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FG-modules

We now introduce the concept of an FG-module, and show that there

is a close connection between FG-modules and representations of G

over F. Much of the material in the remainder of the book will be

presented in terms of FG-modules, as there are several advantages to

this approach to representation theory.

FG-modules

Let G be a group and let F be R or C.

Suppose that r: G! GL (n, F) is a representation of G. Write

V � F n, the vector space of all row vectors (ë1, . . . , ën) with ëi 2 F.

For all v 2 V and g 2 G, the matrix product

v(gr),

of the row vector v with the n 3 n matrix gr, is a row vector in V

(since the product of a 1 3 n matrix with an n 3 n matrix is again a

1 3 n matrix).

We now list some basic properties of the multiplication v(gr). First,

the fact that r is a homomorphism shows that

v((gh)r) � v(gr)(hr)

for all v 2 V and all g, h 2 G. Next, since 1r is the identity matrix, we

have

v(1r) � v

for all v 2 V. Finally, the properties of matrix multiplication give

(ëv)(gr) � ë(v(gr)),



(u� v)(gr) � u(gr)� v(gr)

for all u, v 2 V, ë 2 F and g 2 G.

4.1 Example

Let G � D8 � ka, b: a4 � b2 � 1, bÿ1ab � aÿ1l, and let r: G!
GL (2, F) be the representation of G over F given in Example 3.2(1).

Thus

ar � 0 1

ÿ1 0

� �
, br � 1 0

0 ÿ1

� �
:

If v � (ë1, ë2) 2 F2 then, for example,

v(ar) � (ÿë2, ë1),

v(br) � (ë1, ÿë2),

v(a3r) � (ë2, ÿë1):

Motivated by the above observations on the product v(gr), we now

de®ne an FG-module.

4.2 De®nition

Let V be a vector space over F and let G be a group. Then V is an

FG-module if a multiplication vg (v 2 V, g 2 G) is de®ned, satisfying

the following conditions for all u, v 2 V, ë 2 F and g, h 2 G:

(1) vg 2 V;

(2) v(gh) � (vg)h;

(3) v1 � v;

(4) (ëv)g � ë(vg);

(5) (u � v)g � ug � vg.

We use the letters F and G in the name `FG-module' to indicate

that V is a vector space over F and that G is the group from which we

are taking the elements g to form the products vg (v 2 V).

Note that conditions (1), (4) and (5) in the de®nition ensure that for

all g 2 G, the function

v! vg (v 2 V )

is an endomorphism of V.
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4.3 De®nition

Let V be an FG-module, and let B be a basis of V. For each g 2 G,

let

[g]B

denote the matrix of the endomorphism v! vg of V, relative to the

basis B .

The connection between FG-modules and representations of G over

F is revealed in the following basic result.

4.4 Theorem

(1) If r: G! GL(n, F) is a representation of G over F, and V � F n,

then V becomes an FG-module if we de®ne the multiplication vg by

vg � v(gr) (v 2 V , g 2 G):

Moreover, there is a basis B of V such that

gr � [g]B for all g 2 G:

(2) Assume that V is an FG-module and let B be a basis of V.

Then the function

g ! [g]B (g 2 G)

is a representation of G over F.

Proof (1) We have already observed that for all u, v 2 F n, ë 2 F and

g, h 2 G, we have

v(gr) 2 F n,

v((gh)r) � (v(gr))(hr),

v(1r) � v,

(ëv)(gr) � ë(v(gr)),

(u� v)(gr) � u(gr)� v(gr):

Therefore, F n becomes an FG-module if we de®ne

vg � v(gr) for all v 2 F n, g 2 G:

Moreover, if we let B be the basis

(1, 0, 0, : : : , 0), (0, 1, 0, : : : , 0), : : : , (0, 0, 0, : : : , 1)

of F n, then gr � [g]B for all g 2 G.
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(2) Let V be an FG-module with basis B . Since v(gh) � (vg)h for

all g, h 2 G and all v in the basis B of V, it follows that

[gh]B � [g]B [h]B :

In particular,

[1]B � [g]B [gÿ1]B

for all g 2 G. Now v1 � v for all v 2 V, so [1]B is the identity matrix.

Therefore each matrix [g]B is invertible (with inverse [gÿ1]B ).

