4

$F G$-modules

We now introduce the concept of an $F G$-module, and show that there is a close connection between $F G$-modules and representations of G over F. Much of the material in the remainder of the book will be presented in terms of $F G$-modules, as there are several advantages to this approach to representation theory.

$F G$-modules

Let G be a group and let F be \mathbb{R} or \mathbb{C}.
Suppose that $\rho: G \rightarrow \operatorname{GL}(n, F)$ is a representation of G. Write $V=F^{n}$, the vector space of all row vectors $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with $\lambda_{i} \in F$. For all $v \in V$ and $g \in G$, the matrix product

$$
v(g \rho),
$$

of the row vector v with the $n \times n$ matrix $g \rho$, is a row vector in V (since the product of a $1 \times n$ matrix with an $n \times n$ matrix is again a $1 \times n$ matrix).

We now list some basic properties of the multiplication $v(g \rho)$. First, the fact that ρ is a homomorphism shows that

$$
v((g h) \rho)=v(g \rho)(h \rho)
$$

for all $v \in V$ and all $g, h \in G$. Next, since 1ρ is the identity matrix, we have

$$
v(1 \rho)=v
$$

for all $v \in V$. Finally, the properties of matrix multiplication give

$$
(\lambda v)(g \rho)=\lambda(v(g \rho)),
$$

$$
(u+v)(g \rho)=u(g \rho)+v(g \rho)
$$

for all $u, v \in V, \lambda \in F$ and $g \in G$.

4.1 Example

Let $\quad G=D_{8}=\left\langle a, b: a^{4}=b^{2}=1, b^{-1} a b=a^{-1}\right\rangle, \quad$ and \quad let $\quad \rho: G \rightarrow$ GL $(2, F)$ be the representation of G over F given in Example 3.2(1). Thus

$$
a \rho=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right), b \rho=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

If $v=\left(\lambda_{1}, \lambda_{2}\right) \in F^{2}$ then, for example,

$$
\begin{gathered}
v(a \rho)=\left(-\lambda_{2}, \lambda_{1}\right), \\
v(b \rho)=\left(\lambda_{1},-\lambda_{2}\right), \\
v\left(a^{3} \rho\right)=\left(\lambda_{2},-\lambda_{1}\right) .
\end{gathered}
$$

Motivated by the above observations on the product $v(g \rho)$, we now define an $F G$-module.

4.2 Definition

Let V be a vector space over F and let G be a group. Then V is an $F G$-module if a multiplication $v g(v \in V, g \in G)$ is defined, satisfying the following conditions for all $u, v \in V, \lambda \in F$ and $g, h \in G$:
(1) $v g \in V$;
(2) $v(g h)=(v g) h$;
(3) $v 1=v$;
(4) $(\lambda v) g=\lambda(\nu g)$;
(5) $(u+v) g=u g+v g$.

We use the letters F and G in the name ' $F G$-module' to indicate that V is a vector space over F and that G is the group from which we are taking the elements g to form the products $v g(v \in V)$.
Note that conditions (1), (4) and (5) in the definition ensure that for all $g \in G$, the function

$$
v \rightarrow v g \quad(v \in V)
$$

is an endomorphism of V.

4.3 Definition

Let V be an $F G$-module, and let \mathscr{B} be a basis of V. For each $g \in G$, let

[g].s

denote the matrix of the endomorphism $v \rightarrow v g$ of V, relative to the basis \mathscr{B}.

The connection between $F G$-modules and representations of G over F is revealed in the following basic result.

4.4 Theorem

(1) If $\rho: G \rightarrow \operatorname{GL}(n, F)$ is a representation of G over F, and $V=F^{n}$, then V becomes an $F G$-module if we define the multiplication $v g$ by

$$
v g=v(g \rho) \quad(v \in V, g \in G)
$$

Moreover, there is a basis \mathscr{B} of V such that

$$
g \rho=[g]_{\mathscr{B}} \quad \text { for all } g \in G .
$$

(2) Assume that V is an $F G$-module and let \mathscr{B} be a basis of V. Then the function

$$
g \rightarrow[g]_{\mathscr{B}} \quad(g \in G)
$$

is a representation of G over F.

