

_ S~ S (D) F(3) ams(22) 2kt
n=0 k=0 kl(n — 2k)! ’

by equation (13), page 58. We thus obtain

210 1Yk n—2k
) Pu@) = 3 B,

from which it follows that P.(z) is a polynomial of degree pre-
cisely n in z. Equation (2) also yields
157
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2()nx

(3) Pn(x) + T2

in which =,_; is a polynomial of degree (n — 2) in z.
If in (1) we replace z by (—z) and t by (—t), the left member
does not change. Hence

(4) P,(—~z) = (—1)rP.(2),

so that P,(x) is an odd {function of z for n odd, an even function of
z for n even. Equation (4) follows just as easily from (2).
In equation (1) put x = 1 to obtain

(I =0~ = 2 Pu(1)tr,
n=0

from which

(5) P.(1) =
which combines with (4) to give
(6) P.(—=1) = (=D~

From (1) with z = 0, we get
(14 )= = > P.(0)tn
n="0

But

a+ - fj __)_‘22
Hence
(M) P3,1(0) =0, P (0) = (_".%'_(i)_

results just as easily obtained directly from (2).
Equation (2) yields

) [(n=1)/2] —l)kQ(ﬁ),,_k(Qx)"‘l_”
8) Pl@) = 2 i 2 = o

k=0

and from (8) it follows that
(9 Pi(0) = 0, Phuy(0) = Z2 e _ (ZDHD.,

n! n!

87. Differential recurrence relations. We already know from
Section 72 that the generating relation
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1) (1 — 20t + )t = i P.(x)tr

implies the differential recurrence relation
(2) zP,/(z) = nP.(z) + P._i(z).
From (1) it follows by the usual method (differentiation) that

3) (1 = 22t + 1)} = 3 P (z)im,

nwl

<2}

(4) (x — (A — 22t + t2)=2 = > nP,(x)tr\

n=1
Since 1 — 2 — 2t(x — t) = (1 — 2zt + #2), we may multiply the
left member of (3) by (1 — ¢, the left member of (4) by 2t, sub-
tract and obtain the left member of (1). In this way we find that

S P/@)tt — 3 P (@t — X 0Pt = 3 Poz)in,
n=1 n=1 n=1 nel

or

o)

> Pla@tr — 3 Pia@tr = 3 (20 + Do)t

n=0

We thus obtain another differential recurrence relation

(5) 2n + D)P.(z) = Pl(z) — Pl_(2).

Equations (2) and (5) are independent differential recurrence
relations. From (2) and (5) other relations may be obtained, each
useful in various ways. By combining (2) and (5), we find that

(6) zP,'(z) = Pra(x) — (n+ DP.(x).

Next in (6) shift index from n to (n — 1) and substitute the result-
ing expression for P,_,(x) into (2) to obtain

(7 (z2 — 1) P,/ (x) = nzP.(x) — nl._\(x).

88. The pure recurrence relation. The relation (7) above per-
mits us to eliminate derivatives from other recurrence relations.
Equation (2) of Section 87 yields

(1) z(2? — )P,/ () = n(x? — 1)P,(x) + (22 — 1)P;_\(x),

and we may now substitute for (z2—1)P,’(z) and for (22—1)P,_.(x)
from (7) of Section 87 to arrive at the identity



160 LEGENDRE POLYNOMIALS [Ch. 10

z[nzP,(x) — nP._i(z)] = n(a? — 1)P,(z)
+ (n — DaP._i(x)—(n — 1)P,_.(x).

Collect terms in the above equation to obtain the pure recurrence
relation

(2) nP.(z) = 2n — 1)xP._(z) — (n — 1)P,._(x), n = 2.

Equation (2), with index shifted, is of the character of the pure
recurrence relation for an orthogonal set of polynomials. See
Theorem 57, page 151, and note that here we have an example in
which B, = 0. We shall show in Section 99 that the P,(z) form
an orthogonal set.

Equation (2) furnishes a fairly easy method for computing suc-
cessive Legendre polynomials. From the relation (2) of Section 86
we easily find that

Po(z) =1, Pi(z) = .

Then the pure recurrence relation may be used to obtain

5 3
Puz) = Jor — & Pila) = o - o,
3% . 15, , 3 63, _ 35

_"_3+—$

P4($)=—8‘$4——‘4‘$2+§, Pg()_ 1

Py(x) = 1—16(23155‘i — 315z¢ + 10522 — 5),
ete.

89. Legendre’s differential equation. We have already ob-
tained the relations

(1) zP,'(x) = nP.(z) + P...(2),
(2) 2P,/ (z) = P;..(z) — (n + 1)P,(x).
We now wish to eliminate the differences in subscript to find a

relation involving only P,(x) and its derivatives.
In (2) replace n by (n — 1) to get

(3) zP_1(z) = P.)(z) — nP...(2),
from which also, by differentiation, we have
4) zP]” \(z) = P,”(z) — (n 4+ 1)P}_,(x).

Both P;_,(z) and P’;_i(x) can be obtained from (1) and put into (4)
to yield
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z[zP." ()+ P, () —nP, ()] =P," (x) — (n+1) [zP. () —nP,.(x)].

A rearrangement of terms in the above equation gives us Legendre’s
differential equation for P, (),

(5) (1 — 2)P,"(z) — 22P.'(z) + n(n + 1)P.(z)= 0

We shall return to this differential equation later when we take
up the matter of orthogonality of the set of Legendre polynomials.
Equation (5) is one of many natural starting points for the study
of Legendre functions, which are solutions of (5) for nonintegral n.

90. The Rodrigues formula. In Section 86 we established that

(= 1)H(1)aoi(20)2

1) Pa(x) = ?:o Kl(n — 201

We also know that (2m)! = 22=(1),.m! and therefore that

(2n — 2k)!
(=R

Employing (2) on the right in equation (1), we obtain

) 2in-h(}),_, =

& (=Dk2n — 2k)lzm—2k

(3) Pu(@) = 2 5iT(n = BTn — 201
IfD = (;i , we know that
mlgm—e
(4) Drem =t =

The expression (2n — 2k)! 7% /(n — 2k)! in equation (3) suggests
the use of (4). Indeed, by (4),
(2n — 2k)lxn—2k

(n —2k)!

D"x2"_2k =

so that (3) may be rewritten as

["/21 1)"D".’E2"_2"

(5) (2) = Z Skl = BT

Of course the k! and (n — k)! in (5) remind us of the binomial
coefficient

n!

Cok = FTtn = T

Since n is independent of k, equation (5) can now be put in the form
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Dn [n/2]
(6) P.(2) = 5,5 2o (=D*C.asm2k
2"7'L! k=0
For [n/2] < k £ n, 0 < 2n — 2k < n, so that for those values
of k, D»x*»=* = 0. Hence the summation on the right in equation

(6) can be extended to the range £ = 0 to ' = n. Thus we have
Dr &

P.(x) = Sl ’;—0 (—=1)*C g2k,
or
@) P(@) = gD = 1)1,

which is called Rodrigues’ formula. We shall use (7) to obtain
another formula for P.(x).
Leibnitz’ rule for the nth derivative of a product is

(8) Dr(upy) = z’:: C..(D*u)(Dr=*p),

in which D = d/dx and u and v are to be functions of z. The
validity of (8) is easily shown by induction.
Since, by Rodrigues’ formula,

P(@) = 5iD7l(x = DG + 1))

the application of (8) withu = (x — 1), v = (& + 1)7, leads to

_ 1 g nllx — D nl(x + 1)*
Po@) = ot 2 O S T
or the beautifully symmetric result
n n—k k
(9) P.z) = % C(x 1) (x i 1) .
k=0 2 2

91. Bateman’s generating function. Equation (9), when put
in the form

d Ne[l(y — nk[ 1 .
W Pula) = §> = [ﬁ([aén —1)/3)!]2E/c(!a)52+ D] )

reminds us of the Cauchy product of two power series,

() (Zar)(E o) = 5 5 abee

n=0 n=0 k=0

Hence we multiply each member of equation (1) by ¢~/(n!)? and
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sum from n = 0 to « to obtain

= P @)t & [ = D] + D]k
2 2 T = DD

= OFI(_; 1; 3t(x — 1)) opl("‘; 1; 3t(x + 1))

Thus from the Rodrigues formula we have obtained a second
generating function:*

: - Pa(x)tr
@ (=L = D) (=515 e + D) = X

92. Additional generating functions. The generating function
(1 — 22t + °)~* used to define the Legendre polynomials can be
expanded in powers of ¢ in new ways, thus yiclding additional
results. For instance,

(1 — 2zt + 1)t = [(1 — zt)? — 2(2? — 1))}

=1 - xt)—l[1 _ tZ(lx;%;T)z:l—a.

Therefore
2 2 1 e
(1 — xt) 1F0<%§ _;t((lx_ xt))z> = ;Pn(x)t”-
Now
— )1 ,. B —1)
(1 xt) 1F0<%y ) (1 _ xt)z

o (B2 — 1)k
=2 RN — af)2xt

IR —

k=0 n=0 /f!n!

L& & De(n 20 (@2 = 1)kt
“ & Fnl (2F)!

w [n/2]
_ (3)an! (a2 — 1)kxn—2kin
X=:0 Z:o kN (2k) 1 (n — 2k)!

2 & nl(x2 — 1) ki
n=0 k=0 22"(/\/!)2(77/ - Qk)!

*This is a special case of a result published by Harry Bateman in 1905. See
Bateman [1].
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Hence we obtain a new form for P,(z):

(& nl(xr — 1)kgr—2k

(1) Pu@) = X sa(htytn = 201

Let us employ (1) to discover new generating functions for P,(x).
Consider, for arbitrary ¢, the sum

i (C)nin _ w [n/2] (C),.(xz . l)kIE"—Zkl"

n=0 n! s 22k — 2R)!
R & () ngan(@r — 1) kpryntrk
B Zo Z 2:k(c1)2n]
_ >"’: — (c + 2A) (@) (c)asla? — 1)H2k
= 2’k(k')2

=5 o G0(e + D u(ar — 1)k
= kz;olFO(c + 2k; —; at) G

_ & (00 + Dule — D
B ,‘,7:“0 (ED2(1 — xt)e+2*

3¢, 2¢ + 1;
_ _ . ’ ’ 2(x2 — 1)
= (1 — x0) 2F1[ y 0= xt)J

)

We have thus discovered* the family of generating functions:

%C, %C + %y tz(xz — _]l _ i (C)rffn(x)t"
1‘ (1 _ .’Et)2 - n!

in which ¢ may be any complex number. If ¢ is unity, (2) de-
generates into the generating relation used to define P,(x) at the
start of this chapter. If cis taken to be zero or a negative integer,
both members of (2) terminate, and only a finite set of Legendre
polynomials is then generated by (2).

With the aid of Ex. 11, page 70, it is a simple matter to transform
the left member of (2) into the form shown in (3) below. Let

= (1 — 2at + £2)

n=0

2 A —at)— zFl[

then an equivalent form for (2) is

*Special cases of (2) have been known for a long time, but the ggneral formula may
have been first published by Brafman in 1951. Sece Brafman [1].
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¢c,1 —c;

— W _1—at (€)aPr (f)t
8) by (1 - 1= |- 5@
L;

Let us now return to (1) and consider the sum

o0 (x)tn _ o [n/2] ( —_ l)kxn -2ktn
by z

_ @ (1:2 —_ 1)kxntn+2k
- néo 22k (k!

= et ol (=5 1; 3@ = 1).
We thus find another generating relation,

(4) ext Upl(_; 1; 12(2? — 1)) = > == ._"y

‘0 n!

which can equally well be written in terms of a Bessel function ws
(5) e dotn/T =) = 3 LalDl,

n=0 ’I’l'

The relation (5) was being used at the beginning of this century.
We have not been able to determine when or by whom it was first
discovered.

03. Hypergeometric forms of P,(x). Return once more to the
original definition of P,(z):

(1) (1 —2xt+ )= §_: P.(x)t~

This time note that
(1 =22t + &)~ =[1 =1 -2z — 1]

which permits us to write

5P = 3 Af?f”fxt;k},“

n=0 k=0

i (1) :(2k + 1),2%(x — 1)kn+k

n, k=0 k'n!
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Thus we have

3 . T (1):2%(n + 2k)!(x — 1)*kn+k
..Z‘; P.(x)t" = Z% ;Z;o o]

L& & (n 4 2k (x — 1)kt
B Z)AEU E12¢LTn!

S (n + B!z — Dk
At koo 2% (/C') (n - A)'

[Ch. 10

_ $ s (ZDHmln + e = DA

n=0 k=0 2"(/»'!)2
Therefore
—n,n + 1; 1— =z
@) Pu(@) = =
1;
Since P,(—z) = (—1)"P,(z), it follows from (2) that also
—n,n + 1;
’ ) 1
©) Pu(@) = (=1 m[ %ﬁ]
1;

Various formulas of Chapter 4 may now be applied to equation (2)
to obtain other expressions for P,(z). It is interesting also to con-
vert into hypergeometric form the results already derived in this

chapter.
Equation (2) of Section 86, page 157, is

[(n/2]
(1))
Pu@ = 2 1o = o

Hence we may write

P,,(x) — MZ/?I (%)n(_’n)gk(2x)n-—2k

o R — n)m!

_ 20 (aen & (=) =dn + 3) i

n! k=0 ]‘u'(% ot n)k !
or
1 1 1.
1"2 n _§n7—§n+'2', 1
@ P = (—”—,@—F[ 1 =
2 — N,



§94] BRAFMAN’S GENERATING FUNCTIONS 167
Equation (1) of Section 91, page 162, is

& )T — D0 + D]
P@) = 20 =

from which 1t follows that

S (=n)e(=n)[3(x — D]*[3(x + D]*

Pula) = 2, (k)
Therefore
n [ —n, —n; ]
_ 1 ) ) 1
O =2
or, by reversing the order of summation,
n [ —n, —n; i
_ (=1 S Sl
®  P@=(C) ==
In Section 92, equation (1), page 164, is
[n/2] (x2 — 1)kgn—2*
n!(x x
Pu(®) = 2 ouityetn — 21
from which
[n/2]
_ (—n)ox(x? — 1)kgn—2k
P"(CE) - = 22k(k!)2 )
or
(7) P.(x) = x~.F, I
1; v

See also Exs. 14 and 15 at the end of this chapter.

04. Brafman’s generating functions. Brafman [1] obtained a
new* class of generating functions for Legendre polynomials as an
incidental result of his work on Jacobi polynomials. In Chapter
16 we shall prove a theorem which contains as a special case the
following result:

Let p = (1 — 2xt + )t denote that branch for which p — 1 as
t —» 0. For arbitrary c,

*For negative integral ¢ the generating relation (1) had been known for a long time.
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¢, 1 —c; L ¢, 1 —c; _
(1) zFll: 1——;———":] zpll: I;F_é_pJ
L; 1;

_ 3~ (0a(1 = 0 Pu(m)tr,
- 2 (nl)?

For proof of (1), put « = 8 = 0 in the derivation of equation (2),
page 272.

95. Special properties of P,(x). We have already shown that

) e To(ty/T =70 = 3 o0l

n=0 n'

In (1) first put z = cos «, ¢ = v sin B; and second put x = cos B,
t = vsin a to obtain the two relations

(2) exp(vcos a sin B)Jo(v sin B sin a) = i P.(cos ai?:_,.s.i“" B
n="0 .

y

i P.(cos B)v" sin® a

(3) exp(v cos B sin a)Jq(v sin a sin B) = i
n=0 n.

Since sin (B — &) = sin B €C0s a — €OS @ Sin «,
(4) exp(v cos « sin B) = exp[v sin (8 — a)] exp(v cos B sin a).

Now combine (2), (3), and (4) to arrive at the identity

P n n
= exp[vsin (8 — «)] Z (cos B)v" sin

n!

i P.(cos a)v™ sin 8
n=0 n!

n

sin®*(8 — a)sin* a P,(cos 8)v*

Z = El'(n — k)! ’

from which it follows that
sin* 8 P,(cos o) = D, C, x sin"~*(8 — a)sin* a Pi(cos B),
k=0

in which C, is the binominal coefficient. This last equation can
be written in the form (Rainville [5])
"]n k

(5) P.(cos a) = (“‘n ") Z C.. k[ﬂé——— | Plcos B).

sin 8/ i=o Sin «

Equation (5) relates P, (cos a) to a sum involving P; (cos 8) with
« and g arbitrary. We make use of (5) later.
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Let us return to the original definition of P,(x) and for convenience
use p = (1 — 2zt + ). We know that

(6) ngw=pﬂ

In (6) replace z by (z — t)/p and ¢ by v/p to get

5P (5o = [1 - 2e s 2T

nel P p

I

plet — 2(x — t)v + 2]t

We may now write

> Pn<£'—:—'t'>p_"_ll)" = [1 =2zt + # — 220 + 20l + v?2]-*
=[1 —2zx(t 4+ v) + ( + v)2]3,

which by (6) yields

A

n=0

>_Hm=ipmm+w"

- P, (x)tkon—*
- 'n.g 2=: '(n - ]\,)

= (n 4 B)IP. () tkom
B nfg’;o kin!

Equating coefficients of v~ in the above, we find that

e t) _ (4 BIP @)t

pp < ) T & Kl

in which p = (1 — 2zt + ). Equation (7) can be used to trans-
form identities involving Legendre polynomials and sometimes leads
in that way to additional results. See Bedient [1].

(7)

96. More generating functions. As an example of the use of
equation (7) of the preceding section, we shall apply (7) to the
generating relation
1) e o (=3 1 3t — 1) = 3 D

)
n=0 n!

obtained in Section 92. In (1) replace z by (x — )/p, t by —ty/p,
and multiply each member by p~!, where p = (1 — 2at + £2)}, to
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obtain

_ —Mx—ﬂ T e — 1)
plexp[ o? = | offy L. 4 pt

- (—1)”p"“‘Pn(x — t)t"y"

= Z.:o n!
3w (=D 4 R) Py (2)tntryn
g };‘0 kl(n!)? !

in which we have used equation (7) of Section 95.
Collect powers of ¢ on the right in the last summation to see that

ty(x — ¢ T (e — 1
_,exp[ y(’:f2 )] OFI[ y (Z,ﬂ )]
1

(_l)n—knlyn—kp (x)tn
e et k'[(n - /v)']z

_ (=1 *nly*P,(x)t
‘223<mwn—m'

= 2 1Fi(=n; 1;y) Pu(x)tm.
n=0

In Chapter 12 we shall encounter the simple Laguerre poly-
nomials

(2) L.(z) = \F\(—n; 1;2).

Using the notation in (2) we may now write the generating relation*
— S ayp| Y — ) ] .

3) (1 —2zt4 1) e)\p[l S PRy

) v — 1)
OFI[ 1' 4(1 _ th + tz)z] “ZUL (y n(x

which we shall call a bilateral generating function. The relation
(3) may be used to generate cither L.(y) or P.(z).

*Equation (3) was first obtained by Weisner [1] by a method different from that used
here. We use the method introduced by Bedient [1].
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In terms of a Bessel function, equation (3) may be written com-
pactly as

(@) ot explty(t — 2)p~1oltyy/T = 5 = 3 Lu(y) Pala)t®

in which p = (1 — 2zt 4 #)* and in which z, y, and ¢ are inde-
pendent of each other. The procedure used to get (3) or (4) can be
used to obtain further generating functions as indicated in the
exercises at the end of this chapter.

97. Laplace’s first integral form. In Section 92 we obtained
the expansion
RO plan—2k(zr — 1)*

(1) P.(x) = A=Z“ 22k (k2(n — 2k)D

which may be written as

() e — D
2) Po@) = 2 Ten e = om!

Now

e _ _TG+k  _TERIrG+kE _1,, ,
BOTTMTA+ D T At F D LR

= gf cos?* o do = lf cos* o do.
m™Jo T™Jo
Hence (2) leads us to

1 %8 nlgn—2k(g2 — 1)"f’r
@) Pu@) = - 2ot = gy, Co5 @ de.

Since f cos™pdp = 0 for odd m, we may replace 2k by % in
0

the summation on the right in equation (3). Thus equation (3)
leads to the relation

_ 1 &nlon—k(2? — 1)“]"r
4) P.(z) = =3 T (n = k)! . cos* ¢ do,

™ k=0

in which each term involving an odd % is zero. Equation (4) in
turn gives us Laplace’s first integral for P,(z),

5) P.(x) = %j;t[x + (22 — 1)t cos ¢]" de.
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98. Some bounds on P,(x). Equation (5) of the preceding
section yields certain simple properties of P,(z). In the range
—-1<z<1,

|z + (22 — 1)cos o] = /22 + (1 — 2%)cos? o

= 4/x?sin? ¢ + cos? o,

so that
(1) |z 4 (22 — Dicos o] = A/1 — (1 —x)sin2y, —1<2z<1.

From (1) it follows that, except at ¢ = 0 and ¢ =

|z + (22 — 1)t cos o] < 1,
which leads to

]Pn(x)lélf |z 4+ (22 — D)lcos o|" dp < 1f 1. de.
™ Jy ™ Jo

THEOREM 60. For —1 <z < 1, |P.(2)| < 1.

The integral form
(2) P.(z) = %f [x + (22 — 1)tcos ¢]” do
0
and (1) combine to yield, for —1 < z < 1,
Pa@5 2 1= (=2 sine gl
0
or
2 [
|P.(x)] ;f [1 — (1 — 22) sin? o] do.
0

For0 < ¢ < }m, sin ¢ > 2¢/7m. Hence
2 —_— 2 2 - 2
44 (11r2 x?) < exp[ 40%(1 — x )]’

1 — (1 —2)sin?p <1 — 5
™

in which we use the fact that 1 — y < exp(—y) for y > 0. We
may now write

1Paz)| <2 f I: 2n¢? 12— x2)] do

™

<2 f [ 2n<p2(l—x):| do,
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then introduce a new variable of integration g8 = (¢/7)[2n(1 — x?)]}
to obtain

[Pn < T —82) dB = __\/_"_r_
THEOREM 61. If —1 < x < 1 and if n 1s any positive tnteger

H

(3) | Pa(2)] < [m]

99. Orthogonality. We know that the Legendre polynomial
P, (z) satisfies the differential equation

(1) (1 - 2)P."(x) — 2zP.'(z) + n(n + 1)P.(z) = 0.
Equation (1) can equally well be written
(2) (1 = 2P,/ ()] + n(n 4+ 1)P.(z) = 0.

We are now interested in obtaining integrals involving the product
P.(x)P.(x) of two Legendre polynomials. Hence we combine (2)
with
3) (1 = z)P.'(x)]" + m(m + 1)Pn(x) = 0
to get
(4) Pu(zx)[(1 — 2)P./(2)]" — P.(2)[(1 — 2*)P./(2)]
+ [n(n + 1) — m(m + 1)] P.(x)P.(x) = 0.
But
(1 = 22 {Pu(@)P./(2) — P/ (x)Pa(x)}]’

=(1 — a) P,/ ()P, (x) + Pa(z) [(1 — 2P,/ (2)]
= (1 = 2)P./ ()P, (x) — Pa(x) [(1 — 2)P."(2)],
so that (4) becomes
(1 = 2){Pn(z)P,/(2) — P,/ (2)P.(2)}]
+ (n2 —m!+n — m)Pn(x)Pm(x) = 0’
or
(5) (n —m)(n + m + )P, (x)P.(z)
= [(1 — 2){P./(@)P.(z) — Pu(z)P./'(2)}]"
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From (5) it follows that for any finite limits of integration

6) (n—m)(n+m+ l)f P.(z)Pn(z) dx

-la-wnr@pw - Pa@Pi@) .

Since (1 — 2?) vanishes at x = 1 and x = —1, we conclude that

(n—m)(n +m + 1)‘[: P.(z)Pn(x) de = 0.

Now m and n are non-negative integers, so n +m + 1 # 0. If
also n ## m, n — m ¢ 0, and we may conclude that

(7) f l Po(2)Pu(z) dz =0,  m = n.

In the terminology of Chapter 9, equation (7) means that the set of
polynomials P,(x) is orthogonal with respect to the weight function
unity on the interval —1 < z < 1. The Legendre polynomials
therefore possess the properties held by all orthogonal polynomials.

THEOREM 62. The zeros of P.(x) are distinct, and all lie in the
open interval —1 < x < 1.

TuEOREM 63. For k =0,1,2, ---, (n — 1),
1
®) f z*P.(x) de = 0.
-1

We already know (Section 88) the three-term recurrence relation
(9) nP.(z) = (2n — DaP._(z) — (n — 1)P,._»(x),

whose existence follows from the orthogonality property.

1
Later we shall need the value of f P.:(x) dzx.
—1

From

@ 2
(1= 2xt 4 )—! = [Z Pm(x)tm:l
m=0
we obtain

' dx &l f* _
(10) jix T ow 5 2020 B P.(x)P,_(x) dx t™

m
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n (10) the integral on the left is elementary; on the right each
integral vanishes except when k& = m — k. Therefore the only
nonzero terms in the series are those for which m is even, m = 2n,
and k = n. Hence

1

(11) [—%Log(l—?xt-{-t?)]l -3  Px) dr o

n=0

But the left member of (11) is

1—1¢
L El = 52 — ~[Log(l + 1) — Log(1 — )]
_ e (=Dmim tm
_MZ; m+ 1 ,,§m+1
e 2t2n
- ,§)§n + 71

since each term for odd m drops out. We thus obtain from (11)
the desired result:

1 \ 2

Since, by equation (3), page 158,

zn = ( )" P.(x) + mn_s
the result (12) is easily converted into the form
(13) f CP(e) de = 5

1 27(2)

As an application of (6) let us evaluate

(14) f Po(2)Pu(2) da.
By (6), page 174,
15)  (n—m)®n +m+ 1)f01P,,(x)Pm(x) dx
= P,(0)P,'(0) — P,/(0)P.(0).

If m and n are both odd or both even, the right member of (15) is
zero by (7) and (9) of Section 86, page 158, and the integral (14)
vanishes unless m = n. If m = n, it follows from (12) and the
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fact that P,%(z) is an even function of z, that

! 1
LPnz(x) dr = o1

We are left with the need to evaluate (14) when one of m and n
is odd and the other even. Let n = 2k, m = 2s + 1. Then by
(15),

(16) (2k — 25 — 1)(2k + 25 + 2)f Poi(2) Payyi(7) da
a
= P2,,1(0) P3:(0) — P2,11(0) Pei(0).
In Section 86, equations (7) and (9), page 158, we found that
J— k 1 f —_ (3 R
Paa®) =0, Pu) = S py g - LA

Therefore it follows from (16) that

' _ (=1)k+(3) 6(3) e )
a7 fop“(x)P““(x) W= s+ D@ + 1 — 2B)Fs!

100. An expansion theorem. We now seek an expansion of
the form

() j@ = X aP@), ~1<z<l

From (1) we obtain a, in a purely formal manner. With that value
for a, we then proceed to prove that the series on the right in (1)
actually converges to f(z), providing f(z) is sufficiently well be-
haved.

From (1) it follows formally that

(2) ~[1 f(@)Pu(z) do = "éanj:l P.(z)P.(z) dz.

All the integrals on the right in (2) vanish except for the single
term for which n = m. Therefore

2a,,

(3) f_lf(x)P,,,(x) dr = a,,.f_l P, z) dz = 2_77—1_-!-_1

In (3) replace m by n and z by y to obtain

@ a =t D SWP.w



§100] AN EXPANSION THEOREM 177

Now that we know what a, to use, we proceed to prove the
desired result.*

TueorREM 64. If on —1 = z = 1 f(x) is continuous except for a
fintte number of finite discontinuities, if on —1 = z = 1 f'(x) exists
where f(x) 1s conttnuous and the right hand and left hand derivatives of
f(x) exist at the discontinuities, and if

@ a = o+ DJ JWP.w dy
then
(5) S aPu@) =), —1<z<1,

n=0

at the points of conlinuity of f(x).

The series on the left in (5) converges to the mean value
i f(x + 0) 4+ f(x — 0)] at the points of discontinuity of f(z), but
we omit proof of that portion of the theorem.

Proof: Consider the left member of (5) with the a,. from (4):

S aPu@) = 3 (0 + [ PP dy

n=0

= Lim 3% (k+ D[ S@)PAw)Pu@) dy

nypwo k=0

- Lin [ 1) z (k + 1) Pi(2) Paly) dy.

The series on the left in (5) will converge to the sum f(z) if and only if

®) Lim [ f@)Ka(z, v) dy = 1(@),
nPo V-1

in which .

(7 K.(z,y) = kZ=0 (k + 3)Pe(2)Pi(y).

To sum the series on the right in (7), we turn to the Christoffel-
Darboux formula of Theorem 58, page 154,

(8) égk_lqu(ﬂ?)‘Pk(y) — gﬂz:“ . ¢n+l(y)¢n(x?)! : ;n+l(x)¢’n(y)_

*Theorem 64 is a most elementary form of an expansion theorem. The aim here is
to exhibit the underlying ideas with as little complication as possible.
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For () = Pi(x),

' 2 1
gk=£1pk2(x)dx:2lc+l=k+%,

and the leading coeflicient in P.(z) is h, = 27(})./n!. Hence
hn/(gahni) = 3(n + 1), and we conclude from (8) that

n+ 1 . Po(@)Pr(y) — Pu(x)Pria(y)
2 r—y

9) K.(z,y) =

The condition (6) may be rewritten as

1
(10) Lim |:f(x) —f JK.(z, y) dy] = 0.
n -y ~1
Since
f P.y) dy =0 for k > 0,

we may write

fl K.z, y) dy = fll AZ; (k + 3) Pu(z) Pi(y) dy
= f_ll [% + tZl (k + %)Pk(x)Pk(y)] dy

1
= f tdy = 1.
-1
Now the condition (10) may be put in the form
1
Lim [ U@ = f))Ka@ ) dy = 0

or because of (9),

ay L "2 JODP, 0 Py~ Pu@) Pess)] dy=0.

By Theorem 59, page 1506, it follows that
1
12) Lim (n -+ D[ ) Pa(w) dy = 0

1
for any g(y) such that f ¢ (y) dy exists.
-1
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At a point of continuity of f(y) we also assumed that f'(y) exists.
Hence, with

f@) = f(y)
9(y) === 7

1
f g2(y) dy does exists. It follows from (12) that both

. ' f(x) — fy) _
a3 Lme+ i G20 -0
and
(14) Lim (n + ) f /@) = J(y)Pu+1(Z/) dy = 0.

Then (11) will be satisfied at a point of continuity of f(z) in
—1 < z < 1if we can show that each of

1 1\ 1 3\!
S I & (R R

is bounded as n — .
We use Theorem 61, page 173, to see that, on —1 <z < 1,

T 1<n + 1)niPnﬁu(x) < {(n + 1

2 2 dn +3) 2(n+ 1;(1 - xJ
< [4(2nTJ(rn1;L(1D— x2):|%< [4(1 — xz)]%

and

n+1 3 (n 4+ 1)2 - }
2 ("+§ P"(x)l 4(n+§)°2n(1—x2):|

<[ m(n? + 2n + 1) ]’<[ 7 ]*
4(2n? + 3n)(1 — z?) 4(1 — x?)

We have thus shown the validity of equation (5) of Theorem 64
at points of continuity of f(z).

101. Expansion of x». We already know from Theorem 53,
page 147, that any polynomial can be expanded in a series of
Legendre polynomials merely because the P,(z) form a simple set.
The orthogonality of the set P.(x) plays a role only in the deter-
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mination of coefficients; Theorem 64 of Section 100 has no bearing
on expansion of polynomials.
The expansion of z~ in a series of Legendre polynomials is useful.

Consider

3 2zt 7*
S P = (1= 201+ 0 = (0 01— 2]

n=0

_ o= (3)a2a)ntm
- "ZE;)nl(l + )y

from which we get

(3)(22) " 2 )
M "Z;Jn’(l + )n =1+ Z%P,.(x)t.
Now put
__*21)7 -
1+ \/T_:_4vz
from which
l4po—2 L _,

1+ /1 = 4 1+

Equation (1) becomes

@) Z( 3)n 2x) O i P,.(x)lﬂ‘( 2 ____:_>n+&.

n=0 n=0

By Ex. 10, page 70,

2 nt i(n+3), 3(n + 3);
S ———— = 2F1 492
<1+\/1—4v2> 0+ 5

- i____“”_”
k=0 kl(n + %)%

(3)ny2u () n2*

(2)nk! () ns

Il
M

or

n+} © N
(3) _‘%' = Z (2n + 1)(2)n+2kv2k.
L+ vI=d) = M@




§102] EXPANSION OF ANALYTIC FUNCTIONS 181
We may now conclude from (2) and (3) that
E( Hn (2x)"b" _ o A D) npePa(x)ont

n=0 n k-0 k!(_g,)n+k

S 20 = 4k + D) P
n=0 k-0 k!(:"})n_k

I

Comparison of coefficients of v~ in the preceding equation yields
the following result.

THEOREM 65. For non-negative integral n,
nl SN (2n = 4k + D Py _u(®),

4 =5
( ) T 2" = k!(g)n~k

In later chapters we shall use Theorem 65 to find expansions of
various polynomials in series of Legendre polynomials. See also
Ex. 17 at the end of this chapter.

102. Expansion of analytic functions. We use Theorem 65 of
the preceding section to find explicit expressions for the coefficients
in the expansion of analytic functions in series of Legendre poly-
nomials. The theory of such expansions is treated in several
places. See Whittaker and Watson [1;321-323] and Szego [1]. For
a general discussion of expansion of analytic functions in series of
polynomials, see Boas and Buck [2].

If we have

@

a,x
M f@) = 3

application of Theorem 65 yields

22 g, (2n — 4k 4+ 1) P, _si(z)
x) =
f@) = 2 2 201 (2) 0k

N Gnp2k(2n + 1) P, (2)
n=0 k=0 2n+2kk!(%)n+k

which is the desired expansion.

THEOREM 66. If |x| vs sufficiently small and if
— Q,T"

(1) fl@) = 2

n=0 n' !
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then

) J@) = 3 buPul@),
in which
3) b, = — (2n + 1) anqzr,

kw0 2n+2kk!(%)n+k

The region of convergence of (2) is the interior of an ellipse with
centeratz = 0.

ExampLe: Expand (t — z)~! in a series of Legendre poly-
nomials.
If |z| < t, then

t—z) =71 — 2t = > o
By Theorem 66,
(t — 2)-t = i (2n + 1)Q.(1) Pa(2),

in Whlch
(n + 2k):(2n + 1)
@+ D00 =
or .
| = (1 + n)zkt‘”
Q.(t -
! WL+ n), 42+ m;
(4) Q.(t) = Ongnti(3) i -
'), 3+ n;

It will be found that the Q.(¢) of (4) is a second solution of the
differential equation for P,(t). See Ex. 3 below.