We have proved that the function g! [g]B is a homomorphism

from G to GL (n, F) (where n � dim V ), and hence is a representation

of G over F. j

Our next example illustrates part (1) of Theorem 4.4.

4.5 Examples

(1) Let G � D8 � ka, b: a4 � b2 � 1, bÿ1ab � aÿ1l and let r be the

representation of G over F given in Example 3.2(1), so

ar � 0 1

ÿ1 0

� �
, br � 1 0

0 ÿ1

� �
:

Write V � F2. By Theorem 4.4(1), V becomes an FG-module if we

de®ne

vg � v(gr) (v 2 V , g 2 G):

For instance,

(1, 0)a � (1, 0)
0 1

ÿ1 0

� �
� (0, 1):

If v1, v2 is the basis (1, 0), (0, 1) of V, then we have

v1a � v2, v1b � v1,

v2a � ÿv1, v2b � ÿv2:

If B denotes the basis v1, v2, then the representation

g ! [g]B (g 2 G)

is just the representation r (see Theorem 4.4(1) again).

(2) Let G � Q8 � ka, b: a4� 1, a2 � b2, bÿ1ab � aÿ1l. In Example
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1.2(4) we de®ned Q8 to be the subgroup of GL (2, C) generated by

A � i 0

0 ÿi

� �
and B � 0 1

ÿ1 0

� �
,

so we already have a representation of G over C. To illustrate Theorem

4.4(1) we must this time take F � C. We then obtain a CG-module

with basis v1, v2 such that

v1a � iv1, v1b � v2,

v2a � ÿiv2, v2b � ÿv1:

Notice that in the above examples, the vectors v1a, v2a, v1b and v2b

determine vg for all v 2 V and g 2 G. For instance, in Example 4.5(1),

(v1 � 2v2)ab � v1ab� 2v2ab

� v2bÿ 2v1b

� ÿv2 ÿ 2v1:

A similar remark holds for all FG-modules V: if v1, . . . , vn is a basis

of V and g1, . . . , gr generate G, then the vectors vi g j (1 < i < n,

1 < j < r) determine vg for all v 2 V and g 2 G.

Shortly, we shall show you various ways of constructing FG-modules

directly, without using a representation. To do this, we turn a vector

space V over F into an FG-module by specifying the action of group

elements on a basis v1, . . . , vn of V and then extending the action to

be linear on the whole of V; that is, we ®rst de®ne vig for each i and

each g in G, and then de®ne

(ë1v1 � : : :� ënvn)g (ëi 2 F)

to be

ë1(v1 g)� : : :� ën(vng):

As you might expect, there are restrictions on how we may de®ne the

vectors vig. The next result will often be used to show that our chosen

multiplication turns V into an FG-module.

4.6 Proposition

Assume that v1, . . . , vn is a basis of a vector space V over F. Suppose

that we have a multiplication vg for all v in V and g in G which
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satis®es the following conditions for all i with 1 < i < n, for all

g, h 2 G, and for all ë1, . . . , ën 2 F:

(1) vig 2 V;

(2) vi(gh) � (vi g)h;

(3) vi1 � vi;

(4) (ë1v1 � . . . � ënvn)g � ë1(v1 g) � . . . � ën(vn g).

Then V is an FG-module.

Proof It is clear from (3) and (4) that v1 � v for all v 2 V.

Conditions (1) and (4) ensure that for all g in G, the function

v! vg (v 2 V) is an endomorphism of V. That is,

vg 2 V ,

(ëv)g � ë(vg),

(u� v)g � ug � vg,

for all u, v 2 V, ë 2 F and g 2 G. Hence

(ë1u1 � : : :� ënun)h � ë1(u1 h)� : : :� ën(unh)(4:7)

for all ë1, . . . , ën 2 F, all u1, . . . , un 2 V and all h 2 G.

Now let v 2 V and g, h 2 G. Then v � ë1v1 � . . . � ënvn for some

ë1, . . . , ën 2 F, and

v(gh) � ë1(v1(gh))� : : :� ën(vn(gh)) by condition (4)

� ë1((v1 g)h)� : : :� ën((vng)h) by condition (2)

� (ë1(v1 g)� : : :� ën(vng))h by (4:7)

� (vg)h by condition (4):

We have now checked all the axioms which are required for V to be

an FG-module. j

Our next de®nitions translate the concepts of the trivial represent-

ation and a faithful representation into module terms.