Proof (1) We have already observed that for all $u, v \in F^{n}, \lambda \in F$ and g, $h \in G$, we have

$$
\begin{gathered}
v(g \rho) \in F^{n} \\
v((g h) \rho)=(v(g \rho))(h \rho) \\
v(1 \rho)=v \\
(\lambda v)(g \rho)=\lambda(v(g \rho)) \\
(u+v)(g \rho)=u(g \rho)+v(g \rho)
\end{gathered}
$$

Therefore, F^{n} becomes an $F G$-module if we define

$$
v g=v(g \rho) \quad \text { for all } v \in F^{n}, \mathrm{~g} \in G
$$

Moreover, if we let \mathscr{B} be the basis

$$
(1,0,0, \ldots, 0),(0,1,0, \ldots, 0), \ldots,(0,0,0, \ldots, 1)
$$

of F^{n}, then $g \rho=[g]_{\mathscr{B}}$ for all $g \in G$.
(2) Let V be an $F G$-module with basis \mathscr{B}. Since $v(g h)=(v g) h$ for all $g, h \in G$ and all v in the basis \mathscr{B} of V, it follows that

$$
[g h]_{\mathscr{B}}=[g]_{\mathscr{S}}[h]_{\mathscr{S}} .
$$

In particular,

$$
[1]_{\mathscr{B}}=[g]_{\mathscr{B}}\left[g^{-1}\right]_{\mathscr{B}}
$$

for all $g \in G$. Now $v 1=v$ for all $v \in V$, so $[1]_{\mathscr{B}}$ is the identity matrix. Therefore each matrix $[g]_{\mathscr{B}}$ is invertible (with inverse $\left[g^{-1}\right]_{\mathscr{B}}$).

We have proved that the function $g \rightarrow[g]_{\mathscr{B}}$ is a homomorphism from G to $\operatorname{GL}(n, F)$ (where $n=\operatorname{dim} V$), and hence is a representation of G over F.

Our next example illustrates part (1) of Theorem 4.4.

4.5 Examples

(1) Let $G=D_{8}=\left\langle a, b: a^{4}=b^{2}=1, b^{-1} a b=a^{-1}\right\rangle$ and let ρ be the representation of G over F given in Example 3.2(1), so

$$
a \rho=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right), b \rho=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Write $V=F^{2}$. By Theorem 4.4(1), V becomes an $F G$-module if we define

$$
v g=v(g \rho) \quad(v \in V, g \in G)
$$

For instance,

$$
(1,0) a=(1,0)\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)=(0,1)
$$

If v_{1}, v_{2} is the basis $(1,0),(0,1)$ of V, then we have

$$
\begin{array}{ll}
v_{1} a=v_{2}, & v_{1} b=v_{1} \\
v_{2} a=-v_{1}, & v_{2} b=-v_{2}
\end{array}
$$

If \mathscr{B} denotes the basis v_{1}, v_{2}, then the representation

$$
g \rightarrow[g]_{\mathscr{B}} \quad(g \in G)
$$

is just the representation ρ (see Theorem 4.4(1) again).
(2) Let $G=Q_{8}=\left\langle a, b: a^{4}=1, \quad a^{2}=b^{2}, \quad b^{-1} a b=a^{-1}\right\rangle$. In Example
$1.2(4)$ we defined Q_{8} to be the subgroup of $\operatorname{GL}(2, \mathbb{C})$ generated by

$$
A=\left(\begin{array}{rr}
\mathrm{i} & 0 \\
0 & -\mathrm{i}
\end{array}\right) \text { and } B=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right),
$$

so we already have a representation of G over \mathbb{C}. To illustrate Theorem 4.4(1) we must this time take $F=\mathbb{C}$. We then obtain a $\mathbb{C} G$-module with basis v_{1}, v_{2} such that

$$
\begin{array}{ll}
v_{1} a=\mathrm{i} v_{1}, & v_{1} b=v_{2}, \\
v_{2} a=-\mathrm{i} v_{2}, & v_{2} b=-v_{1} .
\end{array}
$$