EXERCISES

1. Start with the defining relation for P.(z) at the beginning of this chapter.
Use the fact that

A—2at+)d=[1 =@+ D1 - (-2 —1)]

and thus derive the result
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P.(z) = Zﬂ: B i@)ni(@ + /22 = 1) (2 — \/__‘)k

= Ei(n — k)1

in which it is to be noted that z — /22 — 1 = (2 + 4/22 — 1)L

2. Use the result in Ex. 1 to show that

el 4 v/F ) [ .
P.(x) = &) A [\ (z - /22 =1)%|.

"l
nl
3 —n;

3. In Section 93, cquation (4), page 166, is

n _%n) - %n + %;
Pa(z) = (_)Ln(_"@ F,’: l:,

bom
We know from Section 34 that the ., equation has two linearly independent
solutions:
oFi(a, b; c; 2)
and
2~Fla+1—c,b+1—1¢;2—c;2).

Combine these facts to conclude that the differential equation
1 -8y -2ty +n(n+ 1)y =0
has the two linearly independent solutions y, = P.(t) and y, = Q.(f), where

Qn(t) is as given in equation (4) of Section 102.
4. Show that

i [P,/ (x) — nPu(x)]tr = 2(1 — 2zt + t’)‘%

and
o [n/2]

Y 3 @2n — dk + DPpss(@)tr = (1 — 22t + )4

n=0 k=0

Thus conclude that
[(n—2)/2]
2Py (x) — nPa(x) = Z (2n — 4k — 3) P soi(x).

k=0

5. Use Bateman’s generating function (3), page 163, with 2 = 0, ¢t = 2y to
conclude that

oFi(=5 L5y) oFi(—5 15 —y) = oFa(—; 1,1, 4; —1uP).
6. Use Brafman’s generating function, page 168, to conclude that

S Py PV % = I A A P/ ey
2Fl - 5 2F1 - 5 T

1; 2
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7. Use equation (5), page 168, to obtain the results

n

sin® B Po(sin B) = > (—1)*C,, i cos* g Py(cos B),

k=0

Pa(@) = T (—1)*Cos(22)P4(2),

P.(1 ~ 22%) = é](-%) kCo kP i ().

8. Use the technique of Section 96 to derive other (sce also, Weisner [1])

gencrating function relations for P,(x). For instance, obtain the results

o)

2 Fi(—n; 1, 15 ) Po(a)tr

n=0

o OF{"; —ue =t = _»)} om[_; :&:Li.&)}
1; ;

2p?

in which p = (1 — 22t + )%, and

n)io oFri(—=n, ¢; 1; y) Pa(2)t
ic, 3¢+ 3;
= p*7N(p? + zyt — ytH)~* zFxl:
Also sum the series b
nio sFo(—n,c, 1 —¢; 1, 1; y) Pa(x)t".

9. With p = (1 — 2zt + ©)}, show that

p"Pn<1—%ﬂ> B i (= 1)*Cp it *P i().

k=0

10. With the aid of the result in Ex. 7, page 31, show that
1
f(l + 2)°7 (1 — 2)f'P,(2) dz = 2%*P71B(a,B) 4F
-1

Investigate the three special cases a = 1,8 =1, a+ 8 =n 4+ 1.
11. Obtain from equation (5), page 168, the result

1+ e (\15E) 20 3 Cupute)

k=0

and use it to evaluate (Bhonsle [1]) the integral

f_; 1+ ) *"Pn<\/li2"—gf)Pm<x) dz.

e 1)

(" + 2yt — yt2)2:|

—'fl,’fl+ lrﬁr

La+ B

3
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12. Evaluate
1 1
fx"P,,_M(x) dx =} f 2P _ox(7) dx,
0 -1

and check your result by means of Theorem 65, page 181. Thus show that

! n!
fo TP &= o s
and, equivalently, that

1 !
f 2P (7) dg = — ot 2!
0

= P Drs
13. Use formula (5), page 104, to obtain the result
‘:v_"(t_-w_:v)id_x = (_t>nQ (1>
o (1 — x‘.’.)n‘H T \2 "\ t)’

where Q.(f) is the function given in (4), page 182.
14. Show that

M—n, —n;
n l — n ) b
Pa(z) = 2@ =1 p —2—}
n! 1 -2
L —2n;
15. Show that

[[—n, —n

_ 2"(3)a(z + )" 2

Po(z) = == 5—=F , l—l—x]
L —2n;

16. Show that for |¢{| sufficiently small
S @n 4 NP = (1 — &)(1 — 2xt + )75,
n=0

17. Use Theorem 48, page 137, with ¢ = 1, z replaced by 3(1 — z) and
¥n = (3)n/n! to arrive at
(=1)*(2k + 1)Pw(z)
—_ n— 9In(nt)2 =
(=) =20 L o T+ k + D1

k=0

18. Use Theorem 48, page 137, to show that
(1 — 2)P,/(x) + nPu(x) = nPn_(x) — (1 — z)Po_y(x)

n—1 n—-1

= EoPk(x) —2(1 —x) ;)Pk’(x)

n—1

= Y (=) ¥1(1 + 2k)P(x).

k=0

19. Use Rodrigues’ formula, page 162, and successive integrations by parts to
derive the orthogonality property for P,(z) and to show that
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[ :
2 - c .
» P.2(x) dx o1

20. Show that the polynomial ya(z) = (r1)™Y(1 — 22)}*P,((1 — 2?)~}) has the
generating relation

et oFi(—; 15§ = 2 ya(2)tr
na=(
and that Theorem 45, page 133, is applicable to this y.(z). Translate the result
into a property of P,(z), obtaining equation (7), page 159.
21. Let the polynomials wn(z) be defined by
eY[t(a? — 1)] = 3 wa(2)tm,
N0
with
Y(u) = Zoy,.u".
Show that
© © 2(x? — k
> (©)awn(x)tr = (1 — zt)™° > (c)zm[—(x L)]

=0 k=0 (1 _—735)2

and thus obtain a result parallel to that in Theorem 46, page 134. Apply your new
theorem to Legendre polynomials to derive equation (2), page 164.



CHAPTER 11

Hermite

Polynomials

103. Definition of H,.(x). We define the Hermite polynomials
H.(x) by means of the relation

(1) exp(2xt — {2) = Z H.(x z)tr -,

n=0 n!

valid for all finite z and ¢. Since
exp(2xt — 2) = exp(2xt)exp(—1¢2)

-(ZEzEr)

= (— 1) (22) rkn

—,;Zo,;) El(n — 2k)! 7

it follows from (1) that
& (= 1)kl (2x) 2k

2 H@) = 2 it — 2i!

k=0

Examination of equation (2) shows that H.(z) is a polynomial
of degree precisely n in z and that

3) H,(x) = 22" 4+ n,_.(z),

in which 7._.(z) is a polynomial of degree (n — 2) in 2. From
either (1) or (2) it follows that H,(x) is an even function of z for

even n, an odd function of z for odd n:
187
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4) H.(—z) = (—1)"H.(2).

From (2) it follows readily that

H:(0) = (=1)"22%(3)n;  H2npa(0) = 0;
H3.1(0) = (—1)"227+1(3),; H:,(0) = 0.

104. Recurrence relations. Since the generating function in
Section 103 is of the form G(2zt — ¢2), the H,.(x) must satisfy
(1) zH, (z) = nH,_\(z) + nH,(z),

as we saw In Section 72.
Also the relation

(2) exp(2xt — 2) = ZH"Q—;L)K
= nl

yields at once

(3) % exp(2zt — £2) = Eli"—yg‘;”)”-
n=0 .

From (2) and (3) we get

o 2_[‘1,,(22)15"'“ _ hd }i"’(x)t"
,.Z::o n! N ; n!

which, with a shift of index on the left, yields Hy'(z) = 0, and for
n1,

(4) H, (z) = 2nH._,(z).
Iteration of (4) gives us
. _ 2nlH. (o), -4
(5) D'H,(x) = IR D_%
Combination of (1) and (4) yields
(6) H.(z) = 2zH,_,(z) — H}_1(x).

We use (4) and (6) as our pair of independent differential recur-
rence relations. From this pair of equations we at once obtain both
the pure recurrence relation

(7) H.(z) = 2zH,_,(z) — 2(n — 1)H,_(x)
and Hermite’s differential equation
(8) H(z) — 2zH,'(z) + 2nH,(z) = 0.

Later equation (8) will be used to obtain an orthogonality property
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for H.(x). The differential equation is a natural starting point for
the study of Hermite functions with unrestricted n.

The first few Hermite polynomials* are listed here for reference
purposes:

Hy(zx) =1, H,(x) = 2z, H:(z) = 42* — 2,

Hy(x) = 8x% — 12z, H.(z) = 16z* — 48x* + 12,
H (z) =32x*—1602*+ 120z, Hy(x) = 6425 — 48024+ 720z — 120.

105. The Rodrigues formula. Examination of the defining
relation

(1 exp(2at — ) = iH_"S;)_t"

in the light of Maclaurin’s theorem gives us at once

d - 2
H.(x) = [% exp (2xt t)]

The function exp(—z?) is independent of ¢, so we may write

t=0

exp(~2)H. @) = | & expi— @ — 71 ],

Now put £ — t = w. Then

exp(—29)H,(z) = <—1>n[d‘f;n eXp(—uﬂ)}
But it is ridiculous to differentiate with respect to w a function of w

alone and afterward to put w = z. The w is superfluous. There-
fore we write

w=2z

exp(—2)H,(z) = (—1)»D exp(—z?), D = %;
or
(2) H.(x) = (—=1)" exp(z*)D" exp(—z?),

a formula of the same nature as Rodrigues’ formula for Legendre
polynomials.

*As is true for many special functions, the literature contains more than one notation.
For Hermite polynomials the two most common are the one we use here and one which is
employed widely in statistics. The latter notation is often distinguished from ours by
the use of a script . The polynomials 7 (z) may be defined by

@ n
exp(at — 4t") = 2, Y%R—t

This is the notation used by Jackson [1].
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106. Other generating functions. Consider the sum

(c)Jf <x)t 208 (= 1)(c) o (2a) n2hgn
,;, go;;o El(n — 2L)!

= i i (_l)k(c);;:'@x)”thk

=0 k=0

2

i i (c + 216) (2t)" (= 1)*(c)aut?*

=0 n=0 'IC!

S _(=Dk(e)art?®
—~ '(1 — 2xf)ctek

Ll

Using the fact that (¢): = 2%(c)i(3¢ + 1)i, we thus arrive at the
(divergent) generating function

26, 3¢ + 33
I ! —4p2 ©:Hntzt
1) (1 — 2xt) zFo[ . T o } Z ,

published by Brafman [1]. The special case ¢ = 1 was given by
Truesdell [1] with the left member in a different form.
Brafman also summed the series

(C)(n/len(x)t
(2) 2) [n/211(3) tarey’

in which [] is our customary greatest integer symbol, thus obtaining
a class (one for each ¢) of peculiar generating functions for the
Hermite polynomials. In the special instance ¢ = %, the series (2)
had already been summed by Doetsch.

107. Integrals. Directly from the initial generating function

(1) exp(2xt — t?) = Z}i;(f,—&
n=0 .
it follows by the usual theorem on the coefficient in a Taylor series

that
04)

(2) H.(x) = —m. u-"lexp(2zu — u?) du,

where the contour of integration encircles the origin of the u-plane
in the positive direction. From (2) we get, by using the contour
u = exp(10), the real integral representation
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(3) Ha(x) =

' k3
n?f exp(2z cos § — cos 26) cos(2z sin § — sin 26 — nd) do.
0

There are numerous interesting relations connecting the Hermite
polynomials and the Legendre polynomials. We quote two fairly
simple integral relations.

Curzon [1] obtained many relations between H.(z) and P,(z)
with n usually not restricted to be integral. One of the simplest of
his relations, one in which n is to be an integer, is (in our notation)

5 o
(4) P.(z) = ;/_j; exp(—2)i"H ,(zt) dt.

nl\/m

Curzon also expresses the Hermite polynomial as a contour integral
involving the Legendre polynominal.

A real integral relation giving H.(z) in terms of P,(z) was given
by Rainville [5]. It is

(5) H.(x) = 2+ exp(xz)f exp(—)it' P, (z/1) dt.
Verification of (4) and (5) is left for the exercises.

108. The Hermite polynomial as a .F,. The formula

& (= 1) Fnl(2z) -2k

Ha(@) = 2 1 = 201

yields at once

[n/2] o — 1) k-2
e

or

1
H.(x) = (2x)" 2Fu<—%n, —n+ 3 —; )

s

109. Orthogonality. Equation (8), page 188, is

(1) H,”(zx) — 2zH, () + 2nH.(x) = 0,
which may be written
(2) [exp(—22)H, ()]’ + 2n exp(—a?)H.(x) = 0.

Along with (2) write
(3) [exp(—22)H .,/ (x)])" + 2m exp(—z*)H .(x) = 0.
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Then (2) and (3) combine to yield

2(n — m)exp(—x>)H .(z)H ,.(x)
= H,(z)[exp(—2)H,/(z)]" — H.(z)[exp(—2*)H.'(2)]'.
= [exp(—2®) {H (x)H/(z) — H/(x)Hn(2)]]"-

It follows that

4) 2(n — m)fbexp(—x2)H,,(x)H,,,(x) dx

= [exp(—xﬁ){H,mmH,,/(x) = Hn’(x)H,,,(x)}]a.

Since the product of any polynomial in z by exp(—=z?) — 0 as
T — ® orasz — — «, we may conclude that

(5) f “exp(—a)H (2)Ho(z) dz = 0, m = n.

That is, the Hermite polynomials form an orthogonal set over the

interval (— o, «) with weight function exp(—=z?). Here the

infinite limits cause no trouble because of the factor exp(—z?).
From the definition

— H . (x)tm
—_ f2
exp(2zt — 2) = ?:,O o

we obtain

Hk(x m— k(x>tm

5 —_ 2
exp(4xt — 282) = ,;HZ: M — 11

so that

f exp(—x® + 4xt — 2t2) dx

—

@ m © tm
= mz= Z eXp xZ)Hk(Z‘)H,,,_k(I) dx m.

Because of (5) each term on the right vanishes except terms for
which £ = m — k. Then m must be even, m = 2n, and &k = n.
Therefore we have

exp(2t2)f exp(—x? + 4xt — 412 do

gf exp(—x)H X(z) dx (;:'L)Z

Now
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exp(2t2)fm exp(—z? + 4xt — 412) dx

= exp(‘th)j:m exp[—(z — 20)?] dx

= exp(2t2)j:w exp(—y?) dy = /7 exp(2t).

Therefore

Z f exp(—z)H 2 (z) dx — ( ,)2 = A/7mexp(2f) = A/7 E) 2
which yields
6) f " exp(—a)H 2 (x) dx = 2lA/7.

See also Ex. 7 at the end of this chapter for a simpler method of
obtaining equation (6).

We now know that the H ,.(x) form an orthogonal set over (— », »)
with the weight function exp(—z?), and in the notation of Chapter
9, g. = 2! 4/x, and the leading coefficient in H,(x) is k, =
The theory developed in Chapter 9 yields the following results.

THEOREM 67. For the Hermute polynomials H ,(x),

(7) fm exp(—z)x*H . (x) dx = 0, k=0,1,2---,(n—1);

@

(8) The zeros of H,(x) are real and distinct;

Z":Hk(x)Hk(y) _H..(H.(z) — H.(0)H, (l/)
k=0 2k 2rtinl(y — x)

9)
(10) If fm exp(—x2)f*(x) dx exists,

Lim (271)} f " exp(—20)f()H,(z) dz = 0.
n > .

The three-term recurrence relation for H,(x) has already been ob-
tained on page 188.

110. Expansion of polynomials. Any polynomial can be ex-
panded in a series of Hermite polynomials, and the coefficients can
be determined as in the general theory: if
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@D P(z) = ;cka(x),

(2) 21t/ 7 ci =fm exp(—a2) P(x)H (z) dz.

As with the Legendre polynomials, we find it desirable to bypass (2)
by obtaining the expansion of z” directly from a generating function.
Since

3 exp(22t — t7) = Zglﬁ?ﬁ
n=0 n.
it follows that
exp(2xt) = exp(t?) Z "-@—)i,
or
= (22)mtn _( = g_)( & Jyx)t_")
,,g(, n! ,g)n! = nl
o [n/2]
_ e Hoate
nZn:O k}:’o El'(n — 2k)!
Hence

[n/2] 'H ( )
N n n—2k x .
@) = X S (n = 20T
Let us employ (4) to expand the Legendre polynomial in a series
of Hermite polynomials. Consider the series

o [n/2] __1) n k(2x)n~2ktn

S Pt = 3 4

n=m0 n=0 k=0 k'(n - 2/»)'
o (= D*(E) nps(22) nin 2
nkzn k'n'

From (4) we have

@—): B [n/2] Hn—?a(x) i
(5) n! S_Zo slin — 29)!
Hence we may write

[n/2]
3 - S (_"l)k(%)n+an_zs(x)t"+2'°
E Pa(z)in = kz=0 6=0 klsl(n — 29)!

=0 n,

i (= D)*(3) nyrsaH () tnt2k+2e

- n,k,s=a0 lc!s!n!

’
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in which we have used Lemma 11, page 57. We need to collect
powers of ¢ in the last summation above. By Lemma 10, page 56,
we may write

3 n — S : _])k s( )n+k+an<x)tn+2k

an(x)t - nzo ;) 6'(/\/ — S)'?I
-3 S __1) l'( + ni_'l‘)_(:l) (3) ng i ()t 2k
- n;() §) S"(A — s)kin!

2F0( ]‘) stn4k; = D(=1)*3) i (x)t"“k,

n, k=0 /C'?L'

We use Lemma 11 again to obtain

[n/2]
v s o=k 3=k = D (=DH(3), Ha @)t
"EOP @ir = 2. 3, Wn = 2k

The final result is

[n/2) Fol—k 2 +n—k —: 1)(—1)"(%)n—an_2k(I).

6) Pul@) = 2 ’ =2l

Next let us expand the Hermite polynomial in a series of Legendre
polynomials. By Theorem 65, page 181,
(o) _ 'E2n — 45 + DPafa),

nlo S s1(3)as

()

Now

® n o [n/2] 1 1\ n—2kfn
s Hi@tr _ $5 (~1xa)—

n=0 n! n=0 k=0 k!(n - 2k)!

( — 1) k(2.’l'/) nfn+2k
n,k=0 k!n!

LA (=1)*¥2n — 4s + 1) P,_s,(x)tr+2k
0 s=0 k!S!(?})n—s

S (21 + D@
n k=0 S1EL(R) nte

Again we collect powers of ¢:
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f‘, 7': (=1)*=2(2n 4+ 1) P, (x)tr+2%

n k=0 520 stk — $)1(3)nss
S s (=D (=DM + D Pt
2, ;)Sv(k — )1 + n), k().

Fo( =k 8 + 0 D(=D*2n + 1) P (x)tr+2*
0 k!(‘_})n

n

I
e

Z"E” (=K g+ n — 2k D(=1DH2n — 4k + D P, _a(2)tr,

70 k=0 ENE)n_ak
Therefore,
(8) H.(x) =
(:{‘1l —k;3 4+ n — 2k D(=1D*n!(2n — 4k + 1) P, _al(z)
EN3)n o

The expansion of functions other than polynomials into series of
Hermite polynomials is omitted here. Theorems exist similar to
the ones relative to expansions in series of Legendre polynomials.

111. More generating functions. We wish to obtain for H,(x)
a property similar to that for P,(x) expressed in equation (7), page
169. Consider the series

i iHHk (z)tro* i H, (x)ir—*p*

k=0 n=0 k!’ﬂ! n=0 o—I:-(n - ]C)'

i nx(t+v)"

= exp[2z(t + v) — (¢ 4+ v)?]
= exp(2xt — 1) exp[2(x — t)v — v?]

= exp(2xt — #2) ZH‘(‘E;T to*

By equating coefficients of v*/k!, we obtain
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(1) S Hud D@t — 0 H oz — ).

n=0 7’1!

As a first example in the use of equation (1) let us derive what is
sometimes called a bilinear generating function. Consider the
series

. o [n/2] k n—2k n
S H@H @) _ 3 (=1 Di @) )0

n=0 n! n=0 k=0 (n - 2/1)
_ & (=120 H e (y) e
B néﬂ kin!

i i }i"_’i(?/l(:z_xt_) (_:— ])ktﬂc

k=0 n=0 n! /1

— exp(dayt — 4x**)Hop(y — 2xt) (—1)*2*

k=0 k! ’

by (1). Since

5 (—1)5(2k) 1 (20)2%—2s
Hy(v) = g( sg)(;k )—(2:)! ’

and (2k)! = 22%k!(1),, it follows that

= H.(x)H.(y)t
Z‘B*,._n!

+322k( ) (oy — 4x[)2k—23t2k

— oy _ 249 e
exp(dxyt — 4x%t?) AZO ZO Csl(2k — 2¢)!

2 (—1)kQ2k+2e( 1), | (Dy — Agf)2kfrk+2s
= exp(4ayt — 4x%?) kZ_O (=1 (Z)‘:;r(é”/*cj)!— )

k223(%) k+-¢,(2y‘“_ 4Tt)2kt2k+2s
s! /»!(}) k

= exp(dayt — 4z°t?) kzo (=D

® o 1 k 8223t?s ____1 };tgk 21 _ 4xt ok
= exp(4dayt — 4x2?) Zo ;) (3 + s') . (=1 (k[!/ )

(_1 K2E(Qy — 4at)?H
& kI = 4p)r

= exp(4dxyt — 4x2?)

— 412 _
(I — 4?)~texp(dayt — 42°t*) exp[ 4t1(yi 4t22 xw].
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The exponential factors may be combined and the preceding
identity written as

E H, (x)Hn(y)t iy

n=0

(y — 2xt)2]
— 2)—}% — .
1 — 48) exp[zﬂ 1 —ap |

(2)
a generating relation known for about a century.

We can apply equation (1) to any known generating relation and
sometimes obtain a new result. On page 190 we obtained the
relation

26, 3¢ + 35 >
—¢ ’ ’ :,4:ﬁ_ ~ (x)tn
(3) (1 — 2xt) m{ A= } ~ Z

’

To (3) we apply (1) in the following manner. Consider the series

i ()l i(x — O (—ty)*

k=0 /\a!

~ 3 3 Ouexp(=2at + O (@)t (=ty)*

- k=0 rn=0 /{!’N!
o i —_ k k n+k

=~ exp(—2xt + 1) X D (=1) (Chjyiyg"”(x)t
n=0 k=10 e 1

~ avr( — o~ s (=1D)*(c)y*H ()t

= exp(—2zt + 1) Z Lol =m, ¢ n—' Y H @),

Because of (3) it now follows that

o oFo(=m, ¢; —; yH()tr s~ () Hi(z = O(—yh*
"2:6 p = exp(2xt — 12) ;“ 5l

= exp(2zxt — 3)[1 + 2yt(x — t)]~*

; 36, 2C + 3 — 4y
2o 4 2yt — 2y |

)

a relation obtained by Brafman [2] with contour integration as the
main tool.
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EXERCISES

1. Use the fact that
exp(2zt — 2) = exp(2xt — 2%?) exp[t3(2? + 1)]
to obtain the expansion

[n/2] '\H (1) n-—2k( 2 k
Nitln_2k T xT + 1)
@ = 2 K(n = 20)1

2. Use the expansion of z* in a series of Hermite polynomials to show that

f exp(—z3)zti, 24(x) dz = Q—an!}]c/T”‘
Note in particular the special case k = 0.
3. Use the integral evaluation in equation (4), page 192 to obtain the result

_[ exp(—2") Huk(2) Hosa(2) dz = (= 1)FH22k2(3) 1(3),/ (25 + 1 — 2k).

4. By evaluating the integral on the right, using equation (2), page 187, and
term-by-term integration, show that

(A) Pa(z) = —2 f exp(— @) H(zt) dt,
nla/mo
which is Curzon’s integral for P,(z), equation (4), page 191.
5. Let v,(z) denote the right member of equation (A) of Ex. 4. Prove (A) by
showing that

2 (@)Y = (1 — 2zy + y»)~ 4

n=0

6. Evaluate the integral on the right in

(B) Ha(z) = 27" exp(a?) f pr(—t?)z“ll’,(j—;) dt

by using

[n/2] yen2 vk n—2k
n z) _ nl(x %) k(2x)
(@mp (z) = & G0 - 20!
derived from equation (1), page 164, and term-by-term integration to prove the
validity of (B), which is equation (5), page 191.
7. Use the Rodrigues formula

exp(—e)Ha(2) = (~1rDrexp(—a); D = &

and iterated integration by parts to show that

f exp(—a?)Hu(2)H () dz = 0, m#Zn

=2mi\/m, m=n.



CHAPTER 12

Laguerre

Polynomials

112. The polynomial L,(x). Let us consider a naturally
terminating F;. We define, for n a non-negative integer,

(1) L) = L e

Fi(=n;1 + a; ).

The factor (1 + a),/n! is inserted for convenience only. The
polynomials (1) are called Laguerre, generalized Laguerre, or Sonine
polynomials. The special case a = 0 receives much individual at-
tention and is known either as the Laguerre or the simple Laguerre
polynomial. When a = 0, « is usually omitted from the symbol:

(2) La(2) = L.®(z) = \Fi(—n;1; 2).

We shall work with L, (z), but for reference purposes a list of
properties of L,(x) is included at the end of the chapter.

The notation in (1) is quite standard with the one exception that
some authors permit « to depend upon n; others do not. We shall
insist that « be independent of n because for the polynomials (1)
so many properties which are valid for « independent of n fail
(Shively [1]) to be valid for « dependent upon n.

It should be apparent to the reader by the time he has finished
reading this book, if not before, that for a polynomial ¢.(x) of
hypergeometric character, the way in which the index n enters the
parameters of the ,F, involved has a vital effect upon the properties
of the polynomial. For a mathematician to use the same name for

200
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the two polynomials

. j;!“—)"lm(_n; 1+ o;2)

and

At pinildetn,

in which & and ¢ are independent of n, is roughly the equivalent of
a layman’s using the same name for an eagle and a kitten.
From (1) it follows at once that

from which we see that the 1.,¢®(z) form a simple set of polynomials,
the coefficient of z» being (—1)~/n!.
From (3) we obtain

Ly (z) =1, Li(z)=14a—=z,
L6 (2) = §(1+a) 2+ a) — (2+a)z-+ 2,
Ly (z) =3(14a)(24+a)(3+a) —3(2+a)(B+a)z+1(3+a)2?— i2s.

113. Generating functions. Directly from (3) of the preceding
section we obtain

L,@® x)tn il _l)katn
§(1 Zo;) — BT+ o)

(s L—_1>_"£t_">

B (z% n')(zo n!l(1 + a)

Hence the Laguerre polynomials have the generating function in-
dicated in

(1) et oFi(=;1+ xt)—Z

L, (x)tr
T (1 + o)

Since any oF, is a Bessel function, we are led also to write the left
member of (1) in the less pretty form

(2) F(l + a)(xt a/2etJ (2\/—) P> (]Jln(:)_(xa))t"

A set of other generating functions for these polynomials is easily
found. Let ¢ be arbitrary and proceed as follows:
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= (OaLla@(2)tn & (€)n(—2) *»
20, —EEn -t s

I S CIEr T
=22 a0+ ),

3

_ sy (et Rt (o)i(—at)*

- i Folc + k; z)/(c,l]fjfi))k

R (C)k(fﬂ“t)k
LN 4 @) l-—t)c‘”‘

We thus arrive at the generating relation (sece also pages 134-135)

[V]s

¢

1 g —at | _ s (@uLa @ (@),
(3) (1—t)c‘F‘L+a_ 1-:}‘;@ (14 a),

Equation (3) is a special case of a result due to Chaundy [1]. Note
the commonly quoted special case with ¢ = 1 + a:

(4) a lt)Hae p< ) Z L@ (z)tr.

114. Recurrence relations. We have already seen in Chapter 8
that the very form of the generating functions (1) and (4) of the
preceding section leads at once to the relations (with D = d/dx)

(1) 2D L, (z) = nL,”(z) — (a + n)L\(x),
2) DL, (x) = D L¥\(2) — L{\(2),
3) DL, () = — Z L. ().

Elimination of the derivatives from (1) and (2) yields the pure
recurrence relation

(4) nL,“(@) = 2n — 1+ a — )L (2x) — (n — 1 + o)L (2).

We already know three (2p + ¢) contiguous function relations
for the ,F,. From equations (15), (18), and (20) of Section 48,
usingp = 1,¢g =1, a1 = —n, i = 1 4+a, we obtain
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B) (—=n — o) Fi(—n;1 + a; z)

= —nFi(—n+1;1+ a;2) — aFi(—n;a; 2),
6) (—=n+2)Fi(—n;1+ a;2)

= —nFi(=n+1;1+ o;2) + (ﬁ;ﬁ—%_—t—l)—x Fri(—=n;2 + a; 1),

() Fi(—n;1 + a52) = Fi(—n —1;1 + a;2)
+T%—& Fi(—=n;2 + a; ).

Since

WFi(=n; 1+ aj2) = —5—

equations (5), (6), (7) may be converted into the mixed recurrence
relations

) L. (z) = Ly(x) + L.“ " (2),
(9) (n — )L, (2) = (a + n)Li%(x) — 2L, (2),

(10) (14 a4+ n)L, @) = (n + DL{i(x) + 2L, ().
Next a shift of index in (10) yields
L, @) = (a + n)Ly(z) — nL,"(2)
= —z D L”(a)(x)’
by (1) above. Hence we have
(11) D L, (x) = —L,_,*"(x).
Comparison of (3) and (11) shows that

(12) L. (z) = 3 Lo=(x).
k=0

115. The Rodrigues formula. Let us return to the expanded
form

(14 @)l (—2)k
€Y L@@ = 2 5t — 1) Wl“fr e

Since

(A + o)ztte

n—kpnta —
Dn-*g O F o)

we may write
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i——_a n n!(_.l)an——kxn+a
n! = Kl(n — k)!

L,@ (x) =

n

S (= D)*C, Drrant,

n! k=0

involving the binomial coefficient C,: Now Dke—= = (—1)*e~=;
so, we may conclude that

(2) L,.(“)(:E) =

n

er—* 3 C, ([Dr—rznt o] [Dre=3].

n! k=0

In view of Leibnitz’ rule for the nth derivative of a product, equation
(2) yields

(3) Ly (z) = ZEDr[emrane],

the desired formula of Rodrigues type.

116. The differential equation. Since the Laguerre poly-
nomial is a constant multiple of a ,F,, we may obtain the differential
equation

(1) zD*L,(x) 4+ (14 a —z) DL, (x) + nL,@(x) =0
from the general theory. Equation (1) is also easy to derive by

eliminating L%, (z) from the two differential recurrence relations

(1) and (2) of Section 114.

The three-term pure recurrence relation (4), page 202, suggests
that we look for an orthogonality property of the Laguerre poly-
nomials. Either the differential equation or the Rodrigues formula
leads us quickly to the desired result.

117. Orthogonality. The preceding differential equation for
L. (z) may be put in the form

(1) Dlesre-DL,@(@)] + naseL, (@) = 0; D=,
as is easily verified. Equation (1) together with

(2) D[zete==DL ,,‘®(x)] + mzx2e~*L,(z) = 0

leads at once to

(m — n)xee~=L, @ (z) L, (x)
= L, (x) D [zete~= D L,®(z)] — L,®(z) D [zo*e~= D L, ()]
= D [zete—+{L,@(z) D L(z) — L. (z) D L, (x)}].
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Therefore we have
b
3) (m — n)f zee~=L, @ (x) L, (x) dz

b

= I:x°+le—”{Lm(“>(x)D L, (x) — L, (x)D L,,.“”(:c)}} .

The product of e~ and any polynomial in z -0 as z — o.

Furthermore, ze*' — 0 as « — 0 if Re (a) > —1, so equation (3)
yields the orthogonality property

(4) fmxae—’L,.W)(x)Lm(“)(x) de = 0, m # n, Re(a) > —1.
0

Equation (4) shows that if Re(a) > —1, the polynomials L, (z)

form an orthogonal set over the interval (0, «) with weight function

ree~*. We now need to evaluate the integral on the left in (4) for

m = n. For the sake of variety we use the Rodrigues formula

d

-d; )

to evaluate the integral on the left in (4) both for m = n and m = n.
Because of (5) we may write

(5) Ly@(@) = T Drle-sar+e], D =

f zoe=L @ (2) Lo (z) dr = % f Dr(e~szm+) L, (z) da,
0 ()

and then integrate by parts n times to obtain

(6) f zee=*L, @ (z) L, (z) dx = (_fn-}l” e~sgn+a[DnL, ) (z)] dz,
0 . 0

for Re(a) > —1. At each integration by parts the integrated
portion,
[(Dr—*(emmzr+)][D*1 L= (2)], 0 <k =< mn,

vanishes both at x = 0 and asz — .

Since L, @ (x) is of degree m, DL, @ (z) = 0 forn > m. There-
fore the integral on the left in (6) vanishes for n > m. Since that
integral is symmetric in n and m, it also vanishes for n < m, which
completes our second proof of (4).

We know that

(=Dran

D"Ln(a)(x) = D"[— ﬁ!—- + 7rn—l:| = (_l)n.
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Hence, for m = n, equation (6) yields

f zee—*[L, @ (z)]*dx = —le e~*xnte dx,
0 niJo
or

(7) f oo La@(2)] dz = P—@—t" at ) Reta) > —1.

In the notation of the theory of orthogonal polynomials, Chapter
9, we have

_F(l+a+n) hz(___l)f.

" nl n!

THEOREM 68. If « > —1, the Laguerre polynomials have the
following properties:

(8) f zee~*L, @ (z)z* dx = 0, k=012 .- (n—1);
0

(9) The zeros of L, (x) are positive and distinct;

UmE:ML;%@Lﬁ”w>(n+U!LwaLf%@~L$KmLJ%w.
k=0 (1 ‘|‘ Ol)k (1+a)n T —Yy ’

(11) If fmx“e— f2(x) dx exists,

hmpli@}~h%7wmeﬂh—O

n-pw

The three-term recurrence relation for L,(®(x) has already been
obtained; it is equation (4), page 202.

118. Expansion of polynomials. Since the L.®(x) form an
orthogonal set, the classical technique for expanding a polynomial
by the method indicated in Theorem 56, page 131, is available. As
usual we prefer to treat the problem by obtaining first the expansion
of z» and then using generating function techniques whenever we
can.