4.8 De®nitions

(1) The trivial FG-module is the 1-dimensional vector space V over F

with

vg � v for all v 2 V , g 2 G:
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(2) An FG-module V is faithful if the identity element of G is the

only element g for which

vg � v for all v 2 V :

For instance, the FD8-module which appears in Example 4.5(1) is

faithful.

Our next aim is to use Proposition 4.6 to construct faithful FG-

modules for all subgroups of symmetric groups.

Permutation modules

Let G be a subgroup of Sn, so that G is a group of permutations of

{1, . . . , n}. Let V be an n-dimensional vector space over F, with basis

v1, . . . , vn. For each i with 1 < i < n and each permutation g in G,

de®ne

vig � vig:

Then vig 2 V and vi1 � vi. Also, for g, h in G,

vi(gh) � vi( gh) � v(ig)h � (vig)h:

We now extend the action of each g linearly to the whole of V; that is,

for all ë1, . . . , ën in F and g in G, we de®ne

(ë1v1 � : : :� ënvn)g � ë1(v1 g)� : : :� ën(vng):

Then V is an FG-module, by Proposition 4.6.

4.9 Example

Let G � S4 and let B denote the basis v1, v2, v3, v4 of V. If g � (1 2),

then

v1 g � v2, v2 g � v1, v3 g � v3, v4 g � v4:

And if h � (1 3 4), then

v1 h � v3, v2 h � v2, v3 h � v4, v4 h � v1:

We have

[g]B �
0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

0BB@
1CCA, [h]B �

0 0 1 0

0 1 0 0

0 0 0 1

1 0 0 0

0BB@
1CCA:
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4.10 De®nition

Let G be a subgroup of Sn. The FG-module V with basis v1, . . . , vn

such that

vig � vig for all i, and all g 2 G,

is called the permutation module for G over F. We call v1, . . . , vn the

natural basis of V.

Note that if we write B for the basis v1, . . . , vn of the permutation

module, then for all g in G, the matrix [g]B has precisely one non-

zero entry in each row and column, and this entry is 1. Such a matrix

is called a permutation matrix.

Since the only element of G which ®xes every vi is the identity, we see

that the permutation module is a faithful FG-module. If you are aware of

the fact that every group G of order n is isomorphic to a subgroup of Sn,

then you should be able to see that G has a faithful FG-module of

dimension n. We shall go into this in more detail in Chapter 6.

4.11 Example

Let G � C3 � ka: a3 � 1l. Then G is isomorphic to the cyclic subgroup

of S3 which is generated by the permutation (1 2 3). This alerts us to

the fact that if V is a 3-dimensional vector space over F, with basis v1,

v2, v3, then we may make V into an FG-module in which

v11 � v1, v21 � v2, v31 � v3,

v1a � v2, v2a � v3, v3a � v1,

v1a2 � v3, v2a2 � v1, v3a2 � v2:

Of course, we de®ne vg, for v an arbitrary vector in V and g � 1, a

or a2, by

(ë1v1 � ë2v2 � ë3v3)g � ë1(v1 g)� ë2(v2 g)� ë3(v3 g)

for all ë1, ë2, ë3 2 F. Proposition 4.6 can be used to verify that V is an

FG-module, but we have been motivated by the de®nition of permuta-

tion modules in our construction.

FG-modules and equivalent representations

We conclude the chapter with a discussion of the relationship between

FG-modules and equivalent representations of G over F. An FG-
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module gives us many representations, all of the form

g ! [g]B (g 2 G)

for some basis B of V. The next result shows that all these representa-

tions are equivalent to each other (see De®nition 3.3); and moreover,

any two equivalent representations of G arise from some FG-module in

this way.

4.12 Theorem

Suppose that V is an FG-module with basis B , and let r be the

representation of G over F de®ned by

r: g ! [g]B (g 2 G):

(1) If B 9 is a basis of V, then the representation

ö: g ! [g]B 9 (g 2 G)

of G is equivalent to r.