Notice that in the above examples, the vectors $v_{1} a, v_{2} a, v_{1} b$ and $v_{2} b$ determine $v g$ for all $v \in V$ and $g \in G$. For instance, in Example 4.5(1),

$$
\begin{aligned}
\left(v_{1}+2 v_{2}\right) a b & =v_{1} a b+2 v_{2} a b \\
& =v_{2} b-2 v_{1} b \\
& =-v_{2}-2 v_{1} .
\end{aligned}
$$

A similar remark holds for all $F G$-modules V : if v_{1}, \ldots, v_{n} is a basis of V and g_{1}, \ldots, g_{r} generate G, then the vectors $v_{i} g_{j}(1 \leqslant i \leqslant n$, $1 \leqslant j \leqslant r$) determine $v g$ for all $v \in V$ and $g \in G$.
Shortly, we shall show you various ways of constructing $F G$-modules directly, without using a representation. To do this, we turn a vector space V over F into an $F G$-module by specifying the action of group elements on a basis v_{1}, \ldots, v_{n} of V and then extending the action to be linear on the whole of V; that is, we first define $v_{i} g$ for each i and each g in G, and then define

$$
\left(\lambda_{1} v_{1}+\ldots+\lambda_{n} v_{n}\right) g \quad\left(\lambda_{i} \in F\right)
$$

to be

$$
\lambda_{1}\left(v_{1} g\right)+\ldots+\lambda_{n}\left(v_{n} g\right) .
$$

As you might expect, there are restrictions on how we may define the vectors $v_{i} g$. The next result will often be used to show that our chosen multiplication turns V into an $F G$-module.

4.6 Proposition

Assume that v_{1}, \ldots, v_{n} is a basis of a vector space V over F. Suppose that we have a multiplication $v g$ for all v in V and g in G which
satisfies the following conditions for all i with $1 \leqslant i \leqslant n$, for all $g, h \in G$, and for all $\lambda_{1}, \ldots, \lambda_{n} \in F$:
(1) $v_{i} g \in V$;
(2) $v_{i}(g h)=\left(v_{i} g\right) h$;
(3) $v_{i} 1=v_{i}$;
(4) $\left(\lambda_{1} v_{1}+\ldots+\lambda_{n} v_{n}\right) g=\lambda_{1}\left(v_{1} g\right)+\ldots+\lambda_{n}\left(v_{n} g\right)$.

Then V is an FG-module.

Proof It is clear from (3) and (4) that $v 1=v$ for all $v \in V$.
Conditions (1) and (4) ensure that for all g in G, the function $v \rightarrow v g(v \in V)$ is an endomorphism of V. That is,

$$
\begin{aligned}
& v g \in V \\
& (\lambda v) g=\lambda(v g) \\
& (u+v) g=u g+v g
\end{aligned}
$$

for all $u, v \in V, \lambda \in F$ and $g \in G$. Hence

$$
\begin{equation*}
\left(\lambda_{1} u_{1}+\ldots+\lambda_{n} u_{n}\right) h=\lambda_{1}\left(u_{1} h\right)+\ldots+\lambda_{n}\left(u_{n} h\right) \tag{4.7}
\end{equation*}
$$

for all $\lambda_{1}, \ldots, \lambda_{n} \in F$, all $u_{1}, \ldots, u_{n} \in V$ and all $h \in G$.
Now let $v \in V$ and $g, h \in G$. Then $v=\lambda_{1} v_{1}+\ldots+\lambda_{n} v_{n}$ for some $\lambda_{1}, \ldots, \lambda_{n} \in F$, and

$$
\begin{aligned}
v(g h) & =\lambda_{1}\left(v_{1}(g h)\right)+\ldots+\lambda_{n}\left(v_{n}(g h)\right) \quad \text { by condition }(4) \\
& =\lambda_{1}\left(\left(v_{1} g\right) h\right)+\ldots+\lambda_{n}\left(\left(v_{n} g\right) h\right) \quad \text { by condition }(2) \\
& =\left(\lambda_{1}\left(v_{1} g\right)+\ldots+\lambda_{n}\left(v_{n} g\right)\right) h \quad \text { by }(4.7) \\
& =(v g) h \quad \text { by condition }(4)
\end{aligned}
$$

We have now checked all the axioms which are required for V to be an $F G$-module.