Equation (1), page 201, yields

(a)<x

(1) Fi(=;1 4 a; — at) = 2%

Therefore
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ol (_x)ntn _ o n (_l)n—kLk(a)(x)tn
7§3 1+ a)nn! - nz=‘6k=0 (n - k)!(l + L‘t)k

from which it follows that

n_ = (=DMl + o)L= ().
? T R = BIA T a)s

Let us employ (2) in expanding the Hermite polynomial in a
series of Laguerre polynomials. Consider the series

H,(z)tr o= 3 (=D @)
é -~ = exp(2xt — t2) —néo il

_ 3 oy D2 £ oL @)t

n,s=0 k=0 S'n—/t)'(l-l— )

© (_1)k+32n+k(1 + )n+k14k(f’)(x)t"+k+2

- n,gs::o slnl(1 + &),
@ ['l/Z]
_ (_1)k+a2n+k—23(1 + a)"+k_2’Lk(a)(x)tn+k
B n.;=0 3=20 stn — 28)1(1 + &)«
- —in, —3(n—1);
= Z oy -1 X
" L=datntk), —datntk—1);

(— ].) k2"+k(1 -+ a),.+kLk<“)(x)t"+"

n'(l + O()k

=2 > .k -1 X
P et ), —da 0 = D

(=1)%2°(1 4+ a) L@ (@)t
n — )1 + a)

From the above we may conclude that

(3) Ha.(x) =21+ a)n 2 ze[ —{Ix
T L=t(etn), —iatn—1);
(=n) (@),
(1 + @)
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Next let us expand the Legendre polynomial in a series of Laguerre
polynomials. Consider the series

f P, (x)t
_ 3 D @)t

n,s=0 S!n!

L $ s DR+ @l e
nis=0 koD stin — B)I(1 + &),

= i (_1)k+'2"+k( )n+k+a( a)n+k]fk(a)(1')t"+k+2'
n,k,5=0 S'n'(l + a)k

f ‘"Z’” —1)kre2ntb=t (1) (1 @) s o0 L@ (@) 10+
k=0 5=0 slin — 28)1(1 + a)k

4

U 2(71—1)
oFy X
* Li—n—k —(atntk), —i(atnth-1);

)

(_1)k2n+k(%)n+k(1 + a)HkLk(“’(x)t"“
n!(l —I— a')k

© n —%(n - ]C)’ _%(n — k- 1))
=2 2 oF i |X
Lt =, —Hat+n), —3a+n—1);

(=231 + ). Lﬂ‘“(x)t"
(n — k)'(l + a)k

We may therefore write

(4)  Pa(z)
n(l o). & —3(n—k), —i(n—k—1);
=z_<_z>_n7<l_}igzﬁ[ %JX
C 7 Lieny —ietn), —i(atn—1);

(=n) Ly (x)

The Laguerre polynomial can be expanded in series of either
Legendre or Hermite polynomials by employing precisely the tech-
nique used above with the aid of the pertinent expansions of z»
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from Chapters 10 and 11. This is left for the reader to do; the
results may be found in Exs. 2 and 3 at the end of this chapter.

119. Special properties. The generating functions of Section
113 lead to certain simple finite sum properties of the Laguerre
polynomials. For instance, from

(1 1-1- l—"'exp(l ) Z L@ (z)tn,

n=0

and
(1= t)-l—"exp(l :vt) = (1 — t)~ta=B(1 — {)=1- 5exp(1 xtt)’
it follows at once that

hid _ (€:))
(2) L@(z) = g;)(a ﬁgck!Ln_k(x)

for arbitrary « and 8.
From equation (1) and the fact that

1—-29- l“"exp(l )(1 — §)-1- ﬂexp(i__g/_lit>

=(1-1¢-1- “"*‘””e)\p( (z + y)t)

1—1¢
it follows that

(3) L"(u+ﬁ+1)(x + y) Z Lk(“)(x)L(ﬂ)k(y)
The generating relation

, . . _ = Ly @(x)tm

(4) et oFi(—; 1+ a; —zt) = é————(l T o).

together with the fact that
evFi(—; 1 + a; —xyt) = e“—v)‘e“‘oFl(—; 1+ q; —x(yt))
yields

S Leslr  (§ Aopr($ Lemye)

from which we get

®) Loo(zy) = 3 0T @l = 9 iyi Ly ()

i=o (n — )N + &),
For (5) see also Ex. 1, page 145.
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We know that for arbitrary c,

_ RC—, (L@ @)1
©) G_OIRL+Q, Lﬁ} § T+ a)n

By Kummer’s first formula, page 125, we have

i —uxt xt Lta—g xt
() P i eXp(l‘“__)‘FT T—¢f

1+ a; 1+ o
Using (6) and (7) we write

2\ (¢),Ln® ()07
Z 0 ra,

—zxt I+ a—gc xt
=““”ﬂ“41_)f1 TR

1+ a;

y

—ut I+a=c xt
= (1-— t)—l—(Zc—a—?)exp(T—:_t)(l — f)—O+a=oL F| T
1+ o

[Z L@ || 5 0 E e Zlci"ﬁ’;f“‘”‘"],

n=0

with the aid of (1) and (6). We conclude that for arbitrary ¢ (not
zero or a negative integer)

(1 + @)n o~ (1 + o — o) Lp@(—a) L 2)(-’5).
(€)n =0 (1 4+ a)e

In equation (8) the two special choices ¢ = 1 + 3o + 3m and
¢ =14 o + m, for non-negative integral m, are particularly rec-
ommended. See Exs. 6 and 7 at the end of this chapter.

We next seek for Laguerre polynomials a relation analogous to
equation (7) of Section 95 on Legendre polynomials and equation
(1) of Section 111 on Hermite polynomials. Consider the series

(8)  La(x)

i i (n 4+ k)L (x)tmv* 5:": > nlin—kykL, @ (z)

k=0 n=0 k!n! n=0 k=0 Iv' n - I\,)'

2: L@@t +v"=(1—-1t-— v)—“‘aexp<___..__.._1—i(vttt1))>.
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We wish to expand the right member above in powers of v in another
way. Now

B v —]—a
(L=t=o)==(1 =)l =7
and
nx(v—l-t):l _ (-—xt) [ —av _:|
eXp[l—t—v I A V) e o [N ) Y4 iy
- v
__X(—xt)x 1—t 1—t|
= exp\ 7 ) exp 7
i 1—¢

Hence we may write

i i (n 4+ k)L ()t

k=0 n=0 k!n!

Sl ) B (=)

We find, by comparing coefficients of v*, that
(4 WL @ ( —:ct) (a< T )
0 2 k! = @ = hmerexp\ 7 )L\ 7))

a relation which is useful in discovering generating functions.

120. Other generating functions. Consider the series

o n!L"(a)(x)L"(a)(y)tn _ (_l)knyykL (@ (g)n
oy 1+ a)a ,g kzo Elln — BE)I(1 + a)«

S (= D*n + k)ly*L2w(@)trt*
T 5 Enl (1 + a)s

e (n+ VL& (x)tr (= 1) kyker
- kZ;go kin! A F o)

For the moment let

2. nL, @ (@) L)1
Z:O 1 + a)n

We may now use equation (9) above to conclude that




212 LAGUERRE POLYNOMIALS [Ch. 12

(1 = =*Le=(3 2 ) (—w)*

v = 0= ool ) E——a

= (1 — f)-t-= exp(l—_xtt> eXp<1—_ytt) °F‘[ B (1xgtﬁ{|.

14+ a;

TurorREM 69. If |t| < 1 and « is not a negative inlteger,

__ﬁ.zﬂuqx T oy
(1 -8 exp[ = {,Il[ = t)zil

L (@) L@ (y)tr
2 0+
Theorem 69 has been known for a long time.
Applying formula (9) of the preceding section to the relation

c, _xtjl _ Ii () kL@ (x)t*

(1) (I =8~ 1F1|: ,
1+a; l—t =0 (1+a)k

which is (3) of Section 113, yields a result obtained by contour in-
tegral methods by Brafman [2]. We shall perform this transforma-
tion to exhibit the technique. In (1) replace z by x(1—¢)-!, t by
(—yt)(1—1)~!, and multiply both sides by (1—¢)-'-«exp[—at(1—1£)~'].
The result is

.
— fyeima _yt_] (:ﬂ.) _aytl — =
1= [1+1—t XP\1T =7 ‘F‘L+a_ 1+ yi(l = t)—

_ (0401 = e e () D

B ‘Z":O (1 4+ o)
_ {2 (€)e(n 4+ KL (2)tr(— 1) kyktk
n.k=0 (1 + a)ik!n!

_ § 3 Ol (= )y
n=0 k=0 k!(n - k)!(l + a)k

& (=m)(@) L ()t
‘§§ K11+ o)«
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© -n, C;
= Z 2-F1 Yy L,,(“)(:L‘)t".

=0 1 4+ a;

We may rearrange the resulting relation into the form

¢

(1 —=t)~t+e=a(l — {4 yt)~ exp(l_—_xg 1F1[ (1—1¢) (g;y—t-t-i—yt):l

14 e

= Z oIy y | L, (z)tr,
n=0 1 + «;

a bilateral generating function involving the Laguerre polynomial
and a certain terminating ,F.

121. The simple Laguerre polynomials. When « = 0 the re-
sultant polynomial is denoted by L.(z). It is called the simple
Laguerre polynomial or just the Laguerre polynomial when no con-
fusion with L,(®(z) is anticipated. Because L,(z) arises frequently,
we now list properties of that polynomial for convenience of the
reader. Each of the following results, except for (27), may be
obtained by putting « = 0 in a result already known for L,@(z).

1) L.(z) = \Fi(—n; 1; 2),
» — 1)k lrk

3 e Fi(—; 1; —af) = 3 2L,

¢ —_ n
(4) (1=t IF{ - _x‘tJ paged Lol

1; n=0 .
(4a) 1 -1 lexp(1 ) ,,Z;oL ()t
(5) zL,'(z) = nL.(x) — nL._,(z),

(6) L. (x) = La_s(2) — Las(2),
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7
8
(9)
(10)

(11)

(19)

(20)
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L@ = = 3, Lu(@),

nL.(x) = 2n — 1
Ln(x)

zL, ' (x) + (1

— 2)L.(x) — (n — D La(2),

e dr
n! dz~

— z)L,'(z) + nL.(z) =0,

(zne™),

(m — n)fbe—’L,,(:c)Lm(a:) dx

= [-’ve"{lxm(x)ﬁn’(r) - Ln(x)Lm’(-’v)}l,

f e~=:L,(z)L.,(z) dz = O, m #= n,
0

[
0

f e—=x*L,(x) dor =
0

—=[,2(z) dz = 1,

07 /c=0,1,2,---,(n—1),

f Te=rwnL(z) dz = (—1)™n,
0

The zeros of L.(x) are positive and distinct,

k}; Li(@)Li(y) = (n+1)@—1) [ Lnp(¥) La(®) — Lo (z) La(y)],

If f e~*f%(x) dz exusts,
0

Lim f “e=+f(z)L.(z) dz = 0,
n-»o 0

—~ (=1 Hn!)*Li(2)

= T = Bl

k

H.(z) = 2m! > 2F;[
k=0

—3(n — k), —3(n — k = 1);

1 1 .
—z2n, —z(n — 1))

(=n)iLy(z)
RO

|
N
e

n>1,



§121) SIMPLE LAGUERRE POLYNOMIALS 215
—3n = B), —3(n = k = 1); }

NI

@1) Pu(z) = 20(3). z m[

3 —mn, —in, — i(n —1);

(=n)uLi(z)

i n>1,
. [=3n—k), —3n—k=1);
(22) L@ = 3 oFs } (),
=L L(14k), 3(244); N

. [=i—=k), —in—k—1); .
(23) L.(z) = 3 oF; :}ﬂ%%@
UL gk, MI4R), 32+E); v

. !
24 La@y) = 3 Cos(l = 99 a@); Cok = 051

& (n+ E) L (2)tr L —ut ( x
25) X Tl = (1 = = *expl;— )L 77),

(26) (1-0 exp| —H)] m[ | a@—f—tzﬁ}: 5 (@)L
1; "

tt — — pe(g? — 1
@0 (1 =2st+£)7ex p[iﬂ"g;t 7 t:| o [ “i"‘:(%ﬁ’)tz)J

= ZOLn(y)Pn(x)tny

© xyt il —n, C;
ﬂr A=na —ixam | = 2 l'ymw.
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EXERCISES

1. Show that
Hon(z) = (—1)m22mn! L,H(22),
Hopi(z) = (—=1)m20Hn 2L, D (22),

2. Use Theorem 65, page 181, and the method of Section 118 above to derive
the result

=05t u@h 1 PuE)

L, (z) = Z oF 4 4 ,
$+k, H(lbat k), B2 ath) ] 2B,

k=0

n [ —3(n—k), —i(n—k—-1);

3. Use formula (4), page 194, and the method of Section 118 to derive the result

Lo - 3p] ST TIETETDE i 4 0.1
=R I . Ak SR I2F )
i1+ a+k),32+ a+k);

4. Use the results in Section 56, page 102, to show that

an[x(t —2)]dx = (=D (G,
’ 24(3)n

5. Use the results in Section 56, page 102, to show that

. o
fﬁ@_(_}/%(_‘:tx)l@ = (= 1)mr2n(d), La(L2).
0 Azt — x)
6. Show that if m is a non-negative integer and « is not a negative integer,

L.®(z) = (1 + o)n o~ (o — m) kl‘iai:x)_liji(f)_
o T+ ta+ im), i (I + @)k

7. Show that if m is a non-negative integer and « is not a negative integer,

o (0 F @)l F ) < (—m) L@ (=) L™ (z)
L, ®(z) = T+ o k% (o). ),

8. Use integration by parts and equation (2), page 202, to show that

f e L, @(y) dy = e~*[La@(z) — L2(x)].

9. Show that

ta — 1], (a _ (1 + )T'(B) . (1 + a)uto+8 it
Lx (t — 2)f L, @(2) dx = A+ et p ( +a+ﬁ)nL"( ).

10. Show that the Laplace transform of L,(t) is

w—s —1 _];n
j;e ‘Ln(t)dt—g(l - 8).
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11. Show by the convolution theorem for Laplace transforms, or otherwise, that

t

1
L,(¢t — z)L.(z) dz = j‘: Lyin(z) dZ = Lpnin(t) — Lngna(f).
12. Evaluate the integral
f z%*[ L, (x)]* dz
0

of (7), page 206, by the following method. From (4), Section 113, show that

2% [ L, () 2dz 2 = (1 — t)~22e f o expl:—ﬂi(l -lt- L)jl d
n=0 0 A ———-—_

= (1 —_ tZ)—l—ar'(] + a) — i Il(liti tn_)tz_ﬂ

n—=0 77,!



CHAPTER 13

The Sheffer

Classification

and Related Topics

122. Differential operators and polynomial sets. Let ¢.(z);
n=0,1,2, ---, be any simple set of polynomials and let D = d/dzx.
Let us define the set (not necessarily a simple set) of polynomials
T.(z),n 2 0, by

(1) To(x)D«’l(x) = 900(50),
@) Tu@Dpna(a) = 0u(®) = ZTUDDpun(@), 1 2 1.

Because ¢,(x) is of degree precisely n for each n, it follows that
T.(z) is uniquely defined and is of degree =n. Note that D is
constant, as is ¢o, 50 To(x) is constant. For n = 1, each T,(x) is
defined by (2) in terms of previous elements of the set, Ti(x) for
0=k = (n—1). Because D"*'y,,; 1s constant and the degree of
T (z) D+, . 1(x) exceeds the degree of Ti(x) by exactly (n — k),
each member of (2) has degree at most n.

TueoREM 70. For the simple set of polynomials ¢,(x) there exists
a unique differential operator of the form

3) J(z, D) = f; T,(x) D+

in which Ty(x) is @ polynominal of degree <k, for which

(4) J(x, D)o, (x) = ¢,_1(x), n=1.
218
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It is important that J be independent of n.
Proof: The requirement (4) demands that, forn = 1,

n-1

kzﬂo Tk(x) Dk+l‘Pﬂ(x) = ‘Pﬂ—l(x))

which is merely a restatement of (1) and (2). Equations (1) and
(2), as we saw, determine 7:(z) uniquely.

We say that the polynomial set ¢.(x) belongs to the operator J
and that J is the operator associated with the set ¢,(x). There is
only one such operator associated with a given ¢,(x),but there are
infinitely many sets of polynomials belonging to the same operator.

TaEOREM 71. A necessary and sufficient condition that two simple
sets of polynomials o.(x) and y.(x) belong to the same operator J 1s
that there exists a sequence of numbers by, independent of n, such that

(5) 4u@) = 3 beg (o)

Proof: Assume (5) to hold. There exists an operator J to which
on(x) belongs. That y.(x) belongs to the same operator follows
from

n n-1
J‘l/n(x) = éka‘Pn—k(x) = ‘Z%bkﬁon—l—k = ‘l/n~l(x)-

Next assume that ¢.(z) and ¢.(z) belong to the same operator J.
We need to show that the b. of (5) exist. We know, because ¢.(z)
and y.(z) are simple sets of polynomials, that there exists the
relation

(6) 0(@) = 3 Ak m)eni(x),

but, in general, the coefficients A (k, n) depend upon n as well as
on k. Since ¢.(z) and ¢.(x) belong to J, we may apply J to each
member of (6) and obtain

n—1

(7) ‘ﬁn—-l(x) = )§A(k, n)‘Pn——l—k(x)v n % ]-'

Recall that J go(x) = 0, which is the reason that the term A (n, n) oo (z)
dropped out when the operator J was applied to (6). We may
shift index from n to (n + 1) in (7) to get

1%
o

®) 0@ = 5 Atk n+ Dows@);
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Comparing (6) and (8), we see that
Ak, n) = Alk,n + 1)

for all k, n. Then A(k, n) = b, independent of n.

Not every operator of the form (3) is associated with some
polynomial set in the sense we have defined. For the operator J
of the form (3) to be associated with some simple set, it is necessary
and sufficient that J transform every polynomial of degree precisely
n into a polynomial of degree precisely (n — 1).

ExaMmpLE: Determine the operator associated with the set
en(z) = Ha(x)/(n!)? in which H,(z) is the Hermite polynomial.

Here (po(x) = 17 901(217) = 2:C7 @2(I) =z — i; ¢3(x) = %1;3 - %xy
etc. We seek an operator J of the form

=)

J =3 Tux) Dt

k=0
such that Jo, = ¢n._; for n = 1. Then
To(x) Doy = oo, or To(x) -2 =1,
so that Ty(x) = 1. Next we have
[To(x) D + Ti(x) D*]eu(z) = (),
or
[1D + Ti(x) D)(x* — }) = 2a.

Then
12x) 4+ Ty(x)(2) = 2,

so that T,(z) = iz. In turn

[2D + iz D* + Tu(z) D?](32° — 4x) = * — §,
or
B3z = ) + daio) + Tu@)(d) = 22 — 4,
from which T,(z) = —1.
If we continue the above procedure, we find that Ti(z) = 0,
Ty(z) = 0, and we begin to suspect that J may terminate. Let us
therefore define

() Ji= 1D + jo Dt — 3D%,

operate on ¢.(x) with J, and see whether the result is ¢._,(2).
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Now
H.(x) 1 .,

Jiea(x) = J,4 (nly? = (n!)2[7H"' + 1aH,” — 1H,"]
—l "o "o ’
= W[H" 2zH,” — 2H,'].

From Hermite’s differential equation

H,” —2xH,” + 2nH, =0
we obtain
H,” —2zH,” — 2H,” 4+ 2nH,’ = 0
so that we have

Jiga(2) = :[*272H2—] = .

4(nh2  2nl(n — DI
But we also know that H,'(z) = 2nH,_,(z). Ilence

_ 2nH, ()  H..(x) _
Jien(2) = 2nl(n — D!~ [(n — DIz~ en1(2),

as desired. Therefore ¢.(x) = H,(z)/(n!)? belongs to the operator
J1 of (9).

The example above yields a specific result of interest to us later,
but its simplicity may be misleading. It is wise to keep in mind
that the operator associated with a given simple set of polynomials
need not terminate and, indeed, that there is no reason to think that
the T(x) in the operator of equation (3) can be determined other
than successively by iteration of equation (2).

123. Sheffer’s A-type classification. Sheffer [1] used the oper-
ators discussed in Section 122 to classify polynomial sets. The
first of his classifications will now be discussed.

DzriniTION: Let ¢.(z) be a simple set of polynomials and let
on(x) belong to the operator

M J(@ D) = 3 Tu(@) D+,

with Ti(z) of degree =<k, in the sense of Section 122. If the
maximum degree of the coeflicients 7Tx(x) is m, we say that the set
ea(x) is of Sheffer A-type m. If the degree of T.(x) is unbounded
as k — o, we say that ¢.(z) is of Sheffer A-type o.
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ExaMpPLE: The set p.(x) = H.(x)/(n!)?is of Sheffer A-type one,
since ¢.(z) belongs to the operator J, of (9), Section 122.

Explicit polynomial sets of type m for each m are obtained, with
corresponding generating functions, by Huff and Rainville [1].
They show, among other things, that if y.(z) is defined by

(2) ‘P(t) OFM(_’ Bi, B2y -+ 5 Bam; o’xt) = ;} yn(-??)t",

with ¢ constant and ¢(f) analytic and not zero at ¢ = 0, then y.(x)
is of Sheffer A-type m. The Sheffer [1] paper contains a study of
polynomials of any A-type, but the most satisfying results are those
bearing on polynomials of type zero.

124. Polynomials of Sheffer A-type zero. Let ¢.(x) be of
Sheffer A-type zero. Then ¢.(z) belongs to an operator

(1) J(D) = i ¢, D1

in which the ¢, are constants. Note that ¢, > 0, since Jo, = @n_1.
Furthermore, since ¢, is independent of x for every k, a function
J (t) exists with the formal power-serics expansion

) J() = S e, o 0.
Let H(¢) be the formal inverse of J(f); that is,
(3) JH®) = HI®) = t.

THEOREM 72. A necessary and sufficient condition that o,(x) be
of Sheffer A-type zero vs that ¢.(x) possess the generating function
indicated tn

(4) A(l) exp[zH(1)] = Z; en()tr,
wn which H(t) and A(t) have (at least the formal) expansions

(5) H(t) = 3 htots, ko %0,
n=0

6) AW = S autr, a0 5 0.

n=0
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Proof: Assume (4), (5), and (6). Then the ¢.(z) form a simple
set of polynomials. The function H(t) has a formal inverse. Call
it J(t), defined by (3),

(7) J(t) = Xtk co # 0.
k-0
Let, as usual, D = d/dz. Then, by (4),

J (D) 3 en(a)t = J (D) {A(t) explaH ()]}
= A(t)J(H(1)) exp[zH (1)]
= tA(t) exp[zH(t)].
Hence

@

37 (D) ea(@)t = 3 pu(@tr

n=0

= Z ‘p"—l(x)tn}
ne=1

from which J(D)go(z) = 0and J(D)e.(x) = ¢._i(x),n = 1. Since
J (D) is independent of z, ¢.(z) is of Sheffer A-type zero.

Next assume that ¢.(z) is of Sheffer A-type zero. Let ¢.(x)
belong to the operator J. Then

(8) J = J (D) = > ciD, co # 0,
k=0

and the ¢ are independent of x because ¢.(x) is of A-type zero. The
function J (t) has a formal inverse H(¢) defined by (3) above. Con-
sider the polynomials ¢.(z), a simple set, defined by

© exp[aH ()] = 3 vt

We know already that y.(z) is of Sheffer A-type zero and that it
belongs to the operator J(D). By Theorem 71, page 219, there
exists a sequence a,, independent of n, such that

(10) oa(®) = 3 auu1(a).
Define A(t) by
A(t) = i a,t.
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Then

AQ) exp[zH(1)] = (iﬂ a,,t”)( > glzn(x)t")

n=0

= Z (Ikwn_/‘-(x)t"
nel k=0

]
NgE

en(T)tr,

3
[]
=

which is (4).

The generating function in Theorem 72 is one of Boas and Buck
kind (Section 76) with v, = 1/nl. It follows that Theorem 50,
page 141, may be applied to any ¢.(z) of Sheffer A-type zero.

Sheffer [1] obtained many propertics of polynomial scts of A-type
zero. Here we state (with some modifications in notation) only a
few of his results.

THEOREM 73. Let ¢.(x) be of Sheffer A-type zero; let ¢.(x) belong
to the operator J (D) and have the generating function in (4) of Theorem
72. There exist sequences ax and e, independent of x and n, such that
forn 2 1,

n—1

(11) ’.?:,‘0 (ar + ze) S5+ (D) pu(x) = nea(x),
(12) ‘2% aktk = %:%’
(13) S etk = H(8).

k=0
Of course ex = (k + 1)hs, in terms of the h, of equation (5), page 222.

THEOREM 74. With the assumptions of Theorem 73 there exist
sequences ui and vk, independent of x and n, such that

n—1

(14) g} (I-lk + ka)Dk'HsOn(l‘) = 71<p,.(33),
e = (W) _

(15) ’;)mz Y IOR u = J(t),

(16) i vitk*l = uH'(u), u = J(1).

k=0
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THEOREM 75. A necessary and sufficient condition that .(x) be
of Sheffer A-type zero is that there exist sequences ax and ex, tndependent
of x and n, such that

n—1

(17) 2 (ar + Ter) on1-iu(2) = nea(2).

k=0

The «) and e of Theorem 75 are those of Theorem 73.

THEOREM 76. A necessary and sufficient condition that o.(x) be of
Sheffer A-type zero is that there exists a sequence hx, tndependent of
x and n, such that

n-~1
(18) k};} hkqo,...1..1c(x) = q;n’(a:), n é 1.

Proof of Theorems 73-76: These theorems all follow from Theorem
72. For instance, consider the series

> nen@)tr

n=0

{9-14.(1) explzH ()]}

= t[A'(t) + a2H'(H)A(t)] exp[zH (1)]

- [A<(tt)) + H’(t):lA(t) exp[eH (1)].

The functions A'(t)/A(t) and H'(t) have series expansions; let them
be (12) and (13), thus defining o and . Then

gn%(x)t" = [i + Te,)in ][i (pn(x)t":l

= (Olk - xél« @n_i(T)trtt
ne0 k=

= Z (ar + Ter) pnor-n(2)t"

Since
J*(D) on(z) = J*(D) onr(x) = -+ = pu_1-x(%),

the above argument yields both Theorems 73 and 75.

Theorem 74 is a result of rearrangement of terms in the result
of Theorem 73.

Theorem 76 follows from the fact that
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> on@ir = Z{A() explzH(D)])

n=1

= H(t)A(t) exp[zH(1)]

= (£ (& o)

n—

1
Rion-1-x(2)t",
n=1 k=0

and the fact that from the equality of the first and last series above,
it follows that

Yy = 20 ﬂon(x)tn

must satisfy the equation Dy = H(t)y.

We shall meet many instances of polynomial sets of Sheffer A-
type zero. In examining a new set of polynomials, it seems de-
sirable always to obtain its Sheffer A-type. For Sheffer's classifica-
tions of B-types and C-types and for more results on the A-type,
see Sheffer [1] and also the exercises at the end of this chapter.

125. An extension of Sheffer’s classification. It can be seen
from the preceding section that much of the value of the A-type
classification lies in the existence of the generating relation

@

A(t) exp[zH(D] = 2 ea(2)tr

for sets ¢.(z) of A-type zero. An essential characteristic of the
function y = exp[zH (t)] is that, with D = d/dx,
Dy = H(t)y.

It is natural to expect that much can be retained if D is replaced by
some other differential operator ¢ and exp(z) by some other function
F(2) such that

oF(2) = F(z).
Let D = d/dz, 6 = zD, and define the differential operator ¢ by
1) o=D][(0+b -1,

1=1

in which the b; are constants and no b; is either zero or a negative
integer. Note that application of ¢ reduces the degree of any
polynomial by exactly one.
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THEOREM 77. Let ¢.(z) be a simple set of polynomrials. There
exists a unique set of polynomials Tw(z), T(x) of degree <k, such that
the differential operator

(@) J@,0) = 3 Tulx)or
k=0
has the property that
(3) J(z, o)ou(x) = @ns(x), n =1

It is to be noted that J(z, ¢)eo(x) = 0 and that J(z, o) is independ-
ent of n.

Proof: Given ¢,(x), define polynomials T.(z) successively by
4) To(x)opi(x) = @ol),

(5) Ta(@)o"onn(x) = ¢a(z) — ; Ti(x)o* 1 onpi(2), n =1

The definition of T.(z) is unique and the degree of T.(x) i1s =n,
by the same arguments as were used in the Sheffer classification.
Furthermore,

T, )oul@) = X, To@)e (@) = pns(®)

by (5) with n replaced by (n — 1).

Again we say that the polynomial set ¢.(z) belongs to the oper-
ator J(z, ¢) and that J(z, o) is the operator associated with ¢.(z).
There is only one operator associated with ¢.(x), but infinitely
many sets of polynomials belong to a specified permissible (it must
transform every polynomial of degree n into one of degree n — 1)
operator J(z, o).

THEOREM 78. A necessary and sufficient condition that two simple
sets of polynomials ¢.(x) and ¥.(x) belong to the same operator J(x, o)
18 that there exists a sequence of numbers by, independent of n, such that

(6) Mm=§mMm.

Proof: Parallel the proof of Theorem 71 in every respect.
DEFINITION: Let ¢.(x) be a simple set of polynomials, and let
o.(2) belong to the operator

@ @ o) = X Tu(@)o,
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with Tiw(x) of degree <k and J(z, o)¢.(x) = ¢a_1(z). If the maxi-
mum degree of the coefficients Ti(z) is m, we say that the set
0n(2) is of o-type m; if the degree of T(z) is unbounded, as k — «,
we say the set ¢.(z) is of o-type «.

126. Polynomials of o-type zero. Let ¢.(x) be of s-type zero.
Then ¢,(x) belongs to an operator

(1) J(o) = zc

in which the c, are constants and ¢, 3 0, since J (o) oa(2) = @n_1(2).
Here again we are using D = d/dzx, 0 = zD,

(2) a=DI:Il(0+b,-1),

as in the preceding section. Since ¢; is independent of z, a function
J(t) exists with an inverse H(t):

JH®) = H(J®) =t,

3) JWO) = S et oo 50,
(4) H() = 3 hatr+,  hy 5 0.

THEOREM 79. A necessary and sufficient condition that ¢.(x) be of
o-type zero, with

q

(5) co=D]I[ 6+ b — 1),
1=1

18 that ¢.(x) possess the generating function 1n

(6) AQ) oF o( =3 by by -, boy 2H (D) = 3 oul@)ir,

n=0

i which H(t) is given by (4) and A(t) has the formal expansion
(7) A() = 2 aqtr, a, # 0.
n=0

Proof: Assume (6) together with (4), (5), and (7). Then the
on(z) form a simple set of polynomials. The function H(t) has a
formal inverse; call it J(¢) defined by (3). As we saw in Chapter 5,
page 75, the function

Y = oF(—=;by,- -, by 2)
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is a solution of the differential equation
(8) |:0,H(0,-|—bi——l)—-z]y=0; 6, =z —
1=1 az

Put z = zH(t) and hold ¢ constant. Then 8 = z(d/dx) = 6, and (8)

becomes
Q

(9) 6 ] (6 + b: — Dy = zH(b)y.

1=1

But 8 = zD, so that (5) and (9) combine to yield
(10) 0 oF ((—;byy- -, bos zH(1) = H(1) oF o(—=;by,- - -, bos H(1)).
We now operate with J(¢) on both members of (6):

J () f; on(@)n = J()A(l) oF (= by, - -, bat H(1))

AWJI(H (1)) oF (= by, by; zH(D))

il

=12, o)l = D pu(T)tn
n=0 n=1

Therefore J (o) po(z) = 0 and J(o)¢n(x) = ¢a._i(x) forn = 1. Since
J (o) is independent of z, ¢.(2) is of o-type zero.

Next assume that ¢.(x) is of o-type zero. let ¢,(x) belong
to the operator J(¢). The function J(¢) has a formal inverse H(¢).
Consider the polynomials ¢.(x), a simple sct, defined by

(11) Fo(— by by zH (D) = 2)1/4,(1@)#.

We know that ¢.(x) is of o-type zero and that it belongs to the
operator J (o). By Theorem 78, page 227, there exists a sequence
ax, independent of n, such that

(12) onl2) = kz::oakm(w.

Define A(t) by (7). Then, using (12), we find that

i en(T)tr = (iu at)(io ¢n(x)tn>

n=0

= A(t) OFq<— 5 by, by :I‘H(t)),

as desired.
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It is of interest to note that polynomials of any Sheffer A-type
may be polynomials of o-type zero, if ¢ is properly chosen. It is
also easy to show that a polynomial of Sheffer A-type unity or
larger may not be of o-type zero for any choice of o.

As an example, consider polynomials y.(z) defined by

(13) et qu(—; ]-y 19' ] 1; - Il)t) = Z yn(x)tn-
n=0

Here H(f) = —t and J(t) = —t. Let ¢ = D6e. Then the y.(z)
are of o-type zero for that o, but are of Sheffer A-type ¢, because o is
a polynominal in z and D and is of degree precisely ¢ in z.

Because the generating function in Theorem 79 is of the Boas
and Buck kind (Section 76), Theorem 50, page 141, applies to all
polynomials of o-type zero.

TuEoREM 80. With o specified as in (5) of Theorem 79, page 228
a necessary and sufficent condition that o.(x) be of o-type zero is that
there exists a sequence hy, independent of x and n, such that

n—-1

(14) gj hk&pn_l-k(l) = apﬂ(x).
Proof: 1If ¢.(x) is of o-type zero, 1t follows from Theorem 79 that

> oon(@tr = eA(0) oF (= by, -, b, 2H(D)
= H()A(t) oF o(= ;5 by, -+, by; 2H (1))

(& (5 o)

n=0 n=y

-1

= E hk‘Pn——l—k(x)tn,

n=1 k=0

7

so that (14) is satisfied. If (14) is satisfied, let
vz, = 3 enin
Then, by (14),
oy = i :Z_Lhk%—l-k(x)t" = H(t)y(z, 1).

n=1 k=

Hence y(z, t) is one of the solutions of the o/, equation (Chapter 5,
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page 75), with z = zH(f). But
(15) oF o(—; by, -+, by; TH (D))

is the only one of those solutions which is nonzero and analytic at
z = 0, (z = 0). Hence y is a constant (function of ¢ not z) multiple
of (15), which concludes the proof.

Our main interest in both the Sheffer and the o-type classifications
centers on the generating functions in Theorems 72 and 79. Upon
meeting a new simple set of polynomials, we try to determine its
Sheffer A-type and to see whether the set is of o-type zero for some
o. These tools will be used at times in later chapters.