(2) If ó is a representation of G which is equivalent to r, then there

is a basis B 0 of V such that

ó : g ! [g]B 0 (g 2 G):

Proof (1) Let T be the change of basis matrix from B to B 9 (see

De®nition 2.23). Then by (2.24), for all g 2 G, we have

[g]B � Tÿ1[g]B 9T :

Therefore ö is equivalent to r.

(2) Suppose that r and ó are equivalent representations of G. Then

for some invertible matrix T, we have

gr � Tÿ1(gó )T for all g 2 G:

Let B 0 be the basis of V such that the change of basis matrix from B
to B 0 is T. Then for all g 2 G,

[g]B � Tÿ1[g]B 0T ,

and so gó � [g]B 0. j

4.13 Example

Again let G � C3 � ka: a3 � 1l. There is a representation r of G which

is given by
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1r � 1 0

0 1

� �
, ar � 0 1

ÿ1 ÿ1

� �
, a2r � ÿ1 ÿ1

1 0

� �
:

(To see this, simply note that (ar)2 � a2r and (ar)3 � I; see Exercise

3.2.)

If V is a 2-dimensional vector space over C, with basis v1, v2 (which

we call B ), then we can turn V into a CG-module as in Theorem

4.4(1) by de®ning

v11 � v1, v1a � v2, v1a2 � ÿv1 ÿ v2,

v21 � v2, v2a � ÿv1 ÿ v2, v2a2 � v1:

We then have

[1]B � 1 0

0 1

� �
, [a]B � 0 1

ÿ1 ÿ1

� �
, [a2]B � ÿ1 ÿ1

1 0

� �
:

Now let u1 � v1 and u2 � v1 � v2. Then u1, u2 is another basis of V,

which we call B 9. Since

u11 � u1, u1a � ÿu1 � u2, u1a2 � ÿu2,

u21 � u2, u2a � ÿu1, u2a2 � u1 ÿ u2,

we obtain the representation ö: g! [g]B 9 where

[1]B 9 � 1 0

0 1

� �
, [a]B 9 � ÿ1 1

ÿ1 0

� �
, [a2]B 9 � 0 ÿ1

1 ÿ1

� �
:

Note that if

T � 1 0

1 1

� �
then for all g in G, we have

[g]B � Tÿ1[g]B 9T ,

and so r and ö are equivalent, in agreement with Theorem 4.12(1).

Summary of Chapter 4

1. An FG-module is a vector space over F, together with a multi-

plication by elements of G on the right. The multiplication satis®es

properties (1)±(5) of De®nition 4.2.
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2. There is a correspondence between representations of G over F

and FG-modules, as follows.

(a) Suppose that r: G! GL (n, F) is a representation of G.

Then F n is an FG-module, if we de®ne

vg � v(gr) (v 2 F n, g 2 G):

(b) If V is an FG-module, with basis B , then r: g! [g]B is a

representation of G over F.

3. If G is a subgroup of Sn, then the permutation FG-module has

basis v1, . . . , vn, and vi g � vig for all i with 1 < i < n, and all g

in G.

Exercises for Chapter 4

1. Suppose that G � S3, and that V � sp (v1, v2, v3) is the permutation

module for G over C, as in De®nition 4.10. Let B 1 be the basis

v1, v2, v3 of V and let B 2 be the basis v1 � v2 � v3, v1 ÿ v2,

v1 ÿ v3. Calculate the 3 3 3 matrices [g]B 1
and [g]B 2

for all g in

S3. What do you notice about the matices [g]B 2
?

2. Let G � Sn and let V be a vector space over F. Show that V

becomes an FG-module if we de®ne, for all v in V,

vg � v, if g is an even permutation,

ÿv, if g is an odd permutation.

�
3. Let Q8 � ka, b: a4 � 1, b2 � a2, bÿ1ab � aÿ1l, the quaternion

group of order 8. Show that there is an RQ8-module V of

dimension 4 with basis v1, v2, v3, v4 such that

v1a � v2, v2a � ÿv1, v3a � ÿv4, v4a � v3, and

v1b � v3, v2b � v4, v3b � ÿv1, v4b � ÿv2:

4. Let A be an n 3 n matrix and let B be a matrix obtained from A

by permuting the rows. Show that there is an n 3 n permutation

matrix P such that B � PA. Find a similar result for a matrix

obtained from A by permuting the columns.
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