Our next definitions translate the concepts of the trivial representation and a faithful representation into module terms.

4.8 Definitions

(1) The trivial $F G$-module is the 1-dimensional vector space V over F with

$$
v g=v \quad \text { for all } v \in V, g \in G
$$

(2) An $F G$-module V is faithful if the identity element of G is the only element g for which

$$
v g=v \quad \text { for all } v \in V .
$$

For instance, the $F D_{8}$-module which appears in Example 4.5(1) is faithful.

Our next aim is to use Proposition 4.6 to construct faithful $F G$ modules for all subgroups of symmetric groups.

Permutation modules

Let G be a subgroup of S_{n}, so that G is a group of permutations of $\{1, \ldots, n\}$. Let V be an n-dimensional vector space over F, with basis v_{1}, \ldots, v_{n}. For each i with $1 \leqslant i \leqslant n$ and each permutation g in G, define

$$
v_{i} g=v_{i g} .
$$

Then $v_{i} g \in V$ and $v_{i} 1=v_{i}$. Also, for g, h in G,

$$
v_{i}(g h)=v_{i(g h)}=v_{(i g) h}=\left(v_{i} \mathrm{~g}\right) h .
$$

We now extend the action of each g linearly to the whole of V; that is, for all $\lambda_{1}, \ldots, \lambda_{n}$ in F and g in G, we define

$$
\left(\lambda_{1} v_{1}+\ldots+\lambda_{n} v_{n}\right) g=\lambda_{1}\left(v_{1} g\right)+\ldots+\lambda_{n}\left(v_{n} g\right) .
$$

Then V is an $F G$-module, by Proposition 4.6.

4.9 Example

Let $G=S_{4}$ and let \mathscr{B} denote the basis $v_{1}, v_{2}, v_{3}, v_{4}$ of V. If $g=(12)$, then

$$
v_{1} g=v_{2}, v_{2} g=v_{1}, v_{3} g=v_{3}, v_{4} g=v_{4} .
$$

And if $h=\left(\begin{array}{ll}1 & 3\end{array}\right)$, then

$$
v_{1} h=v_{3}, v_{2} h=v_{2}, v_{3} h=v_{4}, v_{4} h=v_{1} .
$$

We have

$$
[g]_{\mathscr{B}}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),[h]_{\mathscr{B}}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right) .
$$

4.10 Definition

Let G be a subgroup of S_{n}. The $F G$-module V with basis v_{1}, \ldots, v_{n} such that

$$
v_{i} g=v_{i g} \quad \text { for all } i, \text { and all } g \in G,
$$

is called the permutation module for G over F. We call v_{1}, \ldots, v_{n} the natural basis of V.

Note that if we write \mathscr{B} for the basis v_{1}, \ldots, v_{n} of the permutation module, then for all g in G, the matrix $[g]_{\mathscr{B}}$ has precisely one nonzero entry in each row and column, and this entry is 1 . Such a matrix is called a permutation matrix.

Since the only element of G which fixes every v_{i} is the identity, we see that the permutation module is a faithful $F G$-module. If you are aware of the fact that every group G of order n is isomorphic to a subgroup of S_{n}, then you should be able to see that G has a faithful $F G$-module of dimension n. We shall go into this in more detail in Chapter 6.

4.11 Example

Let $G=C_{3}=\left\langle a: a^{3}=1\right\rangle$. Then G is isomorphic to the cyclic subgroup of S_{3} which is generated by the permutation (123). This alerts us to the fact that if V is a 3 -dimensional vector space over F, with basis v_{1}, v_{2}, v_{3}, then we may make V into an $F G$-module in which

$$
\begin{aligned}
& v_{1} 1=v_{1}, v_{2} 1=v_{2}, v_{3} 1=v_{3}, \\
& v_{1} a=v_{2}, v_{2} a=v_{3}, v_{3} a=v_{1}, \\
& v_{1} a^{2}=v_{3}, v_{2} a^{2}=v_{1}, v_{3} a^{2}=v_{2}
\end{aligned}
$$