EXERCISES

1. Prove Theorem A (Sheffer): If ¢,(x) is of Sheffer A-type zero, g.(m, z) =
D™, m(x) is also of Sheffer A-type zero and helongs to the same operator as does
‘Pn(x)'

2. Prove Theorem B: If ¢,(z) is of Sheffer A-type zero,

m -1
%(I) = ‘Pu(I)I:H (1 + pt)nJ

1=]
is of Sheffer A-type m.
3. Show that
Ha(x)
n!
is of Sheffer A-type zero, obtain the associated functions J (), H(t), A(t), and draw
what conclusions you can from Theorems 73-76.
4. Show that L,@(z) is of Sheffer A-type zero, and proceed as in Ex. 3.
5. Show that the Newtonian polynomials

Na(z) = (EL0=2

are of Sheffer A-type zero, and proceed as in Ex. 3.
6. Show that
L.®(z)

en(z) = T+ o),
is of Sheffer A-type unity but that with ¢ chosen to be
c=D0+ a)
the polynomials ¢,(x) are of o-type zero.
7. Determine the Sheffer operator associated with the set

onl@) = 55

and thus show that ¢.(z) is of Sheffer A-type 2.
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8. Prove that if we know a generating function
vz = X @t

for the simple set of polynomials ¢.(x) belonging to a Sheffer operator J(z, D), no
matter what the A-type of ¢.(z), we can obtain a generating function (sum the
series)

g Yn(z)tn

for any other polynomial ¥,(z) belonging to the same operator J(z, D).
9. Obtain a theorem analogous to that of Xx. 8 but with Sheffer A-type re-
placed by o-type.
10. Show that if P,(z) is the Legendre polynomial,

_ (A v

is a simple set of polynomials of Sheffer A-type zero.
11. Let P,(z) be the Legendre polynomial. Choose ¢ = D6 and show that the

polynomials
_(z—=Dr <x+1)
en(®) = Gy P\p 1

are of a-type zero for that o.

12. Prove that if the operator J(z, D) is such that a simple set of polynomials
Yn(x) belongs to it in the Sheffer sense, then J(x, D) transforms every polynomial
of degree precisely n into a polynomial of degree precisely (n — 1).



CHAPTER 14

Pure

Recurrence

Relations

127. Sister Celine’s technique. Years ago it seemed cus-
tomary upon entering the study of a new set of polynomials to seek
recurrence relations, pure or mixed (with or without derivatives in-
volved) by essentially a hit-and-miss process. Manipulative skill
was used and, if there was enough of it, some relations emerged;
others might easily have been lurking around a corner without being
discovered. For polynomials of hypergeometric (,F,) character,
some systemization resulted from the existence of the contiguous
function relations published in 1945. The interesting problem of
the pure recurrence relation for hypergeometric polynomials re-
ceived probably its first systematic attack at the hands of Sister
Mary Celine Fasenmyer in a Michigan thesis in 1945. She in-
troduced the tool in her study of a certain class of hypergeometric
polynomials, for which see Section 149, page 290, or Fasenmyer [1].

In Fasenmyer [2], Sister Celine illustrated her technique by ob-
taining pure recurrence relations for Bateman’s Z (1), touched upon
in this book in Section 146, page 285, and for one of her own sets of
polynomials (see Section 149, page 290).

As a first example we shall find the pure recurrence relation for
the simplest of Sister Celine’s polynomials,

(1) fn(x) =2F2(—n,n+1,1,%,x),
233



234 PURE RECURRENCE RELATIONS [Ch. 14

@ 1@ = X iy

For convenience we use « hereafter as the upper limit of summa-
tion for series such as that on the right in (2). We shall deal with
hypergeometric polynomials which always terminate naturally.
We also use a common convention that f,(x) is defined as zero when-
ever the subscript is negative. This convention permits us to avoid
discussing separately the smallest values of n, n = 0, 1, 2 for the
polynomials now to be treated.

First rewrite (2) as

=<}

(3) Jal) = 22 e(k, n).

Sister Celine’s technique is to express f._i(2), fa_2(x), 2f._:1(x), ete.,
as series involving e(k, n), and then to find a combination of co-
efficients which vanishes identically. Note that, by (2),

DXn — 1+ k)!z*
i) = R = 1= Bt

so that
(4) faoi(z) = E e(k n).

In the same manner it follows that

. (n — k)Y(n — 1)
(')) f,._z(x) Z ‘< (n + k)(n + ]C l)f(k, n);

(n—k)n—k—1n—k=—2)
(6)  fas() = En+k)(n+k—l)(n+k 2)

e(k, n).

Let us turn to xf._i(x), xf._2(x), etc. We find that

& Fn=14k)lzr+t & (=1)*Y(n—24k)lzk
a-i(2) = Z:' (k’)( Yen—=1=k)! = & [(k=D!2(3)ea(n—k)!’
or
@ tanlt) = 3 G E =D ),

n+ ko +k—-1DF

In like manner,

e —k2(t + &k — 1)(n — k)
®) sl = T FE =D Tk =)

e(k, n).
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In equations (3)-(8) the coefficients of e(k, n) have a lowest
common denominator (n + k)(n + k — 1)(n + &k — 2). When that
denominator is used in each coefficient, the maximum degree with
respect to k of the numerators is four. Then there exist constants
(functions of n but not of k or x)A, B, C, D, E such that

(9) falx) + (A + Bx)faur(x) + (C + D2)fas(x) + Efn_s(z) =0

is an identity. By using equations (3)-(8) and reducing all co-
efficients of e(k, n) to the least common denominator, we sce that
(9) is equivalent to the following identity in k:

(10) n+kY(n+k—1D(n+k—=2)+An—k)(n+k—1)(n+k—2)
— B2k — 3 (n+Ek—-2)+Cn—k(n—k—1Dn+k—2)
—Dik2(k—3(n—k)+E(n—k)(n—Fk —1)(n—k—2)=0.

The identity (10) easily yields five equations for the determination
of A, B, C, D, E. 1t is wisest to get those equations by a judicious
mixture of employing specific £ values and equating coeflicients of
powers of k to zero. In (10), for instance, the choices £ = n,
k =mn — 1, coefficients of k4, k =1 — n, k = 2 — n, yield simple
equations. By that or some other elementary method, it is found
that

A=_3n—-2’ B=é, C:3_n_—_4 Dzé’ E- =2

n n n n n

With the aid of (9) we may conclude that the polynomials f.(x) of
(1) satisfy the relation

(11) nf.(x) — B3n — 2 — 42)f,_1(x)
+ Bn — 4 + 4x)fao(x) — (n — 2)fnas(x) = 0.

As a second example, consider the polynomials
(12) on() = oFo(—n, 1 4+ 8;1, 1 + a; 2).

The ¢.(x) interest us because they permit independent verification
in two special cases. If 8 = a, ¢.(x) becomes the simple Laguerre
polynomial L.(z). If g8 =0, ¢.(x) becomes n!L.®(x)/(1+ ).
For each of those polynomials we already know the pure recurrence
relation.
Now
N (=D (1 + B)xk
en(@) = 2, kD21 F a)e(n — )1
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Put

(13) yola) = 22,

Then

19 %@ = & i o = & <k .

Proceeding as in the earlier example, we find that

o

(15)  vau(x) = 22 (n = K)e(k, n),

k=0

(16)  vas(®) = X (= K)(n = k = Deln),

(17)  yuosla) = z (n— k) =k — Do — k — 2)e(k, ),

(18) zvna(x) = i:“(_a"‘_ﬂ

k=0 B+ k e(k, n)’

(19) Zym_o(z) = io — k(e ;i)lfn =5 k).

It follows that there exists a relation
(20)  ¥a(@)+(A+B2)va1(2) +(C+D2)va-2(2) + Evn-s(2) =0
and that the A, B, C, D, E are determined by the identity in k:
(21) B+k+A(B+k)(n—k)—Bk*a+k)+C(B+k)(n—k)(n—k—1)
—Dk2(a+k)(n—k)+E(B+k)(n—k)(n—k—1)(n—k—2)=0.

From (21) it is an elementary matter to show that

_ =3n*4+3n—1-—a2n —1) _ B+n
4= n¥(a + n) ’ B = n*a + n)’

_a_+3n—3 _ —1 _ -1 )
¢= a +n)’ D_nz(a-l—n)’ E_n2(a+n)

Thus the polynomials v.(z) satisfy the relation

(22) n*a+n)ya(x) —[Bn2—3n+14+a(2n—1) — (B+n)x]ya-1(2)
F(a+3n—3—2)yn_2(x) —ya_s(z)=0.

But, by (13), v.(z) = ¢.(z)/n!. Hence the polynomials
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(12) en() = oFo(—n, 1+ 851, 1 + a; )

satisfy the recurrence relation

(23) n(a+n)e.(x) —[Bn?—3n+14+a(2n—1) — (B+n)x]on_:(z)
+(n—1)(a+3n—3—2)ps2(x) —(n—1)(n—2) pn_a(x) =0.

It is not difficult to rewrite (23) as

(24) (a+n)[nea(@) = (2n—1—=2) pn_1(2) + (n—1) n_a(2)]
—(n=D[(n—=1Dpu1(2) = (2n—3—2) ou_s(2) + (n—2) pn_s(x)]
+(B—0)Ten(2) =0,

in which form it becomes evident that if 8 = «, (24) is an iteration
of the known relation

nL,(x) — 2n — 1 — 2)L,_,(2) + (n — 1)L,._,(x) = 0,

as it should be, since, when 8 = «, ¢.(z) reduces to L,.(x).
If the relation (23) is rewritten in the form

(25) n(a+n)e.(x) — Cn—14+a—=2)¢.1(x) +(n—1) pas(2)]
—m=1D[(a+n—1)e.0(@)—2n—3+a—2) . 2(x)+(n—2) ¢._3(x)]
+ﬁx<ﬂn—1(x) :0;
it is a simple matter to obtain a check for g = 0, for which value
on(z) degenerates into n!L, @ (x)/(1 + a),.

In both the preceding examples, the polynomials were expressed
in ascending powers of z. That form has nothing to do with the
success of the method. As a third example, consider the poly-
nomials

—in, —in + 3,1 + o 1
(26) ga(z) = (22)" 5 ‘x[ )

1+
or
[n/2]
S (1l 4 a) 2oy
27) 02 = 23 T Beln — 201
Put
(28) () = g"n(zx)'
Then

= (—1)H1 4+ @) (22)n2k &
29 M@ =X (/L-!(l) T ﬁ>k<7)z i_ﬂcz)m! =2 <k n).

k=0
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Form the series

(30) (2x)\pos(z) = Z( DAL + o) p(20)m2F 2

C V(1 +B8)e(n—1—2k)! = A;) (n — 2k)e(k,n),
(1 + o) (2a) 22
Ma-al) = Z k'(l + B)(n — 2 — 2k)!

N e e
T & (k= DI+ Bealn — 2k)17

or

(31) Ao_a(z) = ;0 (’“(i*;)’”)e(k n),

and, in the same manner,

(32)  (22)aa(z) = kﬁ: (n — 2k)(n — 2k — V)e(k, n),

@) (22)\n_s(z) = f:o “k(na“f’z(ﬁ + 5 (&, m).

It follows from the series (29)-(33) that there exists a relation of
the form

(34) An(Z) + A (22) N s () + [ B+ C(22)2 N 02(2) + D(22) N _s(2) =0,
in which the constants 4, B, C, D are determined by the identity
in k:
(35) a4 k+ A(n — 2k)(a« + k) — Bk(B + k)
+ Cn — 2k)(n — 2k — 1)(a + k) — Dk(n — 2k)(8 + k) = 0.
The identity (35) yields
28 +2n — 1 g - 22a+n)

A= tn T2+ )’
1 -2
C-n(2ﬁ+n)’ D " n(28 + n)

Hence the \,(x) satisfy

(36) n(28 + n)A.(x) — (28 + 2n — 1)(22)N.a(2)
+ [2(2a 4 1) + (22)Ana(z) — 2(22)Ans(z) = O.

Since, by (28), M\.(z) = g.(x)/n!, we find that the polynomials
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—in, —n + 3,1 + «; 1
(26) gn(z) = (22)" :F, —_
1+ 8;

satisfy the pure recurrence relation
(B7)  (28+n)ga(x) —(28+2n—1)(22)ga-1(2)
+(n—1)[2(2a+n) + (22)*]gn-2(x) —2(n— 1) (n—2)(2x)gn-s(2) =0.

When 8 = a the g.(z) degenerates into the Hermite polynomial
H.(z), for which we already know the relation

(38)  H,(z) — 2zH,_i(z) + 2(n — 1)H,._.(x) = 0.
The relation (37) may be put in the form
(39) (28 + n)[ga(2) — 22g.-1(x) + 2(n — 1)gn_2(z)]
— (n — 1)(22)[gn-1(x) — 22¢a_2(2) + 2(n — 2)ga_s(2)]
+ 4(a — B)(n — 1)ga(z) = 0.
It is now evident that if 8 = «, (39) is an iteration of (38).
While we are on the topic of the g.(z) of (26), it may be of interest
to express g.(x) in terms of the Hermite polynomials of which

g.(x) is a generalization.
Using (27) we find that

gn(x)t @ (0 (1) k(1 A+ o) (2a) "2kt
Z - & Z kN1 4+ B)x(n — 2k)!

n=0 n=0 k=0

(ZO Qx)"tw)(; (—i;zglj;;z"m),

so that the g.(x) possess the generating function in

(40) exp(2zt) F1(1 + «; 1 4 B; —) = Zgr(x)t

By Kummer’s first formula, page 125.
Fi(l 4+ a5 1 4 8; =) = exp(—t)Fi(8 — a; 1 + 8;12).
Therefore (40) yields
(41) exp(2zt — ) Fi(B — a; 1 + B;12) = ):Og"(x)‘

Then
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which yields

22 2B — a)H a2k
(42) gn(®) = 2 /ﬁ&ﬁ— 21.:)>!<1 +(§§k'

k=0

Shively [1] used Sister Celine’s technique to obtain differential
recurrence relations, and Bedient [1] employed her method to get
mixed recurrence relations. See also Exs. 8-11 at the end of this
chapter.

We already know from Chapter 9 that any orthogonal set of
polynomials necessarily satisfies a particular type of pure recurrence
relation, for which see Section 83. At once we see that the tech-
nique discussed here is a potent method for showing that a specific
polynomial set is not orthogonal with respect to any weight function
over any interval. See, for instance, Ex. 12 at the end of this
chapter.

128. A mild extension. Consider the polynomials ¢.(z) de-
fined by

—1) k!
M r@) = & T

in which H(z) is the Hermite polynomial of Chapter 11. We shall
encounter the o.(x) in our study of symbolic relations in the next
chapter. It is not difficult to show that in ascending powers of
z the o.(z) has the following appearance:

. [—in—h), —3m—k=1); :
(2) oa(x) = 2 gF{ _1} (_—_ZL%(?CU) .
K H+E), HE+D); (k)

If the reader wishes to attack the problem of finding a pure recur-

rence relation for o.(x) on the basis of (2) rather than of (1), he is

welcome to the task. Here we prefer to modify Sister Celine’s

technique to fit the situation in which a polynomial is expressed

not in a series of powers of z but in a series of other polynomials.
In equation (1) put

3) g%f_) = sa(2), (-l()l:!f)lzk(x‘)‘ = vx(2),
so that

(4) sa(z) = Z (n”if””ic),
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From the known relation
(5) Hk(:c) - 2;1;Hk_1(x) + 2(k - 1)Hk_2(x) = 0,

we determine a recurrence relation for vi.(x), use that to find a
relation for s.(z), and finally use (3) to transform our result into a
relation for o,(x).

In (5) put Hi(x) = (=—1)*(k!)?vi(z). The resulting relation for
’l)k(CC) is

(6) E(k — Du(x) + 22(k — Doea(x) + 206-2(x) = 0.
First we set out to use (4) to obtain the series

™ = = !
From (4) we get

®)  saale) = 3 2@ _ 5 0= boda)

“Sn—1—=k! &= =k

(9) Sa_2(z) = AG; (n — ’v')((frl; - /;;)!— 1)oi(x) ’

n—k—1n—Fk—2)u)
(n — k)!

(10)  sn_s(z) = §_«6 (n — k)(

The four series (4), (8), (9), and (10) contain numerator coefficients
of not more than third degree in k, the degree of the numerator in
(7). Therefore there exist constants A, B, C, D, such that

(11) Au(2) + Bsus(@) + Csuala) + Diosfa) = 3 =Ll

Indeed (11) implies the identity in k:

(12) A+Bn—k +Cn—kn-—~F-—1)
+Dn—kn—k—1)n—kF—2) =kk-—-1),

from which it follows readily that
A=n*(n—1), B=—(n—1)(3n—2), C=3n—4, D=-1.

Hence we have
(13) n2(n — Dsu(x) — (n — 1)(Bn — 2)s,_1(x) + (3n — 4)s.-2(2)

- Sn_a(x) - k=0.h (—n_~:_k)!
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Next we wish to construct, corresponding to the second term in
(6), the series

(14) i (k = 1D (22)ve()

k=0 (n - k)! ’

using the convention that v_,(x) = 0.

Now
vi(x) o~ Vea(T)
(15) i@ = LT ST & (n - B
Furthermore,

(16)  sn_s(z) = :20 . L—)

vx-1(2) _ f{'__— k)o._ 1(37)
_Z /)!_Z (n — k)!

’ﬂ - 1 ! (y
Hence there exist constants £ and F such that

: : (k= D) (2x) v, _1(x)
(A7) 22Bs, (@) + 22Fs,a(x) = 33— o

From the identity

we obtain £ = n — 1, F = —1, so that

(18) (n — 1)(2x)s.1(x) — (27)s0-2(x) = é(k —(:i)(_zx;)c)vf_l(x)'

Finally,

(19)  2s,_0(x) = k‘i_ﬂ__?%_@:).k)_' _ 5:0 %)_kj(i))!,

We now add corresponding members of (13), (18), and (19) to get
n2(n — s, (2) —(n—1)(Bn—2)s,_1(x) + (Bn—4)s,_2(x) — $,_3(x)
+ (n — 1)(22)s,_1(x) — (22)8,-2(x) + 28,_2(x)

$ Ktk = Do@) + (b = DE0r(e) + 2s(@)
— (n — k)!

=0,

because of equation (6). Therefore s.(x) satisfies the equation
(20) nin — 1)s.(x) — (n — 1)(Bn — 2 — 2x)s._,(2)
+ (Bn — 2 — 2x)s,_5(x) — S._3(x) = 0.



§128) A MILD EXTENSION 243

Since, by (3), s.(z) = —"( 7) , we find that the polynomials

=y (=DnlH(z)
@ on(2) E D0 — k)]
satisfy the pure recurrence relation
(21) no.(z) — Bn — 2 — 2x)o,_1(x)
4+ Bn — 2 — 2x)o,e(x) — (n — 2)0._3(x) =

EXERCISES

1. Show that Bateman’s polynomial (see Section 146, page 285)
Zn(t) = oFo(—n,n + 151, 1;1)
has the recurrence relation
n2(2n — 3)Z. () — (2n — 1)[3n2 — 6n + 2 — 2(2n — 3)t]Za(t)
+(2n — 3)[3n2 — 6n + 2 + 220 — D) Znoo(t) — (20 — 1)(n — 2)2Z,4(t) = O.
2. Show that Sister Celine’s polynomial f,(a; —; 2), or
fn(x) = 3F2(—n,n + 11 a; ly éyx)
has the recurrence relation
nfu.(x) — [B3n — 2 — 4(n — 1 4+ a)z]faa(x)
+ [Bn — 4 — 4(n — 1 — @)z]fua(z) — (n — 2)fas(x) = 0.
3. Show that Rice’s polynomial (see Section 147, page 287)
Hn = Hn((y py U) = 31(12(_71‘7 n + ly g’y 17 p;v)
satisfies the relation
ni2n — 3)(p +n — 1)H,
—@2n-D[(n—=2)(p—n+1)+2(n—1)(2n—3)—22n—3)(¢+n—1)v]H.
+@2n=-3)2(n—1)—n(p—n+1)+2@2n—1) (¢ —n+1)v]H .,
+n—-2)2n—1)(p—n+1)Hn,—3 = 0.
4. Show that the polynomial
fa(@) = Fo(—n;1 + a,1 + B;2),

which is intimately related to Bateman’s J,** of Section 146, page 287, satisfies
the relation

(a +n)(B8 + falx) — [3n* — 3n + 1 + (2n — D(a + B) + af — ]faa(2)
+ (n = 1)Bn = 3 + a + B)fas(z) — (0 — 1)(n — 2)fas(z) = 0.

5. Define the polynomial w.(z) by
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in terms of the simple Laguerre polynomial L(z). Show that wn(z) possesses
the pure recurrence relation

nw,(z) — [(n — D(n — 3) + zJwai(z) + (602 — 197 + 16 4 2)wa_2(2)
— (n — 2)dn — Dwn_s(z) + (n — 2)(n — 3wns(z) = 0.

6. Show that the polynomial w,(z) of Ex. 5 may be written

n -n + k, - _ k
we(z) = 2. F, 1 (__@_;i_‘xl_
2 U3E
ot 1+ k;
7. Define the polynomial v,(z) by (see Section 131, page 251)
() = 3 (T DIP)
@) = k) — k)
in terms of the Legendre polynomial Py(z). Show that v.(z) satisfies the recur-
rence relation
nW,(z) — [4n? — 5n 4+ 2 — (2n — 1)z]va(2)
+[6n? — 15n + 11 — (4n — 5)z]vns(x) — (n — 2)(4n — 7 — 2z)v._5(2)
+ (n — 2)(n — 3)vay(x) = 0.

8. Show that the v.(z) of Ex. 7 satisfies the relations

(1 — 20" (x) — 220, (&) + n(n + Dva(x) = 2n%1(2) — n(n — 1)vn_o(z)
and
(1 — 2®)va'(z) + nav.(z)

= [2n — Dz — 1Joaa(z) — (n — Dzvn_s(z) + (1 — 2¥)va_1(x).

9. Let
(=D MEF)n—r(2z)" 2%

Elin — 2k
so that the Legendre polynomial of Chapter 10 may be written

Pa(z) = >°§ (k).

v(k,n) =

Show that

_ & (= 2k)v(k,n) _ 5 —2ky(k,m)
tPoa(®) = Lo Pe® = p T

©

2P(@) = 3 (n = Wyl ), Pha(@) = X (1 + 21— 200k, m),

Pr_i(z) = 3 —2ky(k, n), etc.
k=0

Use Sister Celine’s method to discover the various differential recurrence relations
and the pure recurrence relation for P,(z).

10. Apply Sister Celine’s method to discover relations satisfied by the Hermite
polynomials of Chapter 11.

11. Find the various relations of Section 114 on Laguerre polynomials by using
Sister Celine’s technique.
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12. Consider the pseudo-Laguerre polynomials (Boas and Buck [2;16]) fa(x)
defined for nonintegral X by

_ (=N 7\)" _ 3 ,(_ _ki’i.
Show that the polynomials f.(z) are not orthogonal with respect to any weight
function over any interval because no relation of the form

falz) = (An + By, 2)fa1(x) + Crfaa(x)
is possible. Obtain the pure recurrence relation
nfa(z) = (x +n =1 = Nfua(z) — 2faa(2).

Tor the polynomials in cach of Exs. 13-17, use Sister Celine’s technique to discover
the pure recurrence relation and whatever mixed relations exist.

13. The Bessel polynomials of Section 150.

14. Bedient’s polynomials R, of Section 151.

15. Bedient’s polynomials G, of Section 151.

16. Shively’s polynomials R, of Section 152.

17. Shively’s polynomials o, of Section 152.



CHAPTER 15

Symbolic

Relations

129. Notation. Many relations involving finite series of poly-
nomials can be put into particularly neat form by use of an old
symbolic notation. Whenever = is used to replace =, it is to be
understood that exponents will be lowered to subscripts on any
symbol which is undefined here except with subscripts. For in-
stance, we already know, page 213, that the simple Laguerre poly-
nomial L,(z) satisfies the relation

(1) wl T & e = B

In symbolic notation, since L without a subseript is not defined here,
we may write equation (1) as

2) % = {1 = L(z)}~

In Section 126 we obtained a recurrence relation for a polynomial
o.(x) defined by
~ (—D)*n!H(z)

(3) on(z) = é(k!)Q(n —i)!

In symbolic notation (3) is replaced by
(4) o.(x) = L.(H(z)).

A final example: if H,(z) is the Hermite polynomial and P.(z)
246
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the Legendre polynomial, then the meaning of {H(z) — P(x)}? is
given by

{H(z) — P(x)}? = H.(z)Py(z) — 2H,\(z)P:(x) 4+ H,(x)Ps(x).

130. Symbolic relations among classical polynomials. In addi-
tion to (2) of Section 129, we have already encountered earlier in
this book a few relations which fit nicely into symbolic form. For
instance,

(1) L.(zy) = {1 — y + yL(x)}~,
(2) P.(x) = {22 — P(2)}~,
(3) P.(1 — 22?) = {1 — 22P(x)}~,

@ wP(P o)+ 1 - @) e= (-2t e

For the most part the relations with which we deal here are in-
cluded because they are amusing or particularly pretty. It would
be unwise, however, to pass up the subject as one of no other value.
Szegd [2] made good use of equation (4). The symbolic notation
also suggests the study of some interesting polynomials which may
not otherwise be noticed.

We shall now prove

(5) H.(P(x)) = {H(2x) — 2P(z)}",

(6) 27L.(P(z)) = {L(x — 1) + L(x + 1)}~,
2x

7 H,.(H = 5H [—),

) (H () ( \/5)

as examples and leave other relations as exercises for the reader.
To prove (5), consider the series

SH(P@)tr . Q& (=120 P, (@)t
,.};B n! g kZ: kl(n — 2k)!
(= (=D & 2P, (x)tr
- (Z“B n! )(; n! )
= exp(—1t) exp(2zxt) of; (—— 1; (2 — 1))

= exp(4at — 12) exp( —2at) UF,(—; 1;2(x? — 1)).
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Then

= H, (P(x))t"_ 2az)t" 2, (—2) P (x)tr
_ ( 2)kH,. k(2$> k(.’l)t"
B Zo ) H(n — k)!

It follows that

aoi(2 2)kP
H,,(P(T)) = =Oﬁ_>H_ /(’(Z_)(:T))' k(x),

which is (5).
To prove (6), consider the series

2L (P@)ir . & s (= D)FPi(2)(20)"

,,Z,% nl Z“, (kD2n — k)1
(& @O\ = (=)nPu(x) (20"
B (,:Zo n! )(; (n!)2 )

= ¢! ()F](—; 1, —i(x — 1)) UF,(—; 1; —t(x + 1))

= e'oFl(—; 1; —t(x — 1))0’0F1(—;1; —t(x + 1))

_ (i {a‘(ﬁ:i)_‘f)(i Lz + l)t")

= n! n!
Lk(x - l)lzn_k(x + l)tn
B ,.X%AZ k'(n — k)! !

from which (6) follows by equating coefficients of ¢».
Since

[(n/2]
. (_l)kntgn 2an “(x)
H.(H(z) = k_o TSI

we find that

5 @) ($ (D) 5 Ho207)

n=0 n! n=0 n' n=0 n!

exp(—£2) exp(4at — 4%)
= exp(4at — 5t2)
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4x = =
= ——(t4/5) — (tA/5)?
exp[V5<v> (\/):I

_5 (23:/\/5)5i"t"

n=0

which yields equation (7).

131. Polynomials of symbolic form L,.(y(x)). Suppose y.(z) is
a previously studied simple set of polynomials. We proceed to
start the study of the polynomials L,.(y(x)).

TaEOREM 81. A necessary and sufficient condition that
fa(2) %= La(y(2))
be of Sheffer A-type zero is that y.(z)/n! be of Sheffer A-type zero.
Proof: Consider the series
S e s (S Dy
2 fa(@tr = 3 (kD2 (n — k)!

n=0 n=0 k=0

_ o (=DH¥n + k)ly(z)trtr
- ;D (k!)2n!

n

— i 3 (1 '|‘ k) tr (—I)Z{k(x)tk

=0 n=0

>

—l)kyk(x)t"
(1 — f)*+ :

u[\’]8

By Theorem 72, page 222, if y.(z)/n! is of Sheffer A-type zero

kz::oyk (@)t _ A(t) exp[zH(t)].
Then also
g,ofn(x)tn o 1A( =t )exp[xH( =4 )]

= B(!) exp[zh(t)],
so that f.(z) is of Sheffer A-type zero also. Since

Ef,.(x)( ) = (1 -1 ;?ﬂ%)ﬁ,

nw=0
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the same method of proof works in the other direction.

Because of Theorem 79, page 228, it can be seen that the same
proof works if Sheffer A-type zero is replaced by o-type zero for any
specified o.

THEOREM 82. Theorem 81 holds true if Sheffer A-ltype zero is
everywhere replaced by o-type zero.

Theorems 73-76 and Theorem 80 are then applicable to poly-
nomials of the form L,.(y(x)) for properly selected y.(x).
Let us consider the polynomials

) ou(z) = L.(H(z))

for which we obtained a pure recurrence relation in Section 128,

n( x) .

page 243. Since - is of Sheffer A-type zero, it follows that

o.(x) is of Sheffer A—t,ype zero. Indecd, because

> Ii—@)—— = exp(2zt — 2),
n=0 n
we get

e

(2) o)t = (1 — 8)- 1exp[1 2x§ (—1t_2 l)2:|.

n=

In order to apply the theorems of Section 124, we note that, for
the polynomials ¢,.(z),

» =2t __—t
3) AWM =1 -1 CXP[(——T)J, H{) = 1=p JO =57
It is easy to show that
(4) A(t) = Z 2F2 '—1 tk,
- 1, %;

5) H@) = 3 (=2,
©®) IO = 3 et

A't) & o oy
(7 VIONE ?::O (1 =k — ktH,
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®) B = 3 (=200 + DIt

9) 1%411(';_1;) = —§t — 3+ it5u = J0O),

(10) uH'(u) =t — 32 u = J(t).

It follows that, in the notation of Theorems 73-76,

(11) ar= 1~k =k e = —20k + 1),

(12) Ho = %#=—%,uz=%,#k=0fork23,
o=1,1n= —3,»n=0fork =z 2

(13) he = —2.

We may apply Theorems 73-76 to obtain properties of o,(x).
For instance, Theorem 76 yields

n—1

(14) 0/ (X) = =2 2 oumaa(2), n 2 1
k=0
Theorem 74 yields the differential equation
o (x) — 2(1 + 2)0.""(z) + 222 — 1)0./(x) — 4no.(x) = 0.
Next let us consider the polynomials
(15) va(2) = L.(P(2))

for which a pure recurrence relation was obtained in Ex. 7, page
244. We already know one other property, relation (6), page 247,
for these polynomials. Two generating functions for v.(x) are
easily found. Since

- 2 & (=1l Py(a)tr
S = 5 3 G
& (=D 4 D)IP(2)
=2, (FTyen!

_ AR (DR

=0 =0 TL! k!

>

(—l)kPA(x)t"
k!(] — t)1+k ’

["J

we obtain
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; et -1 & .
>0F1[ L i1 = t>2j| = Ez,”"(x)t .

1e) (1 — - exp<1

Next

(D) & (= D)EP ()i
v(x) ;0( )k')zgzx') ,

nw=( n

and we may conclude that

(A7) e\~ 15 = e = 1) oFs(=; 1; =z + 1) = 3 0L,

=

It is also not difficult to derive such results as

(18) (1 — )" (x) — 2zv.'(x) + n(n + 1)v.(x)

= 2n2,_(z) —n(n — 1)v,._.(x),

(19) (1—z)v./'(z)+nzv.(x)=[2n—1x—1]v._i(x) —(n— 1)av,_o(T)
—}—(1—2:2)0,,_1(&:),

(20) va(x) = %f L.(x 4+ A/x* — 1 cos B) dg.
0
1 —-n, —m, %7
(21) f V()0 (2) do = 2,F, 1|
- 1,1,1,8;
EXERCISES

In Exs. 1-8, H.(z), P.(x), L.(x) denote the Hermite, Legendre, and simple
Laguerre polynomials, respectively. Derive each of the stated symbolic relations.

Ho(z +y) = [H(z) + 2y]".
2. [H@x) + Hy)]" = 29H, (274 + ).

Pu(z) = n![L(l ;_> _ L(l_izr_gﬂ

—

3.
4. H,(3P(z)) = [H(z) — P(x) ]
5. [H(z) — 2P(z)]>*t1 = 0,
[H(z) — 2P(x) ] = (—1)"22(3)uLa(2? — 1).
6. [H(z) — P(2)]»+ = 0,

[H(z) — P@x)]» = (—1)"22°(3)La(2? ~ 3).
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7. H.(3H(z)) = 2¥H.(274).
8. Hu(zy) = [H(z) + 2z(y — 1)]~.

9. Use Laplace’s first integral for P.(z) to derive equation (20), preceding
these exercises.
10. For the v.(z) of equation (15), page 251, evaluate

f Vu(2)Pi(x) dz,
-1

and use your result to establish equation (21), preceding these exercises.
11. Show that

W+ x)nP,,(%{r—j) = nl{L() - L)

12. Define polynomials ¢.(z, y) by

ea(z,y) = H,(zL(y)).
Show that

s “’"_____(;;"y)tn = exp(2zt — ) oF1(—; 1; — 2ayt).

n=0



CHAPTER 16

Jacobi

Polynomials

132. The Jacobi polynomials. The Jacobi polynomial
P.(«-8(x) may be defined by

—-n,14+a+ 8+ n;
(1) P,e®(z) = (_1_";_"")” 2F1|: 1 —2— x}_
n! | + a:
When o« = 8 = 0, the polynomial in (1) becomes the Legendre

polynomial. From (1) it follows that P, #(z) is a polynomial of
degree precisely n and that

1 n
P,«8(1) = (%)_
In dealing with the Jacobi polynomials, it is natural to make

much use of our knowledge of the ,F, of Chapter 4. An application
of Theorem 20, page 60, to (1) yields

n - —6—n.
. _(1+a),,(x+1) " oz -1
@ Plv@) == Ty ) ol b Tl

In the next section we shall obtain still another ,F, form for P, 8 (x),
namely,

n —-n, 14+ a4+ B+n;
(3) P,«p(x) = L:U_Si_% 2F1|: 1 -;-xil
' 1+ 8;

254
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Each of (1)-(3) yields a finite series form for P,(= #(x):

) A4 0)ull+ a+ Bare [z — 1\
(4) P,=b(z) = Zk'(n M1+ )l + o+ B\ 2 >

) (4w, + g, (z=1) (a1}
) Puoe) = 3 i T a1 4 B ( ‘ >( 2 > ’

Z(—l)H(l + 8).(1 + a + Bapifz + 1)
SN — )N 4 B) (1 + a + B)a\ 2

(6) P,(«8 (.’Z})

Equations (4), (5), (6) are expanded forms of (1), (2), (3), re-
spectively. We must not use (3) or (6) until we derive them in the
next section.

By reversing the order of summation in (4), (5), (6), respectively,
we obtain

ey — (It atpB)an (x—l)" ST T 2
(7) Pn( ﬁ)(x) - n!(l—f—a-{—ﬁ)"\ 2 2P1
—a—B—2n;

n —n, — a —n;
(8) P,b(x) = (L’:l_"'ﬁl(a?_;__l) 2Flli z+1 ,
1+ 8; .

—n, —B—n;

@ Pueote) = et B (1) 2”[

—a—pB—2n; T
of which (9) is not yet available for use.

A generating function for the Jacobi polynomials follows readily
from (4). Consider the series

_ ad (a + B + l)npn(a'ﬁ)(x)t"
=2 T+ )

SEFUtat fulie = e
- n=0 k=0 /\‘!(n - /I.)!(l + a)k

(1 + a4 Bagar(x — 1)itnt*
T Inl(1 + «),2¢ ’
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S22 (l+at 420t 1+ a+ Baulz — Dk
2P n! M+ a)2F

k=

i (1 + a+ Bz — 1)t
0 286N (1 4 @) k(1 — t)l+¢x+6+2lc

=]
=]

n=

Since (a)u = 2°*(3a).(1a + 1), it follows that

A+ a+8), 352+ o+ 8);
(10) (1 — {)~1-a—b,F, 2i(x — 1)
1 + a (1 - t)2

_ i a+ 8 + 1) P, @0 (g)n

R ’

a generating relation for the Jacobi polynomials.

133. Bateman’s generating function. Equation (5) of the pre-
ceding section, which came from (2) of the same section, leads us
to what seems the most beautiful of the known generating functions
for the Jacobi polynomials. From (5) we obtain

o~ Pep(z)tn s (3 — 3)*Gx + 3 )" K

S+ )l + ) S kl(n — K1 + )il + By

[2‘%f#§fﬂi‘¥ifgj'

We have thus derived Bateman’s generating function:

T -1 T+ | & Pes@tn
. OFIl:l-i—a' 2 :lOF[1+B' 2 } ';)(““‘) (1+8).

Equation (1) was first published by Bateman [1]. Bateman’s
methods and the form in which he put his result bear no resemblance
to what was done here.

If in (1) we replace z by (—z) and ¢ by (—t), the two oF,’s change
roles. Hence from (1) we obtain

@) Po=8(—z) = (=1)"P,5:(2),

Applying (2) to equation (1) of Section 132 yields equation (3)
of Section 132. Hence equations (3), (6), and (9) of that section
are now available for use. Equation (2) also leads to
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« (_l)n(l + B)n
Pn( '5)(_1) ___n!_____

Two other generating functions, one of them containing an ar-
bitrary parameter, will be derived in Sections 140 and 141.

134. The Rodrigues formula. Equation (5), page 255, can be
written

L (14 a).(1 4+ B)alz — Dix + )=+
(1) Pyad(z) = g;( Mg()n(_ /;)1(1(-3:;- a)k()l(j' ﬁ)nzk '

If D = d/dz, then for non-negative integral s and m,
Digmte = (m 4+ a)(m +a—1)---(m + a — s + 1)gn—ste

or

1+ ) ,,,I"'_"*“'.

@ Dt = 0t )

From (2) we obtain

(3) Dk(x + 1)n+ﬂ —_ (1 -+ B)n(x + 1)"-—k+ﬁ

(1 + B)a-

and

@ Doz — Dye = L nle = P,

(1 + a)s

Therefore (1) can be put in the form

( =Dz +1)-F

(5) Pn(a'ﬂ)(x) = 2,,n!

n

___lg_._ n—k —_ n+a k n+p
?:’:)k!(n — k)![D (x — 1)r+e][D¥(x 4 1)~+#].
In view of Leibnitz’ rule for the derivative of a product, equation
() yields the Rodrigues formula

x — 1)~=(x +

2! 1)_5D"[($ = Dra(z + 1)n+e],

6) Puen(z) =

or

(=D —z)==(1+z)—*
2mp! D

(7) P,«n(z) = "[(1 — z)mre(142)+4].

Equation (7) is more desirable than (6) when we work in the in-
terval —1 <z < 1.
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135. Orthogonality. By using (1), Section 132, and the dif-
ferential equation for .F, (a, b, ¢; y), we obtain at once a differential
equation satisfied by the Jacobi polynomial:

(1) (1=2)D* Pyed (@) +[f—a—(2+at8)z]D Poe(z)
+n1 4+ a4+ 8+ n)P.=P(x) = 0.

Since B—a—(2+a+8)z=(14+8)(1—2z)—(14+a)(14+2z), we may put
(1) in the form
(1—z)"*a(14+2)+8D2P,, (=.8)(z)

HI(1+8) (1 =2) — (14 (14+2)](1 —2) *(1+2) DPy 5 (2)

+n(l+a+B+n)(1—2)*(1+z) PP (x) = 0,
which yields
(2) D[(1 — z2)t*(1 + z)'*8DP (=8 (z)]

+n(l+a+ 8+n)1 —x)(1 + 2)8P,(«p(x) = 0.

From (2) and the same equation with n replaced by m, it follows
(see page 173 for the corresponding work on Legendre polynomials)
that
[n(1+at B+n) —m(1+a-+ B+ m)](1=2)=(1+42) 8P o8 (2) Poe:#)(2)
=D [(1 —1x)t+e(] —I—x)”ﬁ{ P,@8(x)DP 8 (z) — P, =’ (x) DP, =" (x) } ]

Therefore we may conclude that

@ @w-md+at+pt+ntm:
fb(l — x)(1 + z)8P, @8 (2) PP (z) dx

= [(1 — x)1te(1 + x)1+8{ P =B (x) D P, 8 (x)

b
— Pp=#(z)D P, <a-ﬂ><x>}] .
In particular, if Re(a) > —1 and Re(B8) > —1, then (3) leads us
to the orthogonality property

@ [(1 =91 + Pes (@ Pret@) do = 0, m=n

That is, if Re(a) > —1 and Re(8) > —1, the Jacobi polynomials
form an orthogonal set over (—1, 1) with respect to the weight
function (1 — z)= (1 4+ z)#. For real « and B, the Jacobi poly-
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nomials are real, so we can then apply the conclusions of Chapter 9
on real orthogonal sets of polynomials.
In order to evaluate

) 0n = [0 = 91 + P00

we shall employ the Rodrigues formula and integration by parts.
This method incidentally furnishes a second derivation of the
orthogonality property (4).

From (7), page 257, we obtain

(6) (1 — z)*(1 + 2)fP, =P (z) = (2,. ; DA (1 — g)nta(1 + z)n+8].

Therefore, if Re(a) > —1 and Re(8) > —1,

(7) f_ll(l — 2)(1 + z)8P, @8 (x) P8 () dz

D[ (D = aymse(1 + 2)723]) Potet (a) .

nnf

On the right in (7), integrate by parts n times, each time differen-
tiating P, #(z) and integrating the quantity in curly brackets.
At the kth stage the integrated part,

(Dr+[(1 — z)v+e(1 + 2)7+8] DE1P (o0 (z)

is zero at both limits because of factors (1 — z)*+«(1 + z)**# with
Re(a) > —1 and Re(8) > —1. After n such integrations by
parts, we have

(8) j:‘l(l — 2)3(1 + 2)8P, @8 (2) P, (z) dz

(—l)zf (1 — z)m+a(l + 2)"+8[DrP @B (z)] dz.

21

If m 5 n we may choose n to be the larger (or interchange m and n
in the preceding discussion) and therefore conclude that

(9) f (I = 2)*(1 + z)fP, =P (z) P, @’ (x) dx = 0, m # n,
-1

because P,(=#(z) on the right in (8) is a polynomial of degree m.
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In (8) we have a tool for the evaluation of the g, of (5), but we
need D~P,(«:#(x). From

—-n,1+ a4+ B8+ n;
P,@®(z) = W 2F1|: 1 — x:l

1+ o 2

and repeated application of the formula for the derivative of a
.F1 (Ex. 1, page 69), we obtain

D"P, .8 () = (=" + a)u(—n) (1 + a + 8 + n),,.

n!(l -+ a),,
o) |
14+ o+ n,
from which
(10) DP e d(z) = LT a Tt B

21+ a+ B)a
Now (8) with m = n yields

gn=f31—m%1+w%ﬂ“W@PW

_ (1 + a + ﬂ)2n ! _ nta n
= Sl F a + 8). _1(1 z)nte(l + x)nt+8 dx.

But, by Ex. 7, page 31,

1
f (1 — x)n+a(1 + x)n+ﬂ dx = 22n+a+ﬂ+lB(1 + a + n,l + 8+ n)
-1

_ 2t T(1 + o+ n)T(A + B+ n)
B T2+ a«+ B+ 2n)

Hence
_ 1+ a+ B2*e+T(1 + a + n)T(1 + 8 + n)
gn WA+ a + B)aT(2 + a+ 8+ 2n) ’
or
(11) p 21+e+87(1 4 o 4+ n)T(1 + B8 + n)

T Fat+ B+ Fat B+n)

From (10) we conclude that
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(1 + [&] + B)%‘xn
2l + & + ),

in which =,_,(z) is a polynomial of degree (n — 1). In the notation
of Theorem 58, page 154, we have

h. = (l + a + B)Zn .
21 + a4 B).

(12) P,@0(z) =

+ 7""—1(:1:):

Then

(13) P (n+ DIT@ + a + 8+ n)

Guhns1 2972 + « + B + 20)T(L + a+n)T(1 + 8+ n)
With (11) and (13) at hand, the Christoffel-Darboux formula of
Theorem 58, page 154, may now be written explicitly, if desired.

By combining Theorem 54, page 148, with equations (11) and
(12), we conclude that

1

(14) f(1-—-x)“(1—|—x)f’x"P,.(“'5)(x)dx=0, k=0,1,2,--,(n—1),
-1

and

1
(15) f (1 — 2)=(1 + z)62"P, =0 (z) dx
-1
_ 20t b(l 4 o + )T+ B+ 1)
- T2+ a+ B + 2n)

Fora > —1, 8 > —1, the zeros of P,«®(z) are distinct and lie
on the open interval —1 < z < 1. We may also apply Theorem
59, page 156, if we wish.

136. Differential recurrence relations. In the generating re-
lation (10), page 256, put z = 1 — 20 to get

1+ a4+ 8),32+ o+ 8); |
(1) (A = p)tmeb,F T i |
1+ o |
_$ Ut p).P00 = 200
B n=0 (]- + a),.
Now we see that Theorem 48, page 137, with

1+ « +)

¢c=l+a+s 7"=22"n'(+
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applies to the polynomial

(1 4+ a+ B).Puf=?(1 — 2v)
1+ @)

fa(0) =

The five results in Theorem 48, when put in terms of x rather than
v, yield our definition, page 254, of P,=#(z) and the four other
properties

2 A—-o2)m=
(=) 4+ a+ B+ 201 + a + B)iliP(2)
221 + o)y é T4 at Bran(l F o) )
(3) (x = D[(e+ B+ n) D P, >®(x) + (a +n) D P, =8(x)]
= (a+ 8+ WP9(@) = (a + )P @], D=1

4) (z — 1) D P,@®(z) — nP,@8()

. =t a, U +at B,
(1 + o + B)n A=0 (1 + Ol)k

[(1 4+ a+ BPuad(x) + 2(x — 1) D Pya(z)],

(5) (x— 1) D P,=”(x) — nP, =8 () = (1 + * j_f)ﬁ)n
2‘: (=D *1 + a4+ 8+20)(1 + a+ p)iPu=P(z)
(1 + o)«

The relation (3) is an ordinary differcntial recurrence relation,
with derivatives and shift of index involved but no shift in the
parameters « and 8. We seek two such relations to furnish the
groundwork for others and for the pure recurrence relation. We
know

P,.0(—z) = (—=1)"P, ‘=8 (z).

Therefore in (3) we interchange « and 8 and replace z by (—2) to
obtain

6) @+ D+ 8+ n) DP«o@) — (84 n) D Paye9(2)]
= (@4 8+ W[P=0@) + (8 + MPu= 9 ()]

Let us eliminate D P,_,=®(z) from (3) and (6). The result is
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(7)  (a+8+2n)(z*—1) D P, »(x)
=n[—a+(a+B8+2n)z]P.(= P (z) —2(a+dn)(f+n) P_(=P ().
137. The pure recurrence relation. If we use (7) above twice in

(6), we arrive at a relation involving only shifts in indices, the pure
recurrence relation

(1)  2n(a+B+n)(at+B+2n—2)P, =0 ()
= (a+p+2n—1)[a?— B +z(a+t B+2n) (at B4 2n—2)]Po_y(=P(2)
—2(a+n—1)(B+n—1)(a+B8+2n) P, (=P (x).

138. Mixed relations. I‘rom the definition

—n, 1+ a+ B+ n; _
(1) P,b(z) = El_j;be ZFI[ 1__:1:]
’ 1+ o
it follows, with D = d/dx as usual, that

1 a)a(l «
D P,«8(z) = nd + )2((1 :a)yj!' Btn),

[—n+1,2+a+6—|—n; :I
1—=x
oy 5

2 4+ o;

_ (2+a)n—1(1+a+6+n).
2(n — !

[~<n—1>,1+<a+1>+<e+1>+n—1; 1_1}
ZF] )

1+ (a4 1);
so that
(2) D P,=p(z) = 3(1 + a + B + n)P._, (=840 (z).
Iteration of (2) yields, for 0 < £ £ n,
(3)  DFP,=B(x) = 27*(1 4+ a + B + n)pPa_x etk 8+0(x),
In Section 132 we found that -

n - "‘B - N,
a _(1"'“)"{35"‘1) ™ e
(4) Pnlo2(z) = n! \ 2 Jl[ 1+ o z+1
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Differentiation of both members of (4) yields
D P,«®(z) = n(z + 1)-'P,=8(x)

(2+a>n_1(6+n)<x+l>n_l F[—n—f—l, —B—n+1; x_l}
_' 1 < 24’1 T B
(n—D1z+D\ 2 L4 (et 1); z+1

+

from which it follows that
(5) (x4 1) D P, =t(x) = nP,=8(x) + (B + n)P._=*8(x).

In the same mannecr the known relation [(8) of Section 132]

" —n, —a — n;
(6) P, «d(z) = (1 ;};’.ﬁ@ﬂ(x ; 1) 2[«'1|: ?f}f_ljl
' 1+ 8;

leads us to

(7) (x = 1) D P,(ap(z) = nP,=P(z) — (a + n)P,_, =8+ ().
From (5) and (7) it follows that

(8) 2D Pue0(2) = (8 + n)Pus18(z) + (at n)Poito840(z),

If we use (2) in (8) and then shift n to (n +1), @ to (« —1) and 8

to (8 — 1), we obtain

(9) (at B+n)Pole9 (z) = (8-4n) Polo-8-0 () + (af-0) Py o=1-)(z).

We next seek to express each contiguous (a or g increased or
decreased by unity) Jacobi polynomial in terms of the original
polynomial.

In Ex. 22, page 72, we found that
(10) F(a, b;c;2)

=Fla—-1,b+1;c;2) +c(b+1—a)zF(a,b+ 1;¢c+1;2).
In(10)putea = —n,b=14+a+ 8+ n,c=1+a,z = i{(1 — 2),
and simplify the result to obtain
A1) H2+a+ s+ 2@ — DP9 ()

=+ PP (x) — (1 + a + n)P, ().

In Ex. 23, page 72, we found that

(12) (c—1—=0b)F(a,b;c;2)
=(c—a)F(a—1,b+1;c;2)+(a—1-b)(1—2)F(a, b+1;c;2).
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In(12)puta= —n,b=14+a+8+nc=14+a2z=1%11—-2)
to obtain

(13) 3@+ a+ 8+ 20)(& + P840 (z)
= (0 + DPur@®(@) + (1 + 8+ n)P,=9 (@),
The contiguous function relation
(@ — b)F(a,b;c;z) = aF(a+ 1,b;c¢;2)— bF(a, b+ 1;¢;2)
leads in the same way, after a shift from g to (g— 1) to

(14) (e + B +2n)P, (x5 (x)
= (a+ B8+ )P, «®(x) + (e + n)P._=#(x).

From (9) and (14) it follows that
(15)  (a+ 8+ 2n)P, = P(x)
= (a+ B+ n)P, =P (x) — (B+ n)P,_ =P (x).
Finally, (11) and (13) combine to yield
(16) (1 4+ z2)P.t=8+v(z) + (1 — 2)P, ‘et1.8(x) = 2P (.8 (x)
and (14) and (15) combine to yield
(17) P, (a8-D(g) — P, le=1.8)(g) = P,_ (=8 ().

139. Appell’s functions of two variables. One of various waysin
which the .F, function has been generalized is to functions of more
than one variable. Of these a fruitful set is that of Appell’s four
functions*®

i (@) n4 £ (b) £(b") nhy"

n, k=0 k!n!(c),.+k !

+£(D) (V") n by
etnl(e)u(e’)n 7

Fi(a;b,b";c;2,y) =

Fia;b, Ve o) = 3 @

Fila, ;b 055z, y) = 5o (000002
k

= EnY(C) g ’
R _ 3 @ags(D)ui sy,
Fula, bie, 52, 9) = 20 “1t(e) e

*See Appell and Kampé de Fériet [1].
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The four functions above have many intercsting properties, for
which see the reference in the footnote or Bailey [1] or Erdélyi [1].
Here we need only two theorems on Fs, and our discussion is limited
to what we need.

Consider

\—a(] —z E— .
(1) y=>0Q-2)(1—y)"- F4(a bye,c’; T2 (1=g) (l—x)(l—y))
From the definition of F, we obtain

S5 (@) — D) riciyr
TSt KInt(e)(e) (1 — x)mkta(1 — ) ntked

Now
e > (a4 n + k)at
(1 —z)memnmt = 2 7!
and
cbenek _ (b0 + Ry
1 -y "—;) R
Hence
Y = - ('—1)n+k(a)n+k+i(~b)n+ls+sxk+iy"+'
n,k,s,i=0 S!i!]ﬁ!’n!(c)k(c'),,
so that

k .
— S (—1)"+""(a)n+k(b)n+k+3_ix'°y"+"
V= 2 S Al (), (),

Let us reverse the order of the inner summation and write

— S - (_1)2(b)n+~9+z (=1)™(a)nprxryr+te
V= Zﬂw—@w)

n,k,8=0 2=0 Cs 8'7L'(c’),.

. —k, b4+ n+s; (=1)n (a)nH(b),,Hx"y"*’
’02 1 klslnl(c"),

Ead

I
™Ms

n, s

¢;
Then

n

c:

k, b+ n;
. b+ (= 1)"+(@) o i (b) iy
;0 g [ l:l Llsl(n — $)1(c)nzs

and we reverse order in the inner summation to obtain
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n —k, b y ]
_$ S (D@ g SR (R
n, k=0 2=0 3'(" - 3)’(CI) ' . _J kL
c’
or
—n,a+ k; —kb+n; ]
® ) ; ) ) (@) 5 (b) kY

Now recall that in Ex. 6, page 128, we found, with different nota-
tion, that if m and v are non-negative integers,

—m, d + v;
(3)  oF ) 1|=0, form >~
d;
= ((:1)773"', for0 s m < v.
With (3) in mind we turn to (2) and put ¢’ = a, ¢ = b.
Since
—n,a + k;
F 1{=0 forn > k.
a;
and
—k, b+ n;
F 1{=0 for k > n,
b;

the only terms remaining in the double summation (2) will be those
for which & = n. Recall the definition (1) of y. We thus arrive at

—a(1 — 7)=b . . —Z —Y
(1 - .’E) (1 y) F’4<aa b7 b’ a,; (1 _ .'13)(1 _ y)y (1 _ I)(] _ y))
(=n)a (=), (@)a(b)az"y"
- ,,z;o (@), ®.  aln!
—_ i x'nyn

n=0

= (1 —zy)~\
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THEOREM 83. If neither a nor b is zero or a negative integer,

. . - ~Y
(4) F4<“’ LR G s v ) U g s g y>>

= (1 — 2y~ = 2)«(1 = )

Next let us return to (2). Since the two .F,’s with unit argument
terminate, we may write

& T(e)T(c'—a+n—k)T(c)T(c—b+ k~n)(a)(b).xty"
et T(c’+n)I'(c’—a—k)T(c+k)T(c—b—n)k!n!

We know that

Tld+mn) _ g rd—-d=n_ (=D
r(dy — " rd—d — (d),’

¢=,

SO We may write

5) ¢ = i I'c"—a+n—=kKrlc—b+k—n)

nife0 (¢’ — a)T(c — b)
(@)x(0)a(1 = ¢’ + a)i(1 = ¢ + b)a(—=1)"+rzhy
Elnl(c).(c)r

If we so choose ¢’ that the arguments in the Gamma products add
to unity, we may use the formula
Irz)r(l —z) =

™

sin w2

Hence we choose
¢ =1—c+a-+b
Then

r(c’—a+n—k)T(c—b+k—n) T(1—c+b+n—Fk)T(c—b—n+k)
r'(c’—a)T(c—b) B r'(l—c+b)T(c—b)

sin 1r(C - b)
sinwic —b—n+ k)

_ sin w(c — b) T
~ (=1)"*sin r(c—b)m( Dt

Therefore (5) yields, for¢’ =1 —c + a + b,

Y = i (a)k(b)n(c — b)k(l - c + b)":[:kyn
e kWl —c4a+b)a(e)r
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& @iec =l & (B).(1 — ¢ + b).y»
"“[Z_ _[,gn!(l—c-ka—}-b)n]

a,¢c — b; 7] 1 —c+b,b;
= HF, x| A Y
c; J 1 —c+ a+ b;

@by _ ab;
= (1 —x)~+(1 — y)=?,F, T2 oy . 1__.J_g; :
c; 1—c+a+b;

TaHEOREM 84. If neither ¢ nor (1 —c+ a4+ b) is zero or a
negaltive integer,

. -z o -y
(6) F4<a,b,c,l c+a+b,(1 x)(1~—y)’(1—x)(1—y)>

a, b; _ a,b; _
c; l—c—l—a—l—b; y

In (6) replace x by —z/(1 — z) and y by —y/(1 — y) to obtain
the equivalent result

(7) Fa,b;¢,14+a+b—c;a(l —y), y(1 — 2))

a,b; a, b;
= Ll x| off Y-
c; 1 +a+b—c

Theorems 83 and 84 furnish the tools we nced in the next two
sections.

140. An elementary generating function. On page 255 we
obtained the result

a,f) — - (1+a>"(1+6)n (x_l k x+1 n—k
(1) P,an(z) = kz=:o/\'!(n—/\')!(l+a)k(l+6),,_k\ 5 >< 5 )

With the aid of (1) we find that

©

woimm — o (At a)ux(148)npi[3(@—1)]4[} <x+1>]ntn+f»
2 Pt = 20 kin!(14a)i(14-8)a

n=0 n
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of which the right member is an Appell F, as defined on page 265.
In fact,

(2) T Pued(@)tr = Fu(1+8, 1+ a; 1+, 14 6; Ji(z—1), 3(z+1)-
n=0
By Theorem 83, page 268,

. . —u —2
(3) ﬂ@ﬁﬁ”wl—wa~ww1~wﬂ—w)
= (1 = w)(1 = we(l - v,

andweputa =14 8,b =1+ ¢,

(4) —u _Hx—1) —v _ x4+ 1)
1 —w(l —v) 2 (1 —w(l —v 2
As usual, let p = (1 — 2zt 4 )}, Consider
2 2
®) S S ey

From (5)

—u _ 1 (1_ 1)_1—z+p<1__1+t+p>
1—w@—v) 1—v 1—u/ 2 2

A—t4pU—t—p) _(1—0=p tz—1)

4 4 2
and in the same way,
—v _A 40— Uzt+1)

(1 —wu@ —v) 4 B 2
as desired. Also

1 1 1 1

T—:—u—-§(1+t+P), Tf&=§(1—l+p),
from which
1 1 1 —wv
Al peeviLl gt (1 —wu(l —v)

Hence
(1 —uw) (1 — w1l —v)® = p~1(1 — w)* (1 — v)2—Y,
so that (2) and (3) yield
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©

ZP (a.d)( )tu — —1( 2 >ﬂ< 2 )a
L T = T T )\ U=+ /)

or

6) 3 Paew@r = 20971+t + p)(1 = L+ ),

ne=0
in which p = (1 — 2zt + %)%
141. Brafman’s generating functions. Consider the sum

(7)a(8) Pate B ()1
W ST 8

S Z (M)a(8)a[3x — DI*[3(z + D]Hn
0 k=0 k'(n - lv)'(l + Ol)k(l + ﬁ)n k

==i(ﬂw@wﬁm—lwww+ﬂk
Pl Eln!(1 + a)x(1 4+ B8).

"M

n,

= Fu(v, 551+ o, 1 + 65 3z — 1), §t(z + 1)
Theorem 84, page 269, yiclds

) . —u —v
F4((l, b,C, l1—c+a+ b; (1 — u)(l - U)’ (1 _ u)(l — 1)))

a, b; oy a,b; .
= o 1 —u £y 1—v|
c; 1 —c¢c+a+b;

The F, in (1) will fit into Theorem 84 if we choose
l1+8=1—-(14+a) +v+3,
ord=14+a+ 8 — v, and

—u _tx—1) —v _tx + 1)
(1 —-uwl —v) 2 7 (1 —u)(l—0v 2

These are the u and v of the preceding section and

R e ol (R DR (Rt

1 =301 —=t+p) =31+1t— 0.
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Hence (1) becomes

(2) i (Vall + a4+ B — ‘Y)nPn(""”(x)t"

n=0 (]- + a)n(l + B)n

-'Y) 1 4+ o+ B — v; 1 ¢ ]

- - P
= ,F, — .

L 1+ [e ]

_’Y} 1 + a + B - 'Y! 1 t ]

—p
T, .

L 1+ B; .

in which p = (1 — 2zt + #*) ! and v is arbitrary.
The set (arbitrary v) of generating functions in (2) was discovered
by Brafman [1].

142. Expansion in series of polynomials. It is at times desir-
able to expand the general Jacobi polynomial in a series of simpler
polynomials. We shall now exhibit a technique often useful for
this purpose and always available when the simpler set is one of
special Jacobi polynomials.

In the next chapter we discuss briefly the ultraspherical poly-
nomial which is merely the special case 8 = « of the Jacobi poly-
nomial. As an illustration of the method under discussion we
propose to obtain in explicit form the expansion

(1) P.b(x) = }5 A (k, n)P=o(x).

Expansions of the Jacobi polynomial in series of other special Jacobi
polynomials will be found in the exercises at the end of this chapter.
An expansion of P, #(x) in a bizarre combination of elements of
different sets (varying «) of ultraspherical polynomials will be found
in Brafman [3].

Naturally we do not use the orthogonality property for the
explicit determination of A (k, n), since we have generating functions
available.

From equation (4), page 255, we get

(14 a4+ B).P.?(2) (=11 + a+ Bl — z
(I + o). s:zos'n—s)'(l-i—a)< ‘))’

(2
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The use of B = « in equation (2), page 262, yields

1—-x\' _ —1)*(14-2a) o(142a+21) Pyt (z)
(3) ( > (H"")s'};. (=) (142a) tsers(1F o) '

Consider the series

(4) ¢(x’ t) — i (1 + o+ B)npn(“'m(:l:)t".

n=0 (1 + a)n

Using (2) and (3) in the right member of (4), we obtain

He (— 1)(1+a+l3)n+s( ‘Q—x)"tn

‘g Zg: slin — )1 + a),

(=11 + a+ By S

- n.sZ=0 sln!l(1 + a),
Z‘”: : (=1t (1+a+B)nie(142a) i(142a+2k) P lao(z)tn+s
n,s=0 k=0 n!(S - lv)!(l + 2a)5+k+1(1 + a)k

o 3 (ED0tat B aen(1420)u(1+2at 20 Pue o @)kt
n,k,s=0 n!S!(l + Qa)s+2k+l(l + a)k

We now rearrange terms in the above to obtain

¥(z, 1)
Z"’: Z" —1) (14 a+8)urerer(142a) (1 4+2a+2k) Pile@ (x)tn+*
n, k=0 s=0 S!(n - S)!(l + 2a)s+2k+1(1 + a)x

- -n,1 4+ a+ B+ n+ 2k

= Z o0 1.

mok=0 2 + 2a + 2k;

(1+ o+ Buan(l + 2a)i(1 + 2a + 2k) Pulm(@)tntt
n!(1 + 9a)2k+1<1 a)k

The above ,F, with unit argument has the value

(=B — a)n
(2 + 2a + 2k),

for which see Ex. 5, page 69. Therefore,
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¥(z, 1)

i (—1)*(B—a)u(14+ o+ B) wyn(1+2a) (1 +2a+42k) Pyl (x)tn+k
n\ k=0 (1 + 2a)ni2641(1 + @)

= 33 Ak Py z)tn

in which
A(k,'n) - (=) *(B—a)n_ k(1+a+5)n+k(1+2a) (1+2cx+2k)

(n — k)11 + 20)mrrni(l + a)s

Using (4), we may now conclude that

(5) P, (x) = (_1%_)_%) iA (k,n) Pyla(z)
with
A(k n) — <—1)"_k(6—a)n—k(l+a+ﬁ)n+k(l+2a)k(1+2(1+2k>

m — )1 + 2a)nysa(l + @) ’
‘which is the result desired.

EXERCISES

1. Let
1—z
n (b -~
(14 z2)~P, ( .

(1 4+ &)a(l + B)n

Use Bateman’s generating function, page 256, to see that

gn(x) =

Zogn(x)t" = oFi(—; 1+ a; —xt) F1(—; 1 + B;0)

and thus show that, in the sense of Section 126, g.(x) is of o-type zero with ¢ =
D(0 4+ «). Show also that g.(z) is of Sheffer A-type unity.
2. Show that

a B a,fB
2a(a+ B+ n) DPy (@) + [2(a — B) — (a+ B+ 2m)] D Prsy (2)

a, a,B
—at B+ m2P " @) = (@ BPr @],

which reduces to equation (2), page 159, fora = 8 = 0.
3. Show that

(,8) (a,B)
2a+B+nDP, ()+[a~B—2(a+ B+ 20)]DPny (2)
(a,B)
= (a+ B+ n)(a + B+ 2n)Pur (2),
which reduces to equation (6), page 159, for a = 8 = 0.
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4. Show that
2n(a + B+ n + 1) D PSP (2)
+ [« + 8)(n + 2)z + n(a — )] D PoH(z)
+ (0 + D« — Bz — (a + B+ 2n)] D PP (2)
=n[2(n+ (a4 B+n) + (a+ B+ n+ D(a + 8 + 20 + 2) P (z)
— (@ = B)(n+ D(a+ g+ n)Pf(2),

which reduces to equation (5), page 159, for « = 8 = 0.

5. Use the method of Section 142 to show that
(@ (=D HB) w1t @t Blaa(l et 2Py (),
(L+a+ B)nizo (n — BN 4+ @)prrn

6. Use the result obtained in Section 142 to evaluate

P a.B (1) =

1
f (1 — 2P, @B (2) P (@@ (1) da.
-1

Ans. For k > n the integral is zero; for 0 < k < n, it has the value

(=D *B — @)ni2"T(1 + a+ T+ a+ HT(1 +a+ B8+ n4 k)
Eln —BR)!IT2 4+ 20+ n+ ET1 + a + B+ n)

7. Use the result in Ex. 5 above to evaluate
1
f (1 — 2)aP, @B (2) P (a0 () dx.
-1

8. Use Theorem 84, page 269, with y = ¢ = —u/(1 — v) to conclude that

a, b, a, b;
2F1[ v:| ZFI[ U]
c; l+a+b—c;

a,b,3(a+0),4a+ b+ 1);
= ,Fy4 4(l —v) |-

at+bc,l4+a+b—oc;

9. Use the result in Ex. 8, above, and Theorem 25, page 67, to show that

a, b; 2
oFf Y
a+b+4;

2 2a,2b,a + b;
= 3Fy vl
2a 4 2b,a + b + &;




CHAPTER 17

Ultraspherical

and Gegenbauer

Polynomials

143. Definitions. The special case 8 = « of the Jacobi poly-
nomial of Chapter 16 is called the ultraspherical polynomial and is
denoted P,‘=-®(zx). The Gegenbauer polynomial C,*(x) is a gen-
eralization of the Legendre polynomial and is defined by the
generating relation

(1) (1= 2et+ ) = 3 Corl@)in

If we put 8 = « in equation (10), page 256, we obtain

b a1+ a

2i(x — 1)
(2) (1 —¢t)-1-2e zF1|: —= 5 :|
1 + o (1 - t)

_ d (1 + QQ)HP”(“"’)(.’E)V
B Z:O (1 + a)n '

in which the .F, degenerates into a binomial. Indeed, the left
member of (2) is

Dt r — —d-a
(1- t)_l_za[ _ :(f,;_-y__ t)l‘ll] (= ot 4 e
Hence
3) (1 — 22t + t3)—4-—= = i (1 + 2a),Pot= = (2)tm

n=0 (1 + a)n
276
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From (1) and (3) it follows that the Gegenbauer and ultraspherical
polynomials are essentially equivalent:
(2v) P 0= =D (g)

(V + %)n ’

. a . (1 + a)nCna'{b!(I)
(5) P, (z) = T %),

For some purposes the C,’(z) is a more convenient form; for others,
the P,(=.2(z) leads to neater looking results.

(4) C. v(x) =

144. The Gegenbauer polynomials. The polynomial C,*(z) de-
fined by

(1) (1 = 2t + )= = 3 Cor(a)tr

retains most of the properties of the Legendre polynomial of Chapter
10. Note that
P.(x) = C.¥x).

We here derive a few of the results for the Gegenbauer poly-
nomial C.*(x). Many other properties of C,*(x) are then listed,
and it is left to the reader to obtain them either by using the methods
of Chapter 10 or otherwise.

From (1) it follows that

é Co@itr = 3 ()" (22 — )"

n (_l)k(y)n(Qx)n—ktn+k
n=0 k=0 k!(n - A,)!

SR (=D H) noil(22) 20

=X Kl(n — 2k)!

Hence

"N (= Do) i(22)m 2

(2) Cw@) = 2 1 = 9!