Of course, we define $v g$, for v an arbitrary vector in V and $g=1, a$ or a^{2}, by

$$
\left(\lambda_{1} v_{1}+\lambda_{2} v_{2}+\lambda_{3} v_{3}\right) g=\lambda_{1}\left(v_{1} g\right)+\lambda_{2}\left(v_{2} g\right)+\lambda_{3}\left(v_{3} g\right)
$$

for all $\lambda_{1}, \lambda_{2}, \lambda_{3} \in F$. Proposition 4.6 can be used to verify that V is an $F G$-module, but we have been motivated by the definition of permutation modules in our construction.

$F G$-modules and equivalent representations

We conclude the chapter with a discussion of the relationship between $F G$-modules and equivalent representations of G over F. An $F G$ -
module gives us many representations, all of the form

$$
g \rightarrow[g]_{\mathscr{B}} \quad(g \in G)
$$

for some basis \mathscr{B} of V. The next result shows that all these representations are equivalent to each other (see Definition 3.3); and moreover, any two equivalent representations of G arise from some $F G$-module in this way.

4.12 Theorem

Suppose that V is an $F G$-module with basis \mathscr{B}, and let ρ be the representation of G over F defined by

$$
\rho: g \rightarrow[g]_{\mathscr{B}} \quad(g \in G)
$$

(1) If \mathscr{B}^{\prime} is a basis of V, then the representation

$$
\phi: g \rightarrow[g]_{\mathscr{B}^{\prime}} \quad(g \in G)
$$

of G is equivalent to ρ.
(2) If σ is a representation of G which is equivalent to ρ, then there is a basis $\mathscr{B}^{\prime \prime}$ of V such that

$$
\sigma: g \rightarrow[g]_{\mathscr{B}^{\prime \prime}} \quad(g \in G)
$$

Proof (1) Let T be the change of basis matrix from \mathscr{B} to \mathscr{B}^{\prime} (see Definition 2.23). Then by (2.24), for all $g \in G$, we have

$$
[g]_{\mathscr{B}}=T^{-1}[g]_{\mathscr{B}^{\prime}} T .
$$

Therefore ϕ is equivalent to ρ.
(2) Suppose that ρ and σ are equivalent representations of G. Then for some invertible matrix T, we have

$$
g \rho=T^{-1}(g \sigma) T \quad \text { for all } g \in G
$$

Let $\mathscr{B}^{\prime \prime}$ be the basis of V such that the change of basis matrix from \mathscr{B} to $\mathscr{P}^{\prime \prime}$ is T. Then for all $g \in G$,

$$
[g]_{\mathscr{B}}=T^{-1}[g]_{\mathscr{B} \prime \prime} T
$$

and so $g \sigma=[g]_{\mathscr{S}^{\prime \prime}}$.

4.13 Example

Again let $G=C_{3}=\left\langle a: a^{3}=1\right\rangle$. There is a representation ρ of G which is given by

$$
1 \rho=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), a \rho=\left(\begin{array}{rr}
0 & 1 \\
-1 & -1
\end{array}\right), a^{2} \rho=\left(\begin{array}{rr}
-1 & -1 \\
1 & 0
\end{array}\right) .
$$

(To see this, simply note that $(a \rho)^{2}=a^{2} \rho$ and $(a \rho)^{3}=I$; see Exercise 3.2.)

If V is a 2 -dimensional vector space over \mathbb{C}, with basis v_{1}, v_{2} (which we call \mathscr{B}), then we can turn V into a $\mathbb{C} G$-module as in Theorem 4.4(1) by defining

$$
\begin{aligned}
& v_{1} 1=v_{1}, \quad v_{1} a=v_{2}, \quad v_{1} a^{2}=-v_{1}-v_{2} \\
& v_{2} 1=v_{2}, \quad v_{2} a=-v_{1}-v_{2}, \quad v_{2} a^{2}=v_{1}
\end{aligned}
$$