If » is neither zero nor a negative integer, the C,*(z) form a simple
set of polynomials and

2n(») 2"
S

C,,”(II?) = + T
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It follows readily from (1) and (2) that

3) Cur(=2) = (=1)"C(@),
@ cony = 2,
- 1)*(v). . :
(5) Cn(0) = (T e o) = 0,

Since, by (1),

ioc,.v(x)tn = [(1 = 2ty — ez — 1)]~

v)u(a? — 1)kek
(1 — xt)27+21c

1l
1l MS
1A

—_ i (») £(20) poarzn(2? — 1)*En+2k
o Kl (20)0r

= i (2v) pparxn(x? — 1)*gnt2k
ni k20 Elnt22(p + 1),

it follows that
[n/2] (21/),,20"‘2"(:1:2 _ l)k

(6) Co(z) = ,é 251 (v + 1) a(n — 2k)!

Equation (6) yields

© _q’}v(x)t" . i xn(x2 —_ 1)ktn+2k
S0 (20)a WS 2%kI(v + 3)en!
so that

- ; 2 2 © Y n

(7) ex! QFI[ ﬁ%__l_)jl — Z C" (x)t .
v+ 35

For arbitrary v, (6) yields

1) Cw(@)tr X (V) apman(@? — 1)kn2k
; (2v)n ,.%o QZkk!(v + 1!

_ i (,y)%(xz — l)thk .
=022k (v + 1) k(1 — at)vr2k

[Ch. 17
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Hence

3, 3y + 3 sl )
® 1O - xt)**zFl[ ﬂ?___l_)J Z (M) Co(@)tn

)41 (1 — at)? = (2v).
The methods of Chapter 10 also yield the following results:
) 2 DC(@) = nC.@) + DCiy(), D = o
(10) 2(v + n)C.'(x) = DCy1(x) — DC,_(x),
(11) z DC,'(x) = DCrpu(x) — (2v + n)C. " (2),

(12) (22 — 1) DC.(z) = nzC,’(x) — (2v — 1 + n)Ch_y(2),

(13) nC.(x) = 2z(v + n — DCas(z) — (20 + n — 2)C_o(x),

(14) (1—2%) D? C(z) — (2v+1)z DC.*(x) +n(20+n)C,7(x) =0,
n, 2v + n;

(15) Cta) = O ‘[ | 1 x]
n! .. 2
v+ 3

@252
E "kl (n — lg)'(f >2)k.

Reversal of order of summation in (15) yields
n —n, 3 —v —mn;
2n n — 1 ’ 2
(16) Cu(z) = 2_5:!_)_(.’5_2__) 2F1|i 1—_—_—‘@}
) 1 -2y — 2n;
The use of Theorem 20, page 60, on (15) gives us

(17) Cur(a) = (2”>(x+_1>"F—n’%—y_n; i
v 2 . e z+ 1
v 2

g e NEH)T
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The property (3) of this section can be used to get other forms of
C.'(z) from (15), (16), and (17).
Equation (17) yields the Bateman generating relation

T a1 BN CE))
(18) oFILJr?‘ 5 }FIL N 5 J

C.r (t)t"

T2 200+ D

From (2) and (6) it follows that

(19) Cor(2) = (”M"}Lz [ ljl’

1 —v —n;

—2n, =Ntk .
(20)  Cu(z) = (2”} x--m[ %_ZJ}.
' v+ 3;

Brafman’s generating function, page 272, becomes

20 — v; , 2y — v;
TR A el Y U A e s ey
v + & 2 v+ & 2

— ; (7)"(2:},)— 7)71 /7)' (.’E)l"7 p = (1 — 2t + tr_l)%.

With the aid of the methods of Section 95, we conclude from the
preceding (7) that

(22) C.r(cos a) = (Sin a) 2 (n —(21:))!"(21');; )

sin B/ =0
. 1‘—k
[Lﬂiﬂ:ﬂ] C.(cos B),

SN «

and from (1), page 276, that

> i n + /x) (",LH(x)t"
k=0

(23) prmCe ( kin! ’

with p = (1 — 2zt + )4

p
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Equations (23) and (7) of this section lead us, by the method of
Section 96, to the bilateral generating relation (See Weisner [1])

@ oo U] F[ ’ MLL_—L)}
v+ 4

& nlL,e-n(y)Cr ()t
B g) (2¢)n ’

in which L,@-(y) is the Laguerre polynomial of Chapter 12. The
same procedure can be used in applying (23) to the relations (8),
(18), and (21) of this section.
From (6) we obtain
B (1) ar2k (22 — 1)*

Cur(@) = 2w 2 (550 = 20016 + Ds

and thus derive

(25) C.(x) = (27;);(1 5T0 ) f [z 4+ /22 — 1 cos ¢]" sin?~'y de.

Forv > 0and —1 £ z = 1, (25) easily yields the following bound
on the Gegenbauer polynomial:

—

Corta)l = 2.

Either the differential equation (14) or the Rodrigues formula

(26) C.r(z) = (_213;(5”3}2(1): xz)i_yn(l — x2)ntr—t; D = d%’

leads to the orthogonality property
1

27) f (1 — z?)-#C,"(x)C’(x) dx = 0, m # n.
—1

From (26) it follows that

o . (20) . T(HTH + 1)
@9 0= [ (1= @C@Pdz = CHIOTEAD,

In the notation of Chapter 9, the leading coefficient in C,*(z) is
hn = 27(v),/n!, and we may now apply the theorems of Chapter 9
to the Gegenbauer polynomials, if » > —1.
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The differential equation (14) leads also to the evaluation

29) (n—m)(n +m + 2v)fb(l — z2) 0 (2)C () dx

b
= l:(l — 22)+{C,(z) D C,’(z) — C.’(z) D C,,"(a:)}:l .
Following the technique suggested in Exs. 1 and 2, pages 182-183,
we find that
(30) C,(x)

S N ONONNCE Y/ s Vet Ve 1L
= Bln — 1)1

B () u(x + \/5:2 — 1) F[ —n, v,
- n! 247 1

l—v—n;

@ - vxT:—m}

From the generating relation (6), page 271, we obtain

(31) 2=tp=1(1 — at + p)i— = i (v + 'z)nC,.”(x)t"’
n=0 (21!)"
with p = (1 — 2zt + ©) 1.
Since
.
H= = (1 — )~ Co 21— o)
doamrnm=t-0 1F0|:_ (1 — ¢)? :l,

Theorem 48, page 137, is applicable to C,*(x) with a slight change
from z to (1 — x) in variable. We thus arrive at the following
results:

1 — " Z —1)*(» k i
@ () = pa g (CRa T v

(33) (x —1)DC,(x) — nC,(x)
= —2v+n—1C,_(x) — (x — 1) D C,_y(2),
34) (x — 1)D C.(z) — nC,*(x)

n—1 n-1

= —2 Z Ce(x) —2(x — 1) Z D C(x),
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n—1

(35) (x — 1)D Cu(x) — nCpr(x) = 2 Az;u (=1)=*( + k)Cr(2).

The method used to derive the formula of Theorem 65, page 181,
leads us also to

(36) @) _ S (vt n = 20)Chn(@) |

n! ke k!(”)n+l—lc

Equations (32) and (36) simplify the task of expressing various
other polynomials in series of Gegenbauer polynomials. See the
exercises at the end of this chapter.

From (30) in this section it follows that
= () k() ur cos(n — 21{3)0

(37) Culcos6) = 2, Kl(n = 1!

Various mixed recurrence relations are ecasily derived. For
instance,

(38) 20(1 — 2)CF(x) = (n + 20»)xC, (2) — (n + 1)Crpi(2),
(39) (n+»C) = (v = D[Cru(x) — Chi(@)].

For expansions of analytic functions in series of Gegenbauer
polynomials, see Boas and Buck [2; 58] for existence, uniqueness,
and region of convergence; use equations (32) or (36) to obtain the
explicit coefficients.

145. The ultraspherical polynomials. By means of the equation

(Qy)npn(v—l.v—l)(x)
(V + %)n ’

(1) Cw(z) =

or its equivalent,
v (14 a),Crati(x)

(2) Pn( ' )(x) - (1 + 26!),, )
results obtained for the Gegenbauer polynomial C.’(x) may be
transformed into results on the ultraspherical polynomial P, «(z),
or vice versa. We leave it to the reader to obtain from equations
(1)-(39) of the preceding section the equivalent statements regard-
ing P,(=o(x),

Certain properties of the ultraspherical polynomial are due solely
to its being a Jacobi polynomial; others are peculiar to P, ®(z)
because of the equality of g and .
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EXERCISES

1. Show that the Gegenbauer polynomial C,*(z) and the Hermite polynomial
H,(x) are related by

[n/2]
=) *(0)n—id
Co(z) = ’;szo(—k, v+n—k; —; ])( ;C‘((';z —ka) 'Zk(z) A

2. Show that

[n/2] n — 9ONe’ .,
Hala) _ 5 ()R (=i 4 4 m — 2k ) = HHCndD)
. k=)

_/»:!(1’ nwyl—=2k
3. Show, using the modified Bessel function of Section 65, that
et = (3)7T() 22 (v + n) L a(t) (e (2).
Nae)

4, Show that

Cr(x) = [“z/‘f]‘(f’ - %)k('{_)gz—k(l + 2n __il_‘)P,"“z_"E)

" #().




CHAPTER 18

Other

Polynomial Sets

146. Bateman’s Z,(x). One reason for interest in the poly-
nomials f.(z) generated by
M (1 - () = 5@

(1 _ t)z - “~ n x )

which were touched upon in Section 75, is that so many special
cases of the f.(z) have arisen in recent studics. In 1936 Bateman
[2] was interested in constructing inverse Laplace transforms. For
this purpose he introduced the polynomial

(2) Zn(x) = ZFZ(—n7n+111v lvx))

for which we obtained a pure recurrence relation in Ex. 1, page 243.
By Theorem 48, page 137, with ¢ = 1 and v. = (3)./(n!)2, we
obtain

-1 b —4at | & i
3) 1-9 1F1|:1‘ a=o t)2:| = ;Z,,(x)t ,
4 2 = (nl)? Z (—n)(2k + DZ(z)

h=0 (n + k+ 1)! !

(5) 2, (x) — nZn(x) = —nZ.(x) — 2Z.:(2),
285
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(6) xZ,' (x) — nZ,(x) = — :Z::Zk(r) — 2z :Z::Zk'(x),

n—1

(7 xZ, (x) — nZ.( Z (—Dr*2k + 1)Z ().

Equation (3) was given by Bateman [2], (5) by Sister Celine [1],
(7) by Dickinson [1], and (4) and (6) are immediate consequences
of (3). Note that, because of Kummer’s seccond formula, page 126,
(3) may be written

® (=0 le"p[(l 25)2] °F[ 1’ T'xitz?f}

)

= (1 -1t exp[(l_fxtt)?] IO[ i — 2zt ] Z 7. (2)tn,

which is the form Bateman used.
Bateman moved from the Z, to the more general

(9) Fo(=n, 20 +n;v + 3,1 + b5 1),

which is an instance of one of the generalizations (Rainville [6]) of
the Bessel polynomials (Krall and Frink [1]) of Section 150. We
shall now exhibit the relation between the polynomial (9), including
Z, as the special case » = 1, b = 0, and the problem of inverse
Laplace transforms.

With the usual notation

L0 = [T it = 19; FO) = L),

we seek
(e Rt e S NS

(10) F(t) = L—‘{
In terms of the Gegenbauer polynomial of Chapter 17,

L s — 1
_ e ¢, <s + 1)2
F{) = (14 b)L~! z;o 1 5

- C’,J(l — g)z"
g —

=e¢tT(1 + b)L Z prey
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Now

C,.”(x) —(—2&2171( n,2» +n;v + 2,2(1 ))

so that
_ (2 1
F(t)—etr‘(l-l-b)LlZ MQFI —n, 2 + iy 4 352

Let us therefore first evaluate

A(t) = {P(14+ b) ZF( n, 2 4+ n;v + z%)}

Sb+1

By Ex. 9, page 106, withp = 2,9 = 2,¢ = b,a, = —n,a, = 2v» + n,
by=v+4b.=1+0Db,2z =1, we obtain
A@) = o Fo(—n, 20 +n;v 4+ 3, b + 1;t).

Thus, for the F(t) of (10) it follows that
Flt) = tre—t 3 (—2-’;3—;2—"2&(—7@, % +niv+ Lb+1:0)
n=0 .

See also Ex. 13 at the end of this chapter.

In the same paper, Bateman [2] studied another set of functions
J.** which are, except for a simple factor and changes of notation,
the polynomials \Fo(—n; Bi, B2; ). The J,** occur again in Rain-
ville [3] and Langer [1]. In the latter, Langer is studying solutions
of the differential equation for

1 2 —\?

and thus encounters Bateman’s J,**.

147. Rice’s H.(¢, p, v). S. O. Rice [1] made a considerable
study of the polynomials defined by

(1) H.(¢, p,v) = sF(—=n,n+1,¢;1, p;v).

We obtained the pure recurrence relation for H, in Ex. 3, page 243.
A few of the simpler of Rice’s results are:
For Re(p) > Re(s) > 0,

(2) Hn(f‘, p,v) = F—(—g_)—ll:((’%)ja i 11 — t)yr=s=1P (1 — 2ut) dt;
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For Re(¢) > Re(p) > 0,

(3) Pn(]- - 2”) = I‘(p) II:((?——-T?)I) tp_](l - t)!—p—lHu(g-’ P, Ut) dt)

1.

g-) PR _
(4) (1= F[ (1 -ilvtt) :I Z H., (¢, p, o)t

)

(5) i 7))J[,,( k, py )tk (1 - l)""l’( - 71t>

k=0

fee] — g‘) 17 ()
(6) ZO (2n + DQ.()H. (¢, p,v) = § _ls F[ »: i.:_”_s]

n (2), (3), and (5), P.(z) is the Legendre polynomial. In (6)
the Q.(s) is the Legendre function of the second kind defined on
page 182. Sister Celine (Fasenmyer[1]) obtained the differential
recurrence relation

(7) oH.'(¢, p,v) + eHioa(s, p,v) = n[H. (¢, p,v) — Hali($, p, 0)]

in which primes denote differentiation with respect to ».
Because of (4) in this section, Theorem 48, page 137, applies to
Rice's H, with the choicesc = 1,z = v,

(3)n()n
(p)an!

Yn =

From Theorem 48, preceding equations (1) and (7) follow, as do the
results

(P)n(n])? s~ (=D1)*(1 + 2MH (¢, p, v)
() =0 (n—=Bn+Ek+ 17

(9) UHn/(f, P, U) - an(g‘) P, U)

(8) o =

n—-1

== kZO [H(s, p,v) + 20H)' (¢, p, v)],

n-1

(10) oH.'(5,p,v) — nH. (5, p,v) = Zg (=Dm=*(1 4+ 2k)H (5, p, v).

See Rice [1] for many other properties of H,.
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148. Bateman’s F,(z). Bateman [3] studied the polynomial
(1) Fo.(2) = sFo(—n,n + 1,31 +2); 1, 1; 1)

quite extensively, and he and others kept returning to it in later
papers. Note that the variable z is contained in a parameter of
the ;F2, not in the argument. That the F,(z) form a simple set of
polynomials should be apparent upon consideration of the nature of
the terms in a /.

Bateman obtained the generating relation

3+

(2) (1 — )= zFl[ (1;—52} = > F.(2)t

B

and the pure recurrence relation
(3) nF.(z) = —(2n — 1)2F,_(z2) + (n — 1)?F,_,(2)

together with numerous mixed relations involving a shift in ar-
gument as well as in index. Two examples are quoted here:

4)  (+ DY F.(z + 2) — F.(2)]
+ (2 — 1)[F.(z — 2) — F.(2)] = 4n(n + DF,(2),

- 3 1+ 3%
() 3 [Fale = 2) = Fa@lt = 17 m[ —‘—i“——}-
= " 1= 5. (T=0

Since Fo(2) = 1, Fi(z) = —z and F,(z) = 1(1 + 32?), it follows
from (3) that for |z| <1, |F.(2)] <1, n = 1. Bateman also
made much use of F.(z) in the study of definite integrals and certain
series expansions.

In 1956 Touchard [1] introduced polynomials for which he did
not give either an explicit formula or a generating relation. Later
that year Wyman and Moser [1] obtained for Touchard’s poly-
nomials a finite sum formula and a genecrating function. Their
generating function was equivalent to Bateman’s (2) above, as can
be seen by applying Theorems 21 and 23 of Chapter 4. In 1957
Carlitz [1] pointed out that Touchard’s polynomials and Bateman’s
F.(2) are essentially the same, the former being

(=D(n)Fu(l + 22)
2°(D.
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Also in 1957 Brafman [6] obtained two generating functions for
Touchard polynomials, and one of these [his (12)] is equivalent to
that of Wyman and Moser and therefore to Bateman’s (2) in this
section, by Theorem 20 of Chapter 4. Brafman’s other generating
relation is a useful contribution to the study of Bateman’s F,(z);
it is

(6) Fi(3 = 32, 1,0 0F0(3 + 32,1, —t) =

See also Ex. 3 at the end of this chapter.
Another polynomial in which interest is concentrated on a param-
eter is the Mittag-Leffler polynomial

gx(2) = 22.F,(1 —n,1 — z;2;2),

which was investigated to some extent in Bateman [4]. Two
generating functions

) (1 +0:(1 == =1+ 3 g.(2)tr,
©  meni s = R0
n=0 .

and several mixed recurrence relations for ¢.(z) were given by
Bateman. He also included some discussion of a generalization of
the Mittag-Leffler polynomials to

(9) 0aey 1) = S0 (i, 25 1y 2),

ey
149. Sister Celine’s polynomials. Sister Celine (Fasenmyer
[1]) concentrated on polynomials generated by
Ay -+ vy Ay,

al “ e a .
—4 t ™ ) y Yy

1 Q-9 qu[ (I—:xt—)z:I = anI: x} tn
bl;"'y bq; " bly"':bq;

which yields
Ay v vy Gp, _nyn+1yaly"'yap;

(2) fn T | = ppoFgye B
bl)"'ybq; ly %;bh"'ybq;

Her polynomials include as special cases Legendre polynomials
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P.(1 — 2z), some special Jacobi polynomials, Rice’s H.(¢, p, v),
Bateman’s Z.(z) and F,(2), and Pasternak’s

—n,n+ 1,31 + 2 + m);
(3) an(z)‘—"F 1
1,m+4 1;

which is a generalization of Bateman’s F.(z). The simple Bessel
polynomial of Section 150 is also included.

The two major parts of Sister Celine’s work are the technique for
obtaining pure recurrence relations (illustrated in Chapter 14) and
her extension of Rainville’s work on contiguous function relations
to certain terminating ,F,’s for which p > ¢ + 1. She also ob-
tained a few results of interest for some of the simpler of her poly-
nomials.

We quote the easily derived result

Ay -y Gp; 1 o Ay, -0y Ap,
4) fa z|=—=| ylef, xy | dy,
blr"'! bGH \/W ’ %; bl;"'ybq;

which includes

(5) P.(1 - 22) = % f my'*e—”fn(—-; —;xy) dy
A/ 0
and
1
(6) H.(¢ p,0) = 7]; y~le—vf. (¢ p; vy) dy.

Usingp=1,¢=1,a = 3 b =1, we find that Sister Celine’s
(4) in this section becomes

© ki 152 = L[t i) do

As she points out, for Bateman’s Z,,
(8) fal3; 1 2) = Za(2),
and in terms of the simple Laguerre polynomial,

9) fa(=51; 322 = Lu(x)L.(—2).
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Equation (9) is the special case « = —n, g = 1, of Ramanujan’s
theorem obtained in Ex. 5, page 106. By combining (7), (8), and
(9), Sister Celine obtains

(10)  Z.@) = % fo “exp(—10?) Lu(a2) Ln(— az) dee

The general polynomial of Sister Celine, (2) in this section, falls
under the classification of Theorem 48, page 137, with ¢ = 1. For
the moment, denote the polynomial of (2) by C.(x):

—n,n + 1) Ay, -y Qp,
(11) C,.(CE) = pyol gy x|
]-y :7 blr' " bc”

Then Theorem 48 yields
(B n(1)2(b)n- - - (by)n i (=D*2k + 1)Ci(2)

(12) 2 = @, e =B+ k+ D
(13) 2C./ (x) — nCL(x) = —nC,_i(x) — zCh_i(x),

(14) zC,' () — nC,(x) = — nil [Ci(z) + 22C/ ()],

n-1
(15) zC,/(z) — nCa(x) = >, (—=1)*2k 4+ 1)Ci(2).
k=0
Next let us turn to the polynomial (2) with no a’s and no b’s.
Put
(16) fn(x) = ZFZ(_nyn+ 1:17 %,1}),

a polynomial whose pure recurrence relation we derived in Chapter
14. As Sister Celine points out,

(17) fa(@?) = L.(2zH(z)),

involving the Laguerre and Hermite polynomials with the symbolic
notation of Chapter 15.
For the f.(x) of (16) the generating function (1) becomes

xt

(18) a-y- expl:(l_—ft)—Q] = éf,.(x)t".
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Therefore this f.(x) is a polynomial of Sheffer A-type zero. In the
notation of Chapter 13,

— -— et -—————4t .
Then the inverse of H(t) is
2 S :(%)k+1tk+l

e  orw s Al D (s i

Computation of the constants appearing in Theorems 73-76, pages
224-225, shows that

(21) =1, b = —4(k + 1), e = —4(k + 1)

_ (= 3k (=%«
(22) Hr = (k + 17?; Vi Al .

In particular, Theorems 75 and 76 yield the relations

n—1

(23) nfa(@) = 2 [1 — 4(k + 1)4]fa1x(x),

k=0
n—1
(24) fl(2) = =4 2 (k + Dfaa ().
It is interesting to note that (23) and (24) combine to yield

(25) af(@) — u(@) = 2[4k + Dz = 1)fai(@)

n—1
= 3 [~ B — 1 = B — 11/u(a),
a different result from that given by (15),

26) 2@ — @) = X (~DmHEE + @),

which came from Theorem 48.

150. Bessel polynomials. In 1949 Krall and Frink [1] initi-
ated serious study of what they called Bessel polynomials. In their
terminology the simple Bessel polynomial is

(1) Yalz) = 2F0<—n, 14+ n; —; _% >
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and the generalized one is

(2) yn(aybyx)=2FO(_n)a_1+n;_;'—'%>'
The simple Bessel polynomial y.(x) is related to the Bessel functions
in the following manner:

1 T\ .. .
" —> - (5#7) eI gy (r) + ind asy(1)],

r

Jnps(r) = (21rr)_i[i—n—leiry"<;_r1> + in+1e—iryn(l_.::>]’
J ) = (2a7)~ [ ngir <__1) + —ne—in (_1>:|
—nog(r) = (2ur)7Y ireiry, e ey

Let us take as a standard for polynomials of this character

(161,)!" JFo(—n,c + n; —; ).

3) on(C, 2) =

The simple Bessel polynomial is the special case with ¢ = 1 and x
replaced by (—3iz). To get the Krall-Frink generalized Bessel
polynomial, introduce the redundant parameter b by replacing x
by (—z/b), put ¢ = a — 1 and multiply ¢.(a — 1, —2/b) by
nl/(a — 1),.

From (3) it follows that

(4) ealc, 1) = ?;; (=n) k(can;l) k(c) n®

or

) onle, 7) = 3 (e,

= k'(n — k)!
Equation (4) shows that ¢.(c, ) fits into the scheme of Theorem
48, page 137, with v, = (3¢):(3 + %c¢)./k!. This yields the generat-
ing relation
—4xt s
® (A=t 2F0<%C, 3¢+ 3; —;(r:x—tp) Z en(c, )t
and the further properties

(") 2 = n! Z <—1> (c + 2k)eilc, @)

=0 (n — k)1(C) ns ks
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(8) x‘Pn’(C’ x) - n¢n(cy x) = —'(C +n - 1)‘Pn~l(C) x) - x‘P’n—l(c; Il?)

n—1

= — kz=:0 [Ccpk(C, 17) + 2:1}90),,((3, I)]

n—1

= > (=1 *c + 2k) ¢i(c, ).

ke=0

For ¢ = 1 the generating relation (6) appears in Sister Celine’s
work, Fasenmyer [1]. Essentially the generating relation of The-
orem 48 for ¢ a ,F, appears in Rainville [6] with minor variations in
notation. Sister Celine in her Michigan thesis also obtained con-
tiguous function relations applicable to .Fy’s of the type of (2) or
(3) in this section. Equation (7) appears in Dickinson [1].

It is a simple application of Sister Celine’s technique (see Chapter
14, or Fasenmyer [2]) to obtain such relations as

9)  (c+2n — Da*e./(c, 2)
= n[l + (C + 2n — 1>x]¢’n(c’ Z) - (C + n — 1)<Pn—l(cy x)r

(10) Cga,.(C + 1, Z) = xﬂon,(cy I) + (C + n)<p,,(c, ),

(11)  (c+2n=1Dea(c—1, ) = (c—D[ealc, )+ enilc, 2)],

(12) n(c + 2n — 3)en(c, 2)
=(c+2n—2)[c—1—(c+2n — 1)(c+ 2n — 3)x]ea(c, x)
+ (c+n —2)(c+ 2n — 1)e.(c, 2).

For the moment let

(13) falx) = Z( k'(nC):H/(a)n ka,

k=0

of which ¢.(c, x) is the special case 6, = 1. From (13) it follows
that

Zf"(x)t” = i (—=1)*(C) nyarbpxktr+

=t (0)n A Fo EIn!(c)nyr

. [l imdedin+ L »
- gt | 2
n=0 c+n; '

_ (1 + 4xt) i <——g_——>c+n—1 5ntn
1 + /1 + 4zt nl
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by application of the result in Ex. 10, page 70. Now let

©

Pw) = X 2

n=0 n!

It is then possible to write
2 et 2t = fa(x)tr
(14) (1—|—4:L‘l)"*<—-~—__:-> F( - ‘_"::.') = 7N
1 + /1 F 4at 14+ /1 + 4at Zo (€)n

For F a ,F, what is essentially the preceding (14) appears in
Rainville [6] with minor changes in notation. By using 6, = 1,
we obtain Burchnall's generating relation

(15) (1 + 4xt)4< 2_____>H exp(»— ~L_—>
14+ /1 + 4dat 14 /1 + 4zt

n=0 (C)n ’

which appeared in Burchnall [1] with different notations. For
¢ = 1, equation (15) appears in Krall and Frink [1]. It is evident
from (15) that the reversed Bessel polynomials z7¢,(¢c, 1/2)/(c). are
of Sheffer A-type zero, from which several properties of Bessel poly-
nomials arise. If the F of equation (14) is chosen to be a (F,, the
reversed polynomials are seen to be of o-type zero, as discussed
in Chapter 13.

Brafman [4] obtained a whole class of generating relations which
in our notation become

a .o e )
zFo[ t;\_/t;“_‘%ﬁ:l ) F{ Lt}_/_“);:‘_‘lﬂ]

2 2

b

’

1%

- (a)n(c - a)n‘Pn(C’ x)tn
= ). ’

for arbitrary «. Brafman, of course, discovered (16) by using a
limiting process on his class of generating relations for Jacobi
polynomials, for which see Section 141 or Brafman [1]. The proof
in Brafman [4] is based on Whipple’s result, Theorem 31, page 88.
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Al-Salam [1] repeats much of the known material, with proper
credits, and obtains many new results. He makes free use of
pseudo-Jacobi, pseudo-Laguerre, and pseudo-Bessel polynomials.
His concept of generating functionsis not that defined in Chapter 8.

In addition to the various references given in this section, see
Agarwal [1], Carlitz [2], and Grosswald [1].

151. Bedient’s polynomials. Bedient [1], in his study of some
polynomials associated with Appell’s F, and F;, introduced

—%n)_?ll'n+%y7_6y I:I

(1) Rn(ﬂ; v x) = %‘31‘12[ ;2
) Y 1~ g — n;

and

(2) Gu(e, 8;2) =

—in, —3% 1 —a—p8—n;
(@ (8)u(20)r | THH T fmm |
nla + B)n ° : T2

l—a—n,1—8—n;

One of several reasons for interest in K, and G, is their connection
with the Gegenbauer polynomials of Chapter 17. Indeed,

3) Lim R.(8, v; z) = Ca8(a),
b o]
Lim G.(e, 8;x) = C,fx),
a-po
Lim G,(e, 8;x) = C,*(z).
8>

For the R,, Bedient obtains the generating relations

By Y = ﬂ; —1
(4) (1 - th)—ﬁ 2F1 .- 1—':%

= ZO Iﬂn(ﬁy 77 x)t"

and
(5) (B it — /2 — 1)) Fi(8; v; tla + /2% — 1))
_ i R, (8, v; x)t"

For the G, he finds that
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6) Fi(e, B a + 82zt — &) = f: G, B: D)t
and

(7) oFo(a, B; —;t(x — /2% — 1)) oFo(a, B; —; tx + A/22 — 1))

> 3 (a + B).Gala, B; D)t

nel

Bedient [1] contains numerous other properties of the R, and G..

152. Shively’s pseudo-Laguerre and other polynomials. Shively
[1] studied the pseudo-Laguerre set

(1) R.(a,x) = 7—57(;)"" Fi(—n;a + n; ),

which are related to the proper simple Lagucrre polynomial
L.(z) = \Fi(—n; 1; )

by

(2) R.(a,z) = 1 ~ (@ = Doyiln_w(2)

(a - l)n k=0 ]v'

Toscano [1] had already shown that

Ms

R.(a, x)t~.

n=0

Shively obtained Toscano’s other generating relation

2 Raa, x)tn
2t — 1 la-f2 = e
) olfa(=5 3 bt =) = 2 e,

and extended Toscano’s (3) in this section to

) 2 amt | OB X — 4zt
(5) (1— 4 *(——:_—:) I, i
1+\/1—-4t Bi, "y Ba; (1+\/1—4t)2
= 3 S, @)

in which



§168] BERNOULLI POLYNOMIALS 299

S.(2) ___(a_)i . —N, ay oy ap;
(6) n(x = ny(a) p+14" g41 Z |-
) " a+n)61)”'yﬁq;

For the particular choice p =0, ¢ =1, 81 =1, a = 1, the S.(x)
becomes
(2n)!

(7) oa(x) = WlFa(—n; 1+mn,1;2)

for which Shively has the additional generating relation

N IR SR/ Py gy
(8) F —Y | /F B
1 1. 2 oL 1 1. 2

el an(]?)t"

ne=U (2)2)!

The R.(a, x) of (1) is of Sheffer A-type zero, as pointed out by
Shively. He obtains many other properties of R.(a, x).

153. Bernoulli polynomials. Much good has come from the
study of B,(x) defined by

(1) LA i Lol

b
n=0 n!

particularly in the Theory of Numbers. The B,(z) of (1) are the
Bernoulli polynomials, which have been generalized in numerous
directions. See Erdélyi [1] and [3]. The B,(x)/n! are of Sheffer
A-type zero, from which fact various interesting properties may be
obtained. It is also a simple matter to show that

(2) B.(x + 1) — B.(z) = na™,

(3) B.(x + 1) = {1+ B(»)}~,

(4) B.(1 — z) = (=1)"B.(2).
One definition of Bernoulli numbers B, is

(5) B, = B,(0).

It follows that

(6) B.(z) = {B + z}»

and
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(7 B.(1) = B,, n =2, By(1) =1+ B,

Since
t —
g—1- "tteETT
B, is the only nonzero Bernoulli number with odd index. Thus the
generating relation

t = B,t»
8) et —1 ,‘,y:‘:] n!
may also be written
t 2, Bt
9 Py By + Byt + "):_l o)l

in which B, = 1, B, = —1, etc.

For us one natural extension of B,(x) is to replace the factor e
in the generating relation (1) by any ./, with argument at. The
resultant polynomials are of o-type zero in the sense of Chapter 13.

154. Euler polynomials. The polynomials £,(z) defined by
2t K E.(o)tr

M e +1_ & al
are called Euler polynomials, and the numbers
(2) E, = Q"E"(;)
are called Euler numbers. The polynomials E,.(x)/n! are of Sheffer
A-type zero.
It is not difficult to obtain such results as
(3) E.(x +1) + E.(x) = 2z,
(4) E.(1 —z) = (=1)"E.(2),
(5) E.(x +1) = {1 4+ E(x)}~,
(6) nE._i(x) = 2B.(x) — 2"*'B,(3x).

Since the Euler numbers defined in (2) have the generating

relation

- E.»  2et  2et
) Zon! et 1 14 e2?
it follows that E,,, = 0.

The Euler polynomials have been generalized in various ways.
See Erdélyi [1] and [3].
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155. Tchebicheff polynomials. The Tchebicheff polynomials
T.(x) and U.(z) of the first and second kinds, respectively, are
special ultraspherical polynomials. See Szego [1] and Chapter 17
above. In detail,

(1) Ta(x) = (—g!an(—i.—i)(x)’
2) U.(x) _(ii)l) P.ab(z).

These are often introduced by the relations
sin(n_+ 1)6

T.(cos 6) = cos no U.(cos 0) = :
( ) ’ ( ) sin 8

From (1) and (2) many of the formulas on Jacobi polynomials,
Chapter 16, can be converted into results on Tchebicheff poly-
nomials by choosing « = g=3%o0ora =g = —1.

Some of the generating functions to be found are

(3) (1 —2xt4 )t = i U.(x)t,
4) (1 = 2)(1 — 20 + &) = 3 To(x)tn,
(5) i Z%li = et cosh(ty/2® — 1),

o U (x)t+ extsinh(ty/a2 — 1)
(6) Z=: l+1)'— \/xz_l
Relations (3) and (4) at once yield
) Tu(z) = Uu(@) — 2Una(z), n=21,
(8) (1 = 2)Ua(x) = 2T0ss(x) — Thi2(2).

Of the several explicit formulas for T, and U. (seec Chapter 17
with appropriate « and 8), we note

[n/2] n'xn—zk(x2 _ 1)1:

(10) T.(x) = i[(x + \/53——1)" + (x - VF——T”,
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3 (n/2] (n + 1)!xn—2k(x2 — l)k
(11) Ua(z) = Z% 2k + Din — 2001~

Equation (10) relates 7'.(x) to the Neumann polynomials of Chapter
6. See equations (4) and (6), pages 116-117.

EXERCISES

1. For the Bernoulli polynomial of Section 153 show that

. " n!B(z)
T Z{, Eln —k 4+ 0!
2. Let B.(z) and B, = B.(0) denote the Bernoulli polynomials and numbers as

treated in Section 153. Define the differential operator A(z, D) by
32 By, D2k D2k
A(x, D) = D — .

Prove that A(z, D)B,(z) = nB.(z).
3. Consider the polynomials

1 _ny%_%xyl_c—'n;
‘l/n(c, z, y) ( ) EC) zx)n le: y].

1 .
€z — 2 — N

Show that

Fulh = b o) P+ daie -0 = 3 OB 00

n=0

’

1 1 1 1.
7—121,2+§I,

)b Sk e
(1 =yt 1+ zplli N T=wd ¥ t):l

i (&) n¥nle, =, y)

n==() n. '

and that ¥»(1, z, 1) = F,(x), where F, is Bateman’s polynomial of Section 148.
4. Sylvester (1879) studied polynomials (seec page 255 of Erdélyi [3]),

" 1
en(z) = %2170(—‘",1; - = 5)'

@

(1 = 7=t = 3 (@)t

n=y

Show that

)

1 -z~ ?Ff)(Cv T =5 l—{—-ﬂ> = 3 (Q)nen(z)tr.

n=\

5. For Sylvester’s polynomials of Ex. 4 find what properties you can from the
fact that on(x) is of Sheffer A-type zero.
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6. Show that Bateman’s Z,(z), the Legendre polynomial P,(z), and the
Laguerre polynomial L,(z) are related symbolically by

Zn(z) = P,(2L(z) — 1).
7. Show that Sister Celine’s polynomial
fa(@) = oFo(—n,n + 151, %5 2)
of equation (16), page 292, is such that
f e f(x) dz = (= 1)"(2n + 1).
0

8. For Sister Celine’s f,(z) of Ix. 7, show that

j: e fn(2)fm(2) dx

-n,n+1,—m,m+1;
= (=1)™*™(2n + 1)(2m + 1)4F; 1],

1,3

(S

=}
A
=
IIA
3

[CeLatarta) as = =20 :'”(3‘"’*(" Tl
@),
n,

= 0; k>

o —n,n+1, =k k+1;
j; e fu(2)Z1(2) dz = (—1)"**(2n + 1)4F3': 1]-

1,13

9. Show that

© -n,n+ 1, =k k+1;
fe"Z,,(x)Zk(x) dr = (—1)"tkF, 14
’ L1, 1

10. Gottlieb [1] introduced the polynomials
en(Z;N) = e Fi(—n, —z;1;1 — €b).
Show that

Z ‘p"—(:;;')\)t" = ¢! 1F1(1 + z;1; —(1 — e_)‘))r
= !

(e — 1) i nI(1 — eMko,(x; N)
ern(1 — eM)r £ kl(n — )1 (er — 1)’

foz_’t“"‘(“ 0l = T e T
(z — n)en(z; N) = Ton(x — 1;0) — nepn(z; ),
nlon(Z; N) — ona(z; N)] = (x + Dlen(x + 1;0) — onlz; N)],
( 4+ n + Denl(z; \) = zeroa(z — 1;0) + (n + Derona(z; V),
and see Gottlieb [1] for many other results on ¢,(z; ).

‘Pﬂ(xr A+ #) =
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11. With f, denoting Sister Celine’s polynomials of Section 149, show that

]‘:tx*(t — DYu(—; —; ) dz = 7Z,(1),

le*(t — o). (—; —; 2t — 7)) dz = 7Z.(383),

and
fo ‘x*(t — DY (—; 4, 2(t —2)) dz = wLa(t)La(—t).

12. Define polynomials ¢,(x) by
(c)

‘pn(x> = 7;'!

DFy(—n,c+n;1,1;2).

Show that

=D"7He = Dai(0)nix(2k + 1)Zi(z) |
(n=kKln+k+1)!

13. Show that the F(t) of equation (10), page 236, can be put in the form

@) = 3

v

L)
(1 =2

F(t) = tbe"'(l —_ Z)*z' 1F1[
b+ 1;



CHAPTER 19

Elliptic

Functions

156. Doubly periodic functions. Let the function f(z) have two

distinet periods 2w, and 2w,:

(1) fz+2w) =f(2),
(2) f(z+2w) =f(2).

Further, let the periods
have a nonreal ratio,
w/w, not real, so that
there exists a network of
period parallelograms,or
meshes, as shown in
Figure 8. The period
parallelograms are called
Sfundamental if they are

z-plane

2u)| +2w2
2wz

2w,

Figure 8

the smallest such meshes for the function f(z).
The values of f(2) in any parallelogram P in Figure 8 are repeated
in each of the other parallelograms, as indicated in (1) and (2) above.
Doubly periodic functions are a natural extension of such simply
periodic functions as the familiar trigonometric functions of ele-

mentary mathematics.

305
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157. Elliptic functions. If a doubly periodic analytic function
f(2) has in the finite plane no singular points other than poles, then
f(2) is called an elliptic function.

Consider a fundamental period parallelogram P of an elliptic
function f(z). There are only a finite number of poles and zeros
of f(2) in the closed region P because any point of condensation of
poles or of zeros of f(z) would be an essential singularity of the
function, which is contrary to the definition. Therefore there
exists a point ¢ in P such that the parallelogram with vertices at ¢,
{4 201, t + 2w + 2wz, ¢ + 2w, has on its boundary no poles and
no zeros of f(z). That parallelogram is called a cell, shown in
Figure 9.

We replace the net-

z-plane work of fundamental
period parallelograms of

Figure 8 with a network

142w, +2w;) of cells, each of which
t+2uy contains no pole and no
2w, zero on its boundary.

One reason for this is
that we wish to perform
0 integrations along the
boundary of a cell; we
could not integrate f(z)
around the boundary of
P for fear of encountering a singular point of the integrand.

Figure 9

158. Elementary properties. Consider an elliptic function f(z2)
with periodicity properties

(1) f@ + 2w) = f(2),
2 f(z 4+ 2w2) = f(2),

and a network of cells as defined in the preceding section.
Certain simple propertics of f(z) are at once available.

THEOREM 85. The number of poles of f(2) in any cell is finite, and
the number of zeros of f(2) in any cell is finite.

THEOREM 86. An elliptic function with no poles in a cell is a
constant.
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We have already seen that Theorem 85 is a consequence of the
fact that f(2) is permitted no essential singularity in the finite plane.

For Theorem 86, note that if f(z) has no poles in a cell, it is
analytic and bounded in the closed cell and also throughout the
finite plane because of its periodicity. Then by Liouville’s the-
orem,* it follows that f(2) is a constant.

THEOREM 87. The sum of the residues at the poles in a cell of an
elliptic function 1s zero.

Proof: Let Sr be the sum of the residues at the poles of the
elliptic function f(z) in the cell shown in Figure 9. Then 27iSk
cquals the integral of f(2) around the cell:

t4 2w, (42w, + 2w,
(3) 27iSp = f f(z) dz + f f(2) dz
t t4-2w,

42w, t

+ f(z) dz + f(z) dz,
1420, + 2w, 1420,
in which each integration takes place along a straight line path.
Let us change variable of integration in the sccond integral on
the right in (3) by replacing 2z by z + 2w,, and in the third integral
on the right in (3) by replacing z by 2 + 2w,. We thus obtain

42w,

4) 2riSe = ft ") de + f 1z + 2w1) de

t t

+ flz + 2ws) dz + f(2) dz.
1420, 420,
But f(z 4+ 2w.) = f(2), so that the first and third integrals differ
only in sign (direction of integration), and because f(z + 2w;) = f(2),
the second and fourth integrals also have the sum zero. Then
2mSk = 0;s0, Sk = 0, and the proof is complete.

THEOREM 88. For an elliptic function f(z), the number of zeros in
a cell equals the number of poles in a cell.

Proof: Let N. be the number of zeros and N, the number of
poles of f(z) in a cell. Here the multiplicity is to be counted; a
pole of order two counts as two poles;a zero of order three counts as

*See any book on complex variables or function theory; for instance, Churchill

[3; 96].
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three zeros, etc. Then from the study of functions of a complex
variable we know that

5) 2riV, = N,) = [T

in which the integration is to be carried out around the boundary
B of the cell,
From

(6) J(z + 2w1) = f(2) and  f(z + 2w,) = f(2),
it follows that
(7) Sz 4 2w) = f'(2) and f(z + 2wy = f'(2).

Therefore f'(2) and also f'(2)/f(2) have the same periods as does

f(z). Hence the device used in showing that the integral ff(z) dz
B

is zero may be used to show that

[ d
A S

Therefore N, — N, = 0, which we wished to prove.

The actual situation is that Theorem 88 is merely a particular
instance of the fact that the number of times an elliptic function
f(2) assumes any particular value ¢ in a cell is independent of ¢.  For
zeros of f(z), ¢ = 0; for poles of f(2), ¢ = =.

THEOREM 89. For an elliptic function f(z) and for any finite c,
the number of zeros of f(z) — ¢ is independent of c.

Proof: The function f(z) — ¢ has the same periods as f(z) and
so does f'(z). The poles of f(z) — c are the poles of f(z). Then the
difference between the number of poles of f(z) and the number of
zeros of f(z) — cis

1 f'(2) dz
215 f(2) — ¢’

which can be shown to be zero by the same device as was used in
the proofs of Theorems 87 and 88.

159. Order of an elliptic function. For an elliptic function
f(2) we define as its order the number (counting multiplicity) of
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poles of f(z) in a cell. We already know that the order cannot be
zero unless f(z) is constant. If f(z) were of order one, then in a
cell there would be a single, and simple, pole. By Theorem 87,
page 307, the residue at that pole must be zero, so the point is not
a pole but a point of analyticity of f(z). Hence f(z) has no poles in
the cell, and f(z) must be constant. We have proved the following
result which will be used over and over in Chapter 20.

TueoreM 90. An elliptic function of order less than two is a
constant.

From the standpoint of its order, the simplest elliptic function
will be one of order two. There are essentially two types of elliptic
functions of order two. If there is but one pole in each cell, that
pole must be of order two and the residue at the pole must be zero.
If there are two simple poles in each cell, the residues at those poles
must be negatives of each other. We shall encounter specific
instances of each of these types of elliptic functions of order two.

160. The Weierstrass function P(z). Let m and n be integers
and define

(1) Qm,n = 27)1w1 + 2nw2,

where 2w, and 2w, are to be the fundamental periods of our elliptic
function and w;/w, is not real. We shall show that the function in
(2), below, devised by Weierstrass, is an elliptic function of order
two, with each cell containing a second order pole.

Let a prime attached to the summation symbol indicate that the
indices of summation are not both to be zero at once. Then define
the Weierstrass function P(z) by

1 =, 1 1
(2) P(z) = P + ,,.,nzz:—m (2 — Qm,n)? - QL:,.,"

The deletion of the m = n = 0 term from the summation is forced
upon us by the last term in (2). Since the general term in the
series in (2) is O(2,’,), the series is absolutely and uniformly con-
vergent in any closed region which excludes the origin and all the
other points 2 = Q... Then P(2) is analytic throughout the finite
plane except for a double pole at each of the points z = Qm,. for
integral m and n.
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Now

(3) P) = 3> — 2

m,n=—co (z - Qm‘n)3

in which the m = n = 0 term need not be deleted and the differen-
tiation is justified by the uniform convergence of the series in (3).
Now P’(z) is an odd function of z, since

’ = 3 ,______..2 = 3 2
@ Pa= ¥ et L e

where the second series is obtained by replacing m by (—m) and
n by (—n) in the first serics. By (4),

(5) P'(=2z) = —P'(2).

The same device can be used on the series in (2) to show that
P(2) is an even function of z,

(6) P(—z) = P(2).
We next show that P’(z) has the periods 2w, and 2w,. Consider

@ <
—2

P'(z + 2w) = } Z %o — )

Since Qm.» = 2Mmw; + 2nw,, we have

P'(z 4+ 2wm) = > —2

m,n=—cx (Z - Qm—l,n)3

and a shift of index from m to (m + 1) shows that

(7) P'(z + 2w) = P'(2).
It follows in the same way that
(8) P'(z + 2wy) = P'(2),

and we now see that P’(z) is an elliptic function.
Integration of each member of (7) yields the following equation:

9) P(z + 2a1) = P(2) + ¢,

with ¢ constant. In (9) use z = —w; to obtain
P(wr) = P(—w) +c.

But by (6), P(w;) = P(—w,), so ¢ = 0 and (9) yields

(10) P(z 4+ 2w,) = P(2).
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The same device shows that
(11) P(z + 2w.) = P(2).

Hence P(z) is an elliptic function with poles of order two at each
of the points z = Q,.,,, m and n integral.

161. Other elliptic functions. From the Weierstrass function
P(z) we easily obtain an elliptic function with any specified set of
zeros and poles in a cell.

First consider an even elliptic function which, in a cell, is to have
zeros at a;, a,- - -, a, and (automatically) at the points congruent
to —a;, —as,---, —a, Let multiplicity be accounted for by
repetition, that is, by equality of a’s. Let the desired poles in the
cell be at by, by,- - -, b, and at the points congruent to —b,, —b,,- - -,
—b,, with multiplicity treated as with the zeros. Then

M 1@ = I 3353

1=1

has the desired zeros and poles in a cell and is an even elliptic
function. Odd elliptic functions may be constructed in the same
way, using P’(z), or may be treated by using the product of P’(z)
and a rational function of P(z). Since any function may be split
into its even and odd parts, the procedure sketched here permits
construction of elliptic functions with any desired permissible dis-
tribution of zeros and poles in a cell. See Whittaker and Watson
[1; 448 fi].

162. A differential equation for P(z). We know that P(z) is
analytic in a deleted neighborhood of its second-order pole at z = 0.
Indeed, from the definition

1) PO =+ E e b

2
m,n=—w Qm,n) Qm,n

we find that P(z) —z—2 is analytic at the origin and is zero there.
Also P(z) — 272 is an even function of 2, so there exists a Taylor
expansion of the form

) P(2) — 2= = i a,z0

convergent in a region around z = 0.
From (2) we need only a few terms. We write
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(3) P(z) = 272 4+ a,2* + axxt + o(z°), asz — 0.

We keep in mind that the terms lumped together in o(2°) are actually
as exhibited in (2), so that differentiations with respect to z are

legitimate.
From (3) we obtain
(4) P'(2) = —227% + 2a,z + 4a,2® + o(z).

The series (3) for P(z) contains onc negative power, z-2; the series
(4) for P’(z) contains one negative power, —2z=%. In order to
climinate negative powers of z, we are thus led to consider [P(z)]?
and [P’(z)]2. In detalil,

(5) [P'(2)]* = 42¢ — 8a;2~? — 16a, + o(z)
and

(6) [P(2)]* = 2% 4+ 3aiz™? + 3a. + o(z).
Then

[P'(2)]* — 4[P(2)]* = —20a,2~* — 28a, + o(z).
But
20a,P(z) = 20a,z2~? + o(z),
and we arrive at

(7) [P'(z)]* — 4[P(2)]® + 20a,P(z) + 28a, = o(z).

The left member of (7) is an elliptic function with periods 2w,
and 2w,. That function is analytic at z = 0, and therefore also at
2 = Qm... The function is therefore constant, and that constant
is zero, as can be seen by letting z — 0 and noting the right member
of (7).

We have shown that P(z) satisfies the first-order nonlinear dif-
ferential equation

(8) [P'(2)]* = 4[P(2)]* — 20a,P(z) — 28as,,
in which a, and a, are the specific coefficients stipulated in (2). It
is customary to put 20a, = ¢, and 28a, = g;.. We then express our

result by stating that y = P(z) is a solution of the differential
equation

(9) (gg)zz 4y* — g2y — ga.

dz
Since equation (9) is invariant under a translation in the z-plane,
the general solution of (9) is y = P(z + «), with « an arbitrary
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constant. It can be shown* that every solution of (9) is of the
form y = P(z 4+ «).

163. Connection with elliptic integrals. By elementary means
it follows from the differential equation

dy : s
(1) =) = W =9y = gs
that one solution is
@) S [ E—
v ‘\/4t3 — gzt — @3

But y = P(z + a), and if we let y —» «, 2 — 0, so that P(z) has a
pole at 2 = a. Then « = Q,,, for some integers m and n. Then
y =P+ Qn..) = P(2).

That is, the inverse of the integral in (2) is the Weierstrass function,

(3) y = P(2).

Any nondegenerate integral whose integrand contains the square
root of a cubic or quartic polynomial in the variable of integration
together with rational functions is called an elliptic integral. The
name arose from the occurrence of one such integral in the problem
of finding the length of arc on an ellipse. As the foregoing discus-
sion shows in relating (2) and (3), an elliptic function is the inverse
of an elliptic integral. A corresponding fact in elementary singly
periodic functions is that the integral

(4) z2= fvx/ldt_ 2

has as its inverse the simply periodic trigonometric function

) y = sin 2.

*See pages 437 and 484-485 of Whittaker and Watson [1]. The major problem is to
show that w; and w; exist for given g¢; and gs.



CHAPTER 20

Theta

Functions

164. Definitions. In this chapter we study in some detail four
functions first treated extensively by Jacobi. These are the four
theta functions:

(1) 0:(2,q) = 2 ?; (= 1) sin(2n + 1)z,
(2) 02(2, q) = 2 gq("H” cos(2n + 1)z,

(3) 0:(z,q) =142 m; q" cos 2ne,

(4) 0s(2,9) = 1+ 2 i (—1)"¢" cos 2nz.

n=1l

It seems safe to say that no topic in mathematics is more replete
with beautiful formulas than that on which we now embark.

In the functions defined by equations (1)—(4), we ordinarily think
of each 6 as a function of 2z, with ¢ playing the role of a parameter.
When only the z is to be emphasized, the ¢ will be suppressed, and
we shall write

(5) 0,(2) = Bz(zy Q)y 1= 1; 2’ 3; 4.

In the definitions (1)-(4) we need only to require that |¢] < 1
to get absolute convergence for all finite z. At times the role of the

314
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parameter ¢ becomes important, and we use the additional notation
(6) q = exp(wif).

The requirment |g| < 1 implies that the coefficient in the imag-
inary part of r be positive, Im(7) > 0. When the dependence of
0:(2,q) upon r is to be emphasized, we write 6:(2) = 8.(z|r) for
i =1,2 3, 4.

One last set of notations is needed. For ¢ = 2, 3, 4, the value of
0.(z,q) at z = 0 plays an important role, as does the value of

1 . . .
3(2 0.(z,q) at z = 0. For these functions of ¢ alone we use the

simplified notations

(7) 0: = oi(ov Q), 1= 2’ 3) 4}

®) 0= Lol

165. Elementary properties. Some properties of the theta func-
tions follow at once from the definitions (1)-(4) of the preceding
section. The function 6,(2) is an odd function of z; the functions
0:(2), 0:(2), and 04(2) are all even functions of z.

Since

sin[(2n 4+ 1)(z + im)] = cos(2n + Dz sin[3(2n + 1)=]
= (—=1)7cos(2n + 1)z,
cos[(2n+ 1)(z + 3x)]= —sin(2n 4+ 1)zsin[3(2n + 1)x]
= (—=1)"*6in(2n + 1)z,
and
cos[2n(z + ir)]
it follows readily that

cos 2nz cos nr = (—1)"cos 2nz,

(1) 61(z + 37) = 65(2),
(2) 0:(z + 3m) = —6i(2),
3) 0:(z + §m) = 04(2),
(4) 0s(z + 3m) = 05(2).

From (1) and (2) above we obtain
0i(z + m) = 6z + ¥7) = —61(2),

and we perform similar operations on the other theta functions to
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arrive at the results

(5) 6:(2 + 7) = —6:(2),
(6) 0:(2 + 7) = —6a(2),
(7) 8:(z + m) = 65(2),
(8) 0z + 7) = 04(2).

We now know that 6;(z) and 64(z) have the common period = and
that 6,(z) and 6;(z) have the common period 2=. This is, of course,
a reflection of the periodicity of the sine and cosine functions. But
the exponential function is also periodie,

(9) exp(u + 271) = exp(w),

and the theta functions involve an exponential in that ¢ = exp(=i7).
Hence we are led to investigate the possibility of another period for
the theta functions. It turns out that these functions are not
doubly periodic but that they miss that property by so small a
margin (a multiplicative factor) that it is a simple matter to use
the theta functions to construct functions which are doubly periodic.

166. The basic property table. The discussion in the last para-
graph of the preceding section leads us to investigate for each 6(2)
the value of 6,(z + ix7).

We defined the theta functions by the equations

(1) a(z) = 23 (=17 sin(@n + 1z,
2) 6a(2) = 2 g%q("*”‘ cos(2n + 1)z,

(3) 0:(2) =1+ 2 2,} q" cos 2nz,

(4) 0s(2) =1+ 2 2:1 (—1)"¢"" cos 2nz.

Let us now put the trigonometric functions involved into exponen-
tial form. We may write, for instance,

i .
01<2) — 7:___1 Z (_1>nq(n+%)1[e(2n+l)1z _ e—(2n+l)1z]

n=0

©

— —'L Z (_l)nq(ﬂ+§)‘e(2n+l)iz + 1’ i (_l)ﬂq('l%—%)'e—(zﬂ-i—l)iz'
n=0

n=0



§166] BASIC PROPERTY TABLE

In the last summation, replace n by (—n — 1) to obtain

317

01(2) _’L Z( n (n+%) (2n+1)1z + Z( n+1 (—n-4%)2 (2n+1)1,,,

n=-1

or

(5) 0:1(2) = —1 Z (=" ("+‘)’I,(2n+l)iz‘

n=-cw

The same procedure yields also, and even more casily,

@ o) = X g,
<8) 04(2) — z (_l)nqn'eZniz.

n=-—wm

We are now in a position to obtain 6,(z + ix7) for 7 =
Since e7i* = g, it follows that

exp[(2n + 1)i(z + 377)] = exp[(2n 4 1)iz] exp[(n 4+ 3)in7]

or
(9) exp[(2n + 1)i(z + irr)] = eCr+lign+d,
We may now write from (5) and (9),

0,(z + dmr) = —i D, (—1)"gM i CrEni

n=-—mx

= —?:q Z ( n (n+l) (214-1)1'2.

n=-—m

In the last summation replace n by (n — 1) to obtain

o)

0.(z + 377) = —iq_* Z (—l)n_lq"ae(z""l)i”

n=-o

- iq_ge_u Z (_l)uqn'e%iz.

n=—co

We have thus derived the result
(10) 0:(z + Lwr) = ig—le—iz0,(2).

1,23, 4.
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Equations (6) and (9) yield

02(2 + %7;-7—) = Z qﬂ’+n+ie(2n+1)i;qn+;

n=-co

o
1 (n+1)> (2n41)ie
gt 2 ¢" e

ne—co

Il

=3}

-1 n? (2n-~1)sz
g 2 q"e ,

n=—wm

It

from which we get
(11) 0:(z + 37r) = q le—0,(2).

Since exp[2ni(z + iwx7)] = eixg», we may obtain from (7)

03(2 + %7(’7’) = E q",e%izq" - q’:’ Z q("+‘:)'e2m‘z,

n=-—mw n=-—c

so that we find

(12) 03(z + L7w7) = q~te—i0,(2).
In the same way we derive
(13) 04(z + Lwr) = 1qtei0,(2).

We now use equations (10)-(13) to obtain the functions of
argument (z + =7). Using first (10) and then (13), we obtain

6:(z + mr) = 1igleCHimg, (2 4 fr)
= 1q~temsqmNigm e +0,(2),
which yields
(14) 01(2 "‘I‘ 71'7') = —q—le_2i201(2>.
From (11) and (12) it follows that
02(2 + 77) = q- }e_i(‘+’”')03(2 -+ %1r'r)
= g temiqmt - g e #0y(2),

or

(15) 0:(2 + wr) = @ le 226,(2).
In the same manner we obtain

(16) 032 + wr) = g7le*i+65(2),

(17) 0s(z + w7) = —q-le2iz0,(2).
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Examination of equations (14)—(17) show that the theta functions
barely missed having another period =r. Indeed certain ratios of
theta functions do have that period. We shall eventually build
doubly periodic functions from the four theta functions by means
of well chosen ratios.

The information contained in equations (1)—(8) of Section 165
and in equations (10)—(17) of this section is tabulated below. This
table is one to which we refer almost constantly in this and the
next chapter.

y = z z + 3m 24T z+ drr z+ 7T
0,(y) = 6:(z) 0:(2) ~6:(2) 1q~te™170,(z) —q7le720,(2) N
6:(y) = 6(z) —0:(2) —0,(2) gt 0y(z) g le 6y (2)
b:(y) = 63(z) 64(2) 63(2) g tem#0,(z) g le %404 (2)
ou(y) = 60 | 6 | a@) | e | —geteg)

The basic table may be used also to depress, as well as to augment,
the argument of a theta function. For instance, since 64(z) is an
even function of z,

0z — 71) = O(—2 + nr) = —qle?0,(—2) = —qle2i70,(2),

a result also easily obtained by reading the table in reverse order.
We can in these ways obtain a set of results useful to us later:

0.(z — =) = —0.(2), 0:(z2 — m) = —0a(2),

0:(z — ) = 0s(2), 0s(z — m) = 04(2),

6:(z — w1) = —qle?izg,(2), 6:(z — 1) = g le*i=0,(2),
6:(z — wr) = qle?iz0,(2), 0s(z — wr) = —q e 04(2).

167. Location of zeros. The basic table makes it a simple mat-
ter to obtain the zeros of the theta functions. Since

(1) 6.(z) = 2 fj (—1)mg+dsin(2n + 1)z,

we see that 6,(0) = 0; 2z = 0 is a zero of 6,(2). Again from the
table it follows that
0:(3m) = 6:(0 + 3m) = —6,(0) = 0,

so that z = 1r is a zero of 6,(z). Since
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Bz + drr) = g levui(2),
we find that
03(%‘1(' + ’1571'7') = q- {e-_ai”02(%ﬂ') = O,
z = ir 4+ Lrrisa zero of 6;(z). Finally, from

0,2 + Smr) = ig7te 0,(2)
it follows that
0(ymr) = 1g~t°9,(0) = 0;

z = iwris a zero of 6,(2).
: The zeros obtained so far are
27T 27+277  exhibited in Figure 10. In the
@ ® figure an encircled number in-
dicates which theta function pos-
sesses that zero. Tor instance,
® near 37 + iwris a reminder
that z = ir + 177 is a zero of
0:(z). Note the counter clock-
wise order of the zeros in the
figure.

The fourth and sixth columns
of the basic table, page 319, show
that, if we add = or =+ to (or sub-
tract = or =7 from) a zero of any theta function, we arrive again
at a zero of that function. So far we have shown that if m and n
are any integers,

z-plane

Figure 10

Sﬁl(z) =0 at z = mr + nrr,

6,(2) =0 at 2z = ir 4+ mr + nrr,

A 6:(2) = 0 at 2 =37+ inr + mr + nwr,
64(2) =0 at 2z = ixr + mr + nwr

Our next task is to show that these are the only zeros of the theta
functions.
Directly from the basic table we obtain

(2) (e +m) = +0:(2); k=1234

in which the minus sign is to be used for k& = 1, 2, and the plus sign
for k£ = 3, 4. Logarithmic differentiation of the members of (2)
yields
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Bk'(z + 7r) _ Bk’(z). _

(3) et ) o) k=123, 4.

Note that the relation (3) is the same for all pertinent k values.
The basic table also yields

(4) 0:(z + 77) = Fq e ?i20,(2); k=12 3,4,

in which the plus sign applies for &k = 2, 3, and the minus sign for
k =1, 4. Logarithmic differentiation of the members of (4) gives

0 (z + 1rT) . Ox (z)
%) AR N U W

Let t be any point in-
side the parallelogram of
Figure 10. Consider the e, —— e ———
parallelogram P shown // trar | Ltnvar |
in Figure 11, that with okl d L
vertices at ¢, t + =, t + = / / / !

/ / 1 /P /
+ T, t+ =r. Let Nk L / / /
be the number of zeros of / __7__——7' -
0.(z) inside P. Then, / . Y O

since 6,(z) has no poles, o ;

(6) 2miN,= f @;(:()z)dz’

or

(7 2mN, = j:

k=12 3,4

z-plane

Figure 11

“7,(2) dz f* 0, (2) dz
0);(2) t4w 0k<z)

trr Bk'(z) dz f‘ Bk’(z) dz
+ >/:+1+rr gk(z) + t+xr 0/;(2)
In the second integral in (7) replace z by (2 + =); in the third
integral in (7) replace z by (2 + =7). The result is

o [0 (2) dz 49 (z 4 7) dz
(8) 27N —j: —0—"(_2’)— +j: Ok(z T
0./ (z + 77) dz ©0(2) dz
+ f_,_, Ok(z + 77) + j:.”r 0:(2)

Next use the relation (3) on the second integrand in (8) and the
relation (5) on the third integrand in (8) to obtain
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. _ t+’r0k,(2) dz H'"Gk’(z) iii
(9) 21I"LNk = ‘[ ——ok(Z) + j: ok(Z)

‘ ) ok'(z)] f’ 0/ (2) dz
— d Yk \7) Q%
+ ‘[4—1 |: 22 + ok(z) ? + t4wT ok(z)
From (9) it follows that
2miN = f —2¢dz = 21,

t4x

so that N, = 1 foreach & = 1, 2, 3, 4.
We have thus proved that the zeros tabulated in A are the only
zeros of the theta functions and that each zero is a simple zero.

168. Relations among squares of theta functions. We know
that the theta functions have no singularities in the finite plane,
and we know the location of all zeros of these functions. Let us
employ this knowledge together with the properties exhibited in the
basic table to obtain relations among the theta functions.

The technique is simple. Using the information described in the
preceding paragraph we construct an elliptic function of order less
than two. The function is thereforec (Thcorem 90, page 309) a
constant, and we thus obtain a relation among the component parts
used to form the degenerate elliptic function.

Suppose, for instance, that we wish to obtain a relation involving
6:>(z). We set up the function
_ N(2
=0
t+ar t+x+x1 which we shall force to be

an elliptic function of

® 3T © yT+3aT order less than two with

C period parallelogram C,

/ as shown in Figure 12.

The denominator on the

/O 3% / right in (1) has a double

zero at z = 0, and that is

its only zero inside C.

Furthermore, the basic
table, page 319, yields

z-plane (1) ¢()

Figure 12

(2) 0:2(2+m) = 6:2(2),
(3) 0:2(z + 77) = g e 4i20,%(2).
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We therefore choose the numerator N(z) in (1) so that N(z) will
have at least a single zero at z = 0 and also possess the properties

4) N(z + =) = N(z2),
5) N(z + n7) = q~2%~4i:N(z2).
Then ¢(2) will have the two periods = and =~ and will have at most
a simple pole inside the cell C.  Thus ¢(z) will be an elliptic function
of order less than two and will be constant.

The basic table shows us that the square of any theta function

will have the properties (4) and (5). We form for N(z) a lincar
combination such as

Agzz(Z) + 3632(2).
Recall the notation 6, = 0,(0) for k = 2, 3, 4. If we choose
(6) Af(Z) = 032022(2) — 022032(2>,

surely N(z) will vanish at z = 0. TFurthermore, N(z) will have the
properties (4) and (5), as we sce from the basic table. Hence

(7 o(z) = 032022(2)(912_(2)022032(2) =

h,

a constant, since ¢(z) is an elliptic function of order less than two.
To evaluate the constant h we use any convenient z. Choose
z = m. Then from the basic table, page 319,

0:2(37) = 0,(0) = 62,
022(‘127) = 0:
0s2(37) = 0.2(0) = 62
Hence
_ 0 — 0,202

h
04?

= A042.

With this value for h, equation (7) may be rewritten as

(8) 0:20:2(2) + 0:20,%(2) = 6,20:2(2).
Additional relations are

9) 0501 (2) + 0,202%(2) = 6,°0,%(2),

(10) 0:20:2(2) + 02052(2) = 0520,2(2),

(11) 022022(2) + 042042(2) = 03903?(‘2>y
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each of which can be discovered by the process used to get (8). We
leave (9) and (10) as exercises and now prove the validity of (11).
Consider the function

052(3m)0:2(2) — 642(5m)0:%(2)

(12) oil2) = .

The basic table yields at once

ez + ) = o(2), oz + 77) = 01(2).

In the cell C of Figure 12, the function ¢,(2) can have no singular
point except possibly at z = ir, the zcro of 6,(z). Atz = ir, the
denominator in (12) has a double zero and numerator at least a
single zero. Hence ¢,(2) is an elliptic function of order less than
two, and it must be constant. But

0 - 042(;1)032({;777').

1 —_
‘PI(ZWT) 022(%7”')

From the basic table, page 319, we get
02(krr) = 02(0 + hrr) = g-ler02(0) = g,
02*(57r) = 0.2(0 + jar) = ¢71e26,2(0) = g~l6,
0(3m) = 62(0) = o,
0:2(37) = 0,2(0) = 6,2

Therefore the constant value of ¢,(2) is

and (12) now yields

0:20.2(2) — 6;20;2(2)
3 —022’
0:*(2)

which is merely a rearrangement of (11).
From (11) we obtain by putting z = 0 the identity

(13) 0,* + 044 = 934.

Now 6,, 6;, and 6, are functions of the parameter q. From the
original definitions of the theta functions we obtain

@

6 =23 """ = 2¢' 30 g7,
n=0

n=0
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6 =1+2> (—1)"¢",

I

14+22 4",

ne=l

b5

so that (13) may be interpreted as a compact form of the statement
that, for gl < 1,

o 4 =) 4 o 4
o S [t re S o] <1425

169. Pseudo addition theorems. We shall now derive formulas
involving 8:(x + y) and 6.(x — y) fork = 1,2, 3,4. The technique
used will be much the same as that employed in getting relations
among the squares of the theta functions.

Suppose, for instance, that we wish to construct a formula for
6,(x +7y) 6:(x —y). We use that product as the denominator of
a fraction which we force to become an elliptic function of order
less than two when considered as a function of y with z fixed. It is
desirable first to determine the periodicity properties and the zeros
of the product. Let

Du(y) = 6u(x + y)or(xz — y).

Then, from the basic table, page 319, we find that
Du(y + 7) = bz +y + m)ou(x —y — 7) = 6u(z + y)ou(z — ¥),
or
(1) Du(y + =) = Du(y).
Also

D”(y + 1r'r) = 91(.27 + vy + r7)0(x — Yy — T)

= —q e (x4 y)(—g e oz — y),

or

(2) Du(y + =7) = q %4 vDy(y).

Therefore our denominator D;(y) has periodicity factors unity
for period = and g—%—*w for quasi-period =7. The square of any
individual theta function of ¥ will also have those periodicity factors.
We may then choose as our numerator such a combination as

(3) A0:2(y) + Bo2(y)
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and thus obtain a fraction with periods = and =r. The A and B in
(3) may be any functions of z.