We then have

$$
[1]_{\mathscr{B}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),[a]_{\mathscr{B}}=\left(\begin{array}{rr}
0 & 1 \\
-1 & -1
\end{array}\right),\left[a^{2}\right]_{\mathscr{B}}=\left(\begin{array}{rr}
-1 & -1 \\
1 & 0
\end{array}\right) .
$$

Now let $u_{1}=v_{1}$ and $u_{2}=v_{1}+v_{2}$. Then u_{1}, u_{2} is another basis of V, which we call \mathscr{B}^{\prime}. Since

$$
\begin{array}{ll}
u_{1} 1=u_{1}, & u_{1} a=-u_{1}+u_{2}, \quad u_{1} a^{2}=-u_{2}, \\
u_{2} 1=u_{2}, & u_{2} a=-u_{1}, \quad u_{2} a^{2}=u_{1}-u_{2},
\end{array}
$$

we obtain the representation $\phi: g \rightarrow[g]_{\mathscr{F}^{\prime}}$ where

$$
[1]_{\mathscr{\mathscr { B } ^ { \prime }}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),[a]_{\mathscr{B}^{\prime}}=\left(\begin{array}{ll}
-1 & 1 \\
-1 & 0
\end{array}\right),\left[a^{2}\right]_{\mathscr{B}^{\prime}}=\left(\begin{array}{cc}
0 & -1 \\
1 & -1
\end{array}\right) .
$$

Note that if

$$
T=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

then for all g in G, we have

$$
[g]_{\mathscr{B}}=T^{-1}[g]_{\mathscr{B}} T,
$$

and so ρ and ϕ are equivalent, in agreement with Theorem 4.12(1).

Summary of Chapter 4

1. An $F G$-module is a vector space over F, together with a multiplication by elements of G on the right. The multiplication satisfies properties (1)-(5) of Definition 4.2.
2. There is a correspondence between representations of G over F and $F G$-modules, as follows.
(a) Suppose that $\rho: G \rightarrow \operatorname{GL}(n, F)$ is a representation of G. Then F^{n} is an $F G$-module, if we define

$$
v g=v(g \rho) \quad\left(v \in F^{n}, \mathrm{~g} \in G\right) .
$$

(b) If V is an $F G$-module, with basis \mathscr{B}, then $\rho: g \rightarrow[g]_{\mathscr{B}}$ is a representation of G over F.
3. If G is a subgroup of S_{n}, then the permutation $F G$-module has basis v_{1}, \ldots, v_{n}, and $v_{i} g=v_{i g}$ for all i with $1 \leqslant i \leqslant n$, and all g in G.

Exercises for Chapter 4

1. Suppose that $G=S_{3}$, and that $V=\operatorname{sp}\left(v_{1}, v_{2}, v_{3}\right)$ is the permutation module for G over \mathbb{C}, as in Definition 4.10. Let \mathscr{B}_{1} be the basis v_{1}, v_{2}, v_{3} of V and let \mathscr{B}_{2} be the basis $v_{1}+v_{2}+v_{3}, v_{1}-v_{2}$, $v_{1}-v_{3}$. Calculate the 3×3 matrices [$\left.g\right]_{\mathscr{B}_{1}}$ and [g] \mathscr{B}_{2} for all g in S_{3}. What do you notice about the matices $[g] \mathscr{\mathscr { S }}_{2}$?
2. Let $G=S_{n}$ and let V be a vector space over F. Show that V becomes an $F G$-module if we define, for all v in V,

$$
v g= \begin{cases}v, & \text { if } g \text { is an even permutation, } \\ -v, & \text { if } g \text { is an odd permutation. }\end{cases}
$$

3. Let $Q_{8}=\left\langle a, b: a^{4}=1, \quad b^{2}=a^{2}, \quad b^{-1} a b=a^{-1}\right\rangle$, the quaternion group of order 8 . Show that there is an $\mathbb{R} Q_{8}$-module V of dimension 4 with basis $v_{1}, v_{2}, v_{3}, v_{4}$ such that

$$
\begin{array}{llll}
v_{1} a=v_{2}, & v_{2} a=-v_{1}, & v_{3} a=-v_{4}, & v_{4} a=v_{3}, \text { and } \\