We need next to locate the zeros of our denominator Dy;(y) and
knock out one of them by an appropriate choice of A and B. Since

Du(y) = 6i(x + y)el(x - y)’

we observe that D;;(y) has simple zeros at x+y=0 and at t—y=0.
Let us force the numerator (3) to vanish at y = x by choosing
A = 02(x), B = —6,2(x). Then the fraction

w 02()00() — 02(x)02(1)
0:(x + y)6i(x — y)

is doubly periodic with periods = and =7 and has in a cell no singular
points except possibly a simple pole at y = —=z. (Actually the pole
at y = —x was accidentally removed along with that at y = z.)
Then (4) is an elliptic function of order less than two and is therefore
constant,

(5)

0:2(2)6:2(y) — 6:2(2)02(y) _
0:(x + y)o(x — y) .

The constant C' might depend upon z, of course. To evaluate C,
let us put ¥ = 0 and thus obtain

. O - 012(9:)022

= —— = —022

6:(x)6,(x)

Insertion of the value of C into (5) leads us to the desired relation,
(6) 0:.20:(x + y)0i(x — y) = 6,2(x)6:*(y) — 6,°(x)6,%(y).

We may move from (6) to other expressions for the product
0.(z + y)0.(x — y) by using on the right the various identities in-
volving squares of theta functions, equations (8), (9), (10), (11) of
Section 168. As an example, the known identity

0:20:%(2) + 0:°0,%(2) = 0,°05*(2),

used first with argument z, then with argument y, permits us to
rewrite (6) as
04202291(17 + y) 01(17 —_ y)

= 0,2(y)[0:26:2(2) — 0:20:%(x)] — 6:2(2)[6,20:2(y) — 05262%(y) ]
022022(?/)932(33) - 022929(1) 93?(2/)-
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We thus obtain
(7) 020:(x + y)0(x — y) = 0,°(y)0:2(x) — 6.(x) 652 (y),

a result also easily discovered by the method we used to get (6) in
the first place.
The reader can easily show that for each £ = 1,2, 3, 4, the product

Du(y) = 0(x + y)bu(z — ¥)
has the properties

Di(y + =) = Du(y), Du(y + =) = g% *¥D.(y).

The derivation of the consequent formulas for the various products
D..(y) is left for exercises at the end of this chapter.

Let us next obtain one formula in which two different theta func-
tions, one of argument (z + y) and one of argument (z — y), are
involved. Let

Du(y) = 6z + y)bs(x — y).
Then the basic table, page 319, yields the results
Du(y + =) = —Du(y),
Du(y + =) = g e~ *“Dul(y).
Now the products 6.(3) 6:(y) and 6,(y) 6:(y) behave in that same
way. That is,
0:(y + m)6s(y + 7) = —0:(y)0:(y),
0.(y + m)0:(y + 7) = —6.(y)6s(y),
02(y + 7r)6:(y + 77) = q e~ 0(y)6:(y),
0:(y + 77)0:(y + 77) = ¢~ w01(y) 0u(y).
The fraction

®) Ab:(y)605(y) + B:(y)6a(y)
0z + y)0s(z — y)
has periods = and =r in its argument vy, as long as A and B are in-
dependent of y. The denominator in (8) has simple zcros at
4y =0and at £ — y = ix7r. By choosing 4 = 6,(z)6,(x) and
B = 6,(x)6;(x), we make the numerator of (8) vanish at y = —uz.
Then

) 01() 04(2) 0:(y) 05(y) + 02(2)605()0:(y)0s(y) c
6:1(x + y)bs(x — y) -
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where C is independent of y because the left member of (9) is an
elliptic function of order less than two. The value of C in (9) may
be found by using y = 0:

C — 01(17)04(27)0203 + 0
61(2) 04 ()
We have thus discovered the identity

(10) 02050, (z+y) 6a(x—y) = 6:() 62(y) 05(y) 61(2) + 01 () 02 () 65() 64 (1)

Similar results for other products 0i(x + y)0.(x — ) will be found
in the exercises.

An important special case of (10) is obtained by choosing y = z.
The result is

= 0203.

(11) 0:0:0,0,(2x) = 26,(z) 6:(x) 0:(x) 04(x),

which may be called a duplication formula for 6;(z). Similar
results for the other theta functions appear in the exercises.

170. Relation to the heat equation. The simple (one dimen-
sional) heat equation, or equation of diffusion,

U o*u
1 2= pr 2z
(1) ot ox?

appears in many phases of applied mathematics. The four theta
functions, when considered as functions of z and r, satisfy an equa-
tion of the form (1).

At the start of this chapter we defined the theta functions by
series. As an example, consider

(2) 0.(2,q) =1+ 2 i:l (—=1)"q" cos 2na.
With ¢ = exp(xir), we write (2) in the form
(3) i(z]7) =14+ 2 il (—1)» exp(nnir) cos 2nz.
From (3) we obtain
36;04(z|7) = 2 ?; (—=1)(—4n?) exp(n?rir) cos 2nz
and

296—04(2(T> = 22 (—1)»(win?) exp(ninir) cos 2nz.
T n=1
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Hence
@ 2 oelr) = —grisiel ).

Indeed, examination of the series definitions of the theta functions
shows that equation (4) is still valid when the subscript 4 is replaced
by 1, 2, or 3. That is,

- 1
(3) Loalr) = —gricputeln;  k=1,2,3,4.

171. The relation 6’, = 6.6,6,, The values 6, 6;, 6, of three
theta functions at z = 0 have already entered our work in many
places. We define 6, as the value of 6,'(z) at z = 0. The four
functions of g alone, 6, 6s, 63, 6 are connected by the remarkably
neat relation

(1) 01/ = 020304

which we now proceed to prove.
Equation (11) of Section 169 gives us

(2) 02030401(22) = 201(2) 02(2) 03(Z) 04(2).

In (2) take logarithms of each member and differentiate throughout
with respect to z to obtain

3 260,(22) _ 6/(2) | < 0x'(2)
( 6,(22) a 6,(2) = 0k(2) '

Differentiate each member of (3) with respect to 2, thus arriving at

40,"(22) 60,'(22) " 6."(2) 0./ (2) ]
0. (22) 4[01(22)] = 00 _[Gl(z)]

+ kizli 0;’;’) {(;I;,<(:))}2:],
or
o -l
-2l - )

We wish to let z — 0in (4). The functions 6,(2), 05(2), 64(2) are
even functions of z; the function 6,(z) is an odd function of z.  Thus
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the limits of the terms on the right in (4) are easily found, but the
terms on the left yield indeterminate forms. We shall attempt to
simplify the proof by employing three lemmas.

Lemma 13. Lim ?—1«(—2i) = 2,
>0 01(2)

) 91”(2) a 8,"""(0)
Lemma. 14. Wt T W)

. 0,20 fo/ ("] 26,(0)
- ) -2
zgrol 6,(22) 91(2) 0, (0)

Lemma 13 follows at once from equation (2) of this section.

l.emma 14 is a consequence of a single application of L’Hopital's

rule.
To obtain the result in Lemma 15, note first that

6./ (22)° 0,'(2) 2_ 460,2(2)[6,(22)]* — 6:2(22)[6,'(2)]?
4{51(2z)} - {5:(5} T i

Lemma 15.

012(2) 012(22)
— ABC,

where

_ 6(2)
4 =0y
B = 20,(2)6,'(22) + 6,(22)6)'(2)
N 0,(22) !
201(2)01,(22) - 01(22)01,(2>
8:%(z) ’

By Lemma 13, Lim A = 3. Using Lemma 13 again we obtain
z90

Lim B = 2 - 16//(0) + 6,/(0) = 26,'(0).
z-»0

C:

Finally, with the aid of IHopital’s rule, we get

. _ora 40102607 (22) — 6:(22)6,"(2)
LmC=1m 36,%(2)01 (2)

1 )
= 37(0) L0

[49{’(2@ 0(22)  0:(22) e/'(z)]
0:(22) 91(2) 91(2) 0,(2)
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Hence, employing Lemmas 13 and 14, we find that

Lim C = >[4"‘ 0) 5 _o.0 (0>]—2§L_(Q)_.

>0 36,/(0) L 6,/(0) 6,(0) 1 — [6/(0)]2

Since the left member in Lemma 15 is the product of the limits of
A, B, and C, it equals

20111/(0) B 201///(0)

N O M O

as stated in the lemma.
We return now to equation (4); let 2z — 0 and use Lemmas 14
and 15 to obtain

491///(0) _ 01///(0) _ 201”’(0) _ 4 gk//(o)
6,'(0) 6,'(0) 0,'(0) =% 0:(0)’

or
01/11(0) B 4 oku(o)

(5) 6,/(0) — =% 6:(0)
In Section 170 we found that

9 . 92
(6) S0uz|7) = —imighzln); R =1,234
From (6) we also get
99 - 19
) o 5.0 = —im ezl ).

Because of (6) with & = 2, 3, 4, and of (7), equation (5) may be
put in the form

-(%01'(0’7) 4 %Ok(O’T)
®) 70T~ 2 60T

Now integration with respect to = leads us to the result

0.'(0]7) = E8,(0|7)85(0|7)84(0]7),
or

(9) 01/ = E020304,

in which 6,, 65, 6, and 6,” are functions of ¢ = exp(wir), but E is
constant. In (9) insert a factor ¢—* on each side to write

g6 = E(q~0)040,
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and then let ¢ — 0. From the definitions of the theta functions
we see that

Lim (¢7%,") = Lim (¢7%,) = 2

g-»0 70
and

Lim 6; = Lim 6, = 1.
>0 q-»0

Hence E = 1, which concludes the proof that
(1) 911 = 0,030,.

Equation (1) is interesting in itself, but it will also prove of value
to us in future developments.

172. Infinite products. Since we know all the zeros of the
theta functions, it is natural to seek infinite product representations
for those functions. From any one such rcpresentation the others
will follow by using properties from the basic table, page 319. It
turns out that either 6;(2) or 6,(2) furnishes a simple starting point.

Consider 6,(z). Its zeros are at

2= 4rr 4+ nwr + mm,

for integral n and m. We wish to form an infinite product which
vanishes for

(1) e?ic = exp(wit + 2nwir + 2mmi) = ¢t

for every integer n. Since we wish our product index to run from
1 to =, we separate the zeros in (1) into

(2) eliz = q‘Zn—l and e2iz = q~—(2n—1),

for n integral, n = 1. With these zeros in mind we form the
product

(3) f(Z) — I_Il [(1 —_ q2n—162iz)(1 — an—le—Ziz)]’

which is absolutely convergent for |¢| < 1. The function f(z) has
exactly the zeros possessed by 6,(2).

In order to employ our customary technique, we recall that 6,(2)
has the periodicity properties

4) 0.(z + m) = 64(2),
() 0s(z + w7) = —q e 220,(2),
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and seek corresponding information about f(z).
Since e?i=+m = ¢2iz we get

(6) fz + =) = f(2).
Now

f(z + 7”.) — H [(1 _ q2n—1uzu+2in>(1 — qzm-lc—ziz—zin)]
n=1

= J;Il [(1 - q2n+le2iz)(1 —_ q2n—3e—2iz)].

Hence
O [0
. 28z ___ 1
= q_le_z”qie—:‘q“e;?f(z);
so that
(7) f(z + =1) = —q7le~?i+f(2).

Therefore 64(z)/f(z) is an elliptic function of order less than two
and must be constant. It is customary to call the constant G. It
is a function of ¢ but not of 2. We have shown that

(8) 0:(z) = G J] [(1 — g2—te2iz) (1 — gr—te—2i7)],
n=1
which may also be written
9) 8:(z) = G I (1 — 2¢*»1 cos 22 + ¢+=2).
n=1

The value of G will be obtained in the next section.
We now wish to find infinite products for the other theta functions.
From the basic table, page 319, we have

03(2) = 04(:? + %7"),
so that (9) leads to

(10) 8:(z) = G ] (1 + 2¢>»—1 cos 22 + ¢*»~2).
n=1
Again from the basic table we obtain

0:1(z) = —igetizg(z + ir7),

which, in view of (8), leads to
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_iq}eizG H (1 —_— q2n—le2iz+i1rr) H (1 — q2n—le—2iz—i1r1)
n=1

n=1l

6:1(2)

= —qgte=G III (1 — gere?iz) III (1 — gen-2e—2is),

A shift of index from n to (n + 1) in the last infinite product yields

-]

61(z) = —igieG [] (1 — gier) JT (1 — gne—2w).
n=0

n=1

Therefore
6,(2) = —igle=(1 — e"“‘)GH [(1 — g2re?is)(1 — q2ne—2iz)].
n=1
Now —ieiz(1 — e~2iz) = —i(ei — ¢~i7) = 2 sin z. Hence

(11) 6:(2) = 2¢*G sin z H [ - gre?is) (1 — q?he—Ziz)]’
n=1

which may also be written in the form

(12) 0,(2) = 2¢*Gsinz [] (1 — 2¢*" cos 22 + ¢*7).
n=1

The basic table yields 6,(z) = 6,(z + =), with the aid of which
(12) yields

(13) 0:(2) = 2¢1G cos z [] (1 4 2¢°" cos 2z + ¢*»).
n=1

Equations (9), (10), (12), and (13) are the desired infinite product
forms for the theta functions except that we have yet to determine
how G depends upon gq.

173. The value of G. We shall find G from the known (page
332) relation

(1) 01, = 020304

and the infinite products obtained in the preceding section. By
differentiating with respect to z each member of the identity

6:(z) = 2¢:Gsinz [T (1 — 2¢%" cos 2z + ¢*7)
n=1
and then using z = 0, we arrive at

(2) 6 = 2¢'G IT (1 — g2
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From the identities

0:(2) = 2¢*G cos z [ (1 + 2¢*~ cos 2z + ¢*7),

n=1

0s(2) = G ][] (1 + 2¢**! cos 2z + g*»—2),

ne=l

0:s(2) = G II (1 — 2¢**~'cos 2z + ¢*"7?),

n=1

1t follows that

3 0 = 2¢:G IT (1 + gy,
(4) 0 = G I}l (1 + gn)2,
(5) 0, = G fI (1 — g2r1)2,

Since 6," = 6,6;6,, we are led to the relation
(6) I_Il (1 — @) =G H1 (1 4 g2n)2 Hl (1 + ¢2)? H] (1 — @212,

in which each of the infinite products is absolutely convergent
because of the restriction |¢| < 1.
Since the set of even positive integers plus the set of odd positive
integers is the set of all positive integers,
[I A+ 1T A+ ¢ =TT (1 + ¢
Equation (6) may now be put in the form

(=g = @I+ g9 1T - g

n=1 n=l

from which
,.IiIl (1 — ¢t = G? ﬁ; (1 + ¢)? ,ilx 1 — q2y._1)2nijl (1 — gy,
But
,.I:II (1 — gen—1)2 ﬁl 1 — )2 = ﬁ (1 — g,

Hence we have
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I -y = 6ILa+erIla- g

or

) 'Hl (1 =gt =G H (1 = ¢*n)2

But |q| < 1, so there are no zero factors in (7). Therefore
®) 11 (1 = ¢y = G

For ¢ = 0, G = 41, as may be seen from

(4) 0= GIL (1 + gy

and the series
(9) 0=1+4+23 ¢"

obtained early in this chapter. We may therefore conclude from
(8) in this section that

(10) G =111 - g,

EXERCISES

1. Show that 6," = 2¢}G5.
2. The following formulas are drawn from Section 168. Derive (9) and (10):

(8) 040:%(2) + 05%602*(z) = 0,%6:%(2),
9) 0:20:2(2) + 020:2(z) = 0,204(2),
(10) 0:20:%(2) + 0420;%(z) = 05202(z),
(11) 020%(2z) + 043202(z) = 0,%60:%(2).

3. Use (8) and (10) of Ex. 2 and the equation 6;* + 6,* = 65 to show that
0,%(2) + 054(2) = 6:4(z) + 04'(2).
4. The first of the following relations was derived in Section 169. Obtain the
other three by using appropriate changes of variable and the basic table, page 319.
For example, change z to (z + 4r), or z to (z + ir7), etc.

0:20:(x + y)0u(x — y) = 0:X(x)02(y) — 0:2(x)0:%(y),
00x(z + y)0a(z — y) = 0:(2)0:(y) — 0.2(x)0:2(y),
0:20x(x + y)bs(x — y) = 0:(2)0:%(y) + 6:(x)0:%(y),
020u(z + y)bs(z — y) = 02(2)02(y) + 0:2(2)0:3(y).
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5. Use the identities in Ex. 2 and the relation 6,* + 6,4 = 6;* to transform the
first relation of Ex. 4 into the first relation below. Then obtain the remaining
three relations with the aid of the basic table, page 319.

00:(z + )bi(z — y) = 02(x)0(y) — 05(2)04(y),
020:(x + y)0:(z — y) = 0:X(2)0:*(y) — 64(2)04(y),
020s(z + y)bs(z — y) = 0 (2)05(y) + 6,%(2)0:(y),

0:20:(x + y)0i(z — y) = 6.X(x)0:*(y) + 6:*(x)64(y).
6. Use equation (10) of Ex. 2 and the first relation of Ex. 5 to obtain the first
relation below; then use the basic table to get the remaining three results.

0:20:(x + y)bi(z — y) = 0:X(x)0:*(y) — 05*(x)6:%(y),
0:20;(x + y)bx(z — y) = 02(x)0:2(y) — 6(x)0:%(y),
6:%05(x + y)bi(z — y) = 0:2(x)0:(y) + 0.2(x)0:*(v),
050:(z + y)bu(z — y) = 024(2)0:*(y) + 02(2)0:%(y).

7. Use the first relation of Ex. 6 and identities from Ex. 2 to obtain the first
relation below. Derive the other three relations from the first one.

050, (z + y)bi(x — y) = 02(x)0:2(y) — 0:2(x)0(y),
0:26:(x + y)0a(x — ) = 0:2(2)02(y) — 6:2(2)0:(y),
05%605(x + y)0s(x — y) = 02(2)0:(y) + 02(2)0:(y),

0s0s(z + y)bs(z — y) = 0:2(2)02(y) + 0:*(2)04(y).
8. Use equation (10) of Ex. 2 and the first relation of Ex. 6 to obtain the first
relation below. Derive the others with the aid of the basic table, page 319.

020, (z + y)bi(z — y) = 0.2(x)02(y) — 0:2(2)0:°(y),
020x(z + y)bx(z — y) = 0(2)04(y) — 05*(2)0:*(y),
60.20;(z + y)0s(xz — y) = 0:2(x)0:2(y) — 0:2(2)6:%(y),
0:204(z + y)bs(x — y) = 62(2)0(y) — 6:X(2)0:*(y).
9. The first relation below was derived in Section 169. Obtain the other three.
0:26,(z + y)bi(z — y) = 05*(2)02*(y) — 0:*(2)05*(y),
0:20:(x + y)ba(x — y) = 0:2(2)02(y) — 6:*(x)0:*(y),
0:05(z + y)bs(x — y) = 0:2(x)0:2(y) — 6:*(2)8:2(y),
0:264(z + y)bu(x — y) = 0:%(x)05*(y) — 0:(x)0(y).

10. Use the method of Section 169 together with the basic table, page 319, to
derive the following results, one of which was obtained in Section 169.

0:6:60:(z + ¥)0(z — y) = 01(x)0:(x)03(y)0s(y) + 01(y)02(y)0s(x)0u(x),
0:0:6:(x + y)0s(x — y) = 01(x)02(y)0:(x)0a(y) + 6:(y)0:(2)0:(y)b4(x),
0:0:6:(z + ¥)0s(z — y) = 61(2)0:(y)0:(y)0s(x) + 6:1(y)62(2)0x(2)0u(y),
0:0:0:(x + y)0s(x — y) = 0:2(x)85(2)6:(y)0(y) — 61(x)8:(2)0:(y)04(y),
0:0:0:(z + y)0s(z — y) = 0:(2)0a(x)0:(1)0a(y) — 61(2)05(2)0:(y)0:(v),
0:6:05(z + y)0s(z — y) = 03(2)64(2)05(y)0u(y) — 61(2)0:(x)01(y)02(y)-
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11. Use the results in Exs. 4-10 above to show that
0:20:(2x) = 65*(x) — 6)%(z) = B4(z) — 04(x),
0:°0;(2z) = 61'(z) + 05'(x) = 0,4 (x) + O44(x),
0:204(2z) = 0,4(z) — 6,4(x) = 654 (x) — 0y4(x),
05%0,0:(2x) = 6:2(x)0:2(x) — 6:2(x)02(x),
020:0:(2x) = 6,*(z)0.2(x) — 0,%(x)0sx(x),
020,05(2x) = 0:*(x)0:2(x) + 0:2(x)0:X(x),
0420:05(22) = 05*(x)0:4(x) — 0:%(x)0:*(x),
0:20,04(22) = 0,2()05%(x) + 0:2(x)0:(x).
0:20404(2) = 0,%(x)8:2(x) + 0:2(x)642(x).
12. Use the method of Section 168 to show that
:l).
T

05(z[7) = (—ir)~ eXD(f;T)l’s(z

From the above identity obtain corresponding ones for the other theta functions
with the aid of the basic table, page 319.




CHAPTER 21

Jacobian

Elliptic

Functions

174. A differential equation involving theta functions. The
basic table, page 319, shows that the ratio

6(z)
04(2)

has the periodicity factors minus one for period = and plus one for
period =7. Then

d 91(2)
(1) dz 04(2)

has the same periodicity factors. Again from the table it can be
seen that

02(2) 03(2)
2 .
2) 64(z)  04(2)
has the periodicity factors minus one for period = and plus one for
period =r. Therefore the function

o 6:42)  d 6i(2)
(3) o(z) = 62(2)03(2) dz 94(2)’

the ratio of the functions in (1) and (2), has = and =+ as periods.
Actually, =7 is a period of ¢(2), a fact which we now proceed to
prove.

From (3) we get

339
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0.(2)0)(2) — 6,(2)0,(2)

4) o(z) = OE)

The basic table yields

(5) 6:(z + 3wr) = 17t 04(2)

and

(6) 0.(z + L77) = ig—le—i0,(2).

From (5) and (6) it follows that

(7 0, (z + irr) = (g te=:[0/(z) — 164(2)],

(8) 0/ (2 + ymr) = ig-te*:[0/(2) — (B:(2)].
Hence

0.(2 + in7)0/(z + 3xr) — 6:(2 + ir0)0/ (2 + 3n7)
= —qle2:[0,(2) 04 (2) — 04(2)6)(2)].
The basic table gives us
05(2 + Lw7)03(z + Lnr) = g e 2i20,(2) 6:(2),
and we may therefore conclude that
9) o(z + 377) = o(2).

The function ¢(z) of (3) or (4) is now known to have the periods
= and irr. The only singular points which ¢(z) can have in the
finite plane are the zeros of 6;(z) and 6;(z). As we saw on page 322,
the zeros of 6,(z) and 6;(z) are all simple ones and are located at

g = %1r+m1r+n7r'r,
z2=3r+ v+ mr + na7,
for integral m and n. Of these zeros only one is contained in a cell

of ¢(z). Hence ¢(2) is an elliptic function of order less than two
and is therefore a constant.

From
0:(2)6,'(2) — 6:(2)0(2)
2) = =
o(2) 6:(2)65(2) ,
we obtain ¢ by using z = 0:
— 6.6,/ — 0 _ 04020304 — 042,

0203 0204

with the aid of the known relation 6,/ = 6.6;6,, Thus we arrive at
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the differential equation

d 6,(z) _ 04205(2) 05(2)
(10) 0 60z

The equation (10) involves all four of the theta functions. We
have previously (Section 168) found the relations

(11) 0:20,2(2) + 0420:2(2) = 6,20,%(2),
(12) 0:20:°(2) + 042052 (2) = 0526,(2).
With the aid of (11) and (12) equation (10) can be written in a form

involving only the dependent variable 6,(2)/6:(z). To that end we
square both sides of (10) and write

d 60,(2) ] 6:26:2(z) 6:26:(2)
(13) [d—za(?)]‘ 62(2)  0:(2)

Equations (11) and (12) may now be used to put (13) in the form

o (48] [v -l w i)

With the dependent variable w = 6,(2)/64(2) we now have

(15) (92Y'~ (0 - owe)0 — o)

az )

In an attempt to simplify the appearance of equation (15), let
us introduce a new independent variable u by z = u/6;* and a new
dependent variable y by w = 6,y/6;. Then (15) becomes

) (e )
b3t 03 ) = 09 0,2 Y2\ 0 D Yy

or
dy : R
(16) ) = (1= - k),
in which
02
(17) k= 9_22

In retrospect, we have shown that the function

_ 03 01(03—211/)

(18) " 02 04(65%u)
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is one solution of the differential equation (16) with the constant
k being defined by (17).

175. The function sn(u). The y of equation (18) of the preced-
ing section is called the Jacobian elliptic function sn(u), defined by

0; 91(93'_2u)

() sn(u) = B 0a(6:—00)
and also written

_ B 06w) 02
(2) sn(u, k) - 9_2 04(0342?’07 v T ojiy

when it is desired to exhibit the parameter or “modulus” k. We
know that y = sn(u, k) is a solution of the differential equation
(16) of the preceding section. We next prove that sn(u, k) is an
elliptic function, and we shall study some of its properties.

The basic table, page 319, shows that the ratio 0,(z)/6.(2) has the
period =7 in z and the periodicity factor minus one for an increase
of = in the argument z. Hence, as a function of z, 6,(2)/6.(2) has
periods 2= and 7. Therefore, as a function of «,

01(03_21,6)
04(03_2'“)
has periods 276;2 and =r6;>. That is,
3) sn(u + 276;2) = sn(u),
(4) sn(u + wr62) = sn(u),
so that sn(u) is a doubly periodic function.
Let us now examine the singular points of sn(u). Since 6,(2) and
6.(2) are analytic for all finite 2, the only singular points of sn(u)

are at the zeros of the denominator 6.(6;72u). Hence sn(u) has
simple poles where

0;~u = Ywrr + nw + mwr.

Because of the periods 27652 and =782, we see that a representative
cell for sn(u) has in it two simple poles, onc at
U = '12’7I'T932
and one at
u = (%‘NTA-*- 1l')032-

Thus sn(u) is an elliptic function of order two, and in contrast to
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the Weierstrass P(z) of Chapter 19, sn(u) has two simple poles
rather than one double pole in each cell.

A common notation for the periods of sn(u, k) is 4K and 2/K’,
where

(5) K = %7r032,

(6) K' = —lirro.

With reference to the notation in (6), recall that we require Im(7) >0
so that |q| = |emir] < 1. If r is pure imaginary, then K’ is
positive.

One more notation will simplify some of the relations to be en-
countered later in this chapter. We have already defined in asso-
ciation with sn(u) the modulus

A — 022
(7) k= Y
We now define a complementary modulus £’ by
_ 02
ol

(8) k!

In view of the relation, page 324,
6* + 644 = 934,

we may conclude that
(9) k2 4 (k) = 1.

176. The functions cn(u) and dn(u). We have one Jacobian
elliptic function sn(u) defined by

(1) sn(u) = Z—: gi*gzz:f,z; :

Closely associated with sn(u) are two other functions defined by
_ 04 02(93_2?//)

(2) CYL(U) = 0—2 a(é;:%
and
(3) dn(u) = 2 )

0, 05(0,—2u)

We may refer to the basic table, page 319, to see that cn(u) is
an elliptic function of order two with periods 26,2 and (= + )65
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and with a representative cell containing two simple poles, onc at
u = iwr02, one at u = (= + 3m7)65%

In the same way it can be shown that dn (u) is an elliptic func-
tion of order two with periods =6;2 and 27 r6;* and with a representa-
tive cell containing two simple poles, one at w = }rr6*, one at
u = 3wr6,2

In terms of the parameters K and K’ given by

(4) K = }=n62, K' = —3iwr63?,

the periodicity properties of the Jacobian elliptic functions sn (u),
cn (u), dn (u) may be written as follows:

(5) sn(u + 4K) = sn(u + 2iK') = sn (u),
(6) en(u + 4K) = en(u + 2K + 2(K') = cn (u),
7 dn(u + 2K) = dn(u + 4/K’) = dn (u).

From our knowledge of the properties of the theta functions, we
obtain certain elementary facts about the Jacobian elliptic functions.
Recall that 6.(z) is an even function of z for m = 2, 3, 4 and that
6,(z) is an odd function of 2. It follows that

sn(—u) = —sn(u), cen(—u) = cn(u), dn(—u) = dn(u);

that is, sn () is an odd function of w and both cn () and dn (u)
are even functions of u. IFfurthermore we have

sn(0) = 0, cn(0) = 1, dn(0) = 1.

177. Relations involving squares. Information on the theta
functions acquired in Chapter 20 naturally reflects itself in infor-
mation on the Jacobian functions. We found in Section 168 that

(1) 0:20,2(2) + 0,26:%(2) = 6:°0,°(2),
(2) 0220:%(2) + 0.26052(2) = 6520,(2).
The choice z = 6;=? u permits (1) and (2) to be written as

03* 912(03——224,) 94_2 022(03_2u) .

(3) 0—22 042(03_2u) 02? 042(93_211/) N
and
(4) 022 012(03_216) gﬁ 032(03——2@6)_ .

.0_;:2- 042(03_2u) 032 042(63_21[) -
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By the definitions of sn (u), cn (w), dn (u) in the preceding section,
we see that (3) and (4) yield

) sn? () + cn? (w) = 1,
(6) k2 sn? (u) + dn? (w) = 1,

in which k = 6,%/6;?, as usual.
The elimination of sn (u) from (5) and (6) yields

dn? (u) — k*cn? (w) = 1 — k%,

or
@) dn? (u) — k2en? (u) = (k)3
with k = 6,2/6;* and k' = 0,%/6; satisfying the relation

k4 (k)2 = 1

as noted earlier.

178. Relations involving derivatives. On page 341 we obtained
the result

d 6,(z) 04205(2)05(2)
(1) dz 0.(z)  62(2)

From the definition

05 0,(6;,~%u)

(2) Sn(u) = 0, 04(03_25)—7

it follows that

d el d a0

(3) au MW = 5 e 0405
By (1), equation (3) becomes

d _ 64 02(8,72)65(6;, %)
(4) du SMW = 020,  0:2(0:%)
But, by definition,

_ & 62(03_211/)

(5) en(u) = =)
() dn(u) = 2 B0

B 0_3 04(03"211,)’
so that (4) yields

7 ?i% sn(u) = cn(u) dn(u).
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We now know how to differentiate sn (v) and we know a relation
(8) sn? (u) + cn?(u) =1

between sn (u) and cn (u). Then we differentiate each member of
(8) to obtain

sn(u) en(u) dn(u) + cn(u)-d% en(u) = 0,
from which it follows that

(9) c_ldﬁ cn(u) = —sn(u) dn(u).

In the same manner we conclude from (7) and the known relation
(page 345)
(10) k2 sn? (u) + dn? (u) = 1
that
k2 sn(u) cn(u) dn(u) + dn(u)a% dn(u) = 0,
which yields

(11) E% dn(u) = —k? sn(u) cn(u).

We already know from equation (16), page 341, that y; = sn (u)
is a solution of the differential equation

d 2
(12) (%) = (1 =y (1 — k.Y,
in which &k = 6,2/6;2. Let us obtain corresponding differential

equations satisfied by cn (u) and dn (u).
Put . = cen (u). Then, by (9),

(d_y2)2= sn2(u) dn*(u)
du ' '
But sn?(u) =1 —cn?(u) and dn?(u) = (K')2 + k2cen? (w), for

which see Section 177. It follows that y, = ¢n (u) is a solution of
the differential equation

(13) (3%) = (1 — y)[(K)2 + k2],
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Now let y3 = dn (u). By (11) we get
f%)z_ ,
(du = k4t sn2(uw) cn®(u).
But k2sn2(u) =1 —dn?(u) and k?cn? (uw) = dn? (u) — (k)2
Hence y; = dn (u) is a solution of the differential equation

(14) (g%) = (1 =y [ysd — ()2

179. Addition theorems. We have defined the Jacobian elliptic
functions by
_0_3 01(03_2u)

M) () = 2040,
@ enlu) = A,
(3) dn(u) = 0 B5(65—"w)

03 04(03_2?,6)’

and we have established formulas involving the theta functions with
arguments (z + y) and (z — y). We should therefore be able to
conclude something of interest about sn(u + v), en(u + v), ete.

In Section 169 and Ex. 8, p. 337, we found that

(4)  6:0:0,(x+y) 0(x—y) = 0:(xx) (1) 05(y) 04(x) + 6:() 62(2) 65(x) 0 (y),
() 0:20.(x + ¥)0u(x — ) = 0(2)0:2(y) — 6:*(x)6:*(y).
Equations (4) and (5) yield

6205 61(x + ) _ 01(2)02(y) 05(1) 04 () + 61()62(2)65()64(y)
0% 6s(x + ¥) 0:2(x)0:2(y) — 0:%(x)6:%(y)

61(x) 02(y) 0:(y) , 61(y) 62(z) bs(x)
_ 04(2) 0.(y) 0u(y) ~ 6a(y) Ou(x) Oa(x)

0:2(x) 6:*(y)

Now put z = 6;"u and y = 6;~% and use (1), (2), and (3) to obtain

o sn(u) cn(v) dn(v) + ot sn(v) en(u) dn(w)
0,2 0,2 0,2
92 sn(u 4+ v) =

)

04
1 - o sn2(u) sn%(v)
3
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from which it follows that

sn(u) en(v) dn(v) + sn(v) en(uw) dn(w)
1 — k2 sn*(u) sn2(v) )

(6) sn(u +v) =

Equation (6) is called an addition theorem. The companion results

cen(u) en(v) — sn(u) sn(v) dn(u) dn(v)
1 — k2 sn®(u) sn*(v)

(7) en(u + v) =

and

dn(u) dn(v) — k*sn(u) sn(v) cn(u) cn(v)

(8) dn(u +v) = 1 — k2 sn*(u) sn*(v)

may be obtained in a similar manner and arc left as exercises.

EXERCISES

1. Derive the preceding addition theorem (7) by the method of Section 179.
You may use results from the exercises at the end of Chapter 20.

2. Derive preceding (8) by the method of Section 179, with the aid of results
from the exercises at the end of Chapter 20.

3. Show that fcna(x) dn(zx) dx = sn(x) — 3 sn3(z) + c.

4. Show that if g(z) and h(z) are any two different ones of the three functions
sn(z), en(z), dn(z), and if m is a non-negative integer, you can perform the inte-
gration

fg2m+‘(x)h(x) dz.
5. Obtain the result

f on(z) dz = %Log[dn(x) — ken(@)] + c.
6. Show that

(A = B)[1 + k sn’(z)]

dn(2z) — kcn(2z) = 1 — k sn¥(2)
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defined, 287
differential recurrence relations, 288
expansion of v", 288
finite series of, 288
generating function, 288
hypergeometric form, 287
relation to polynomials of Legendre,
287-288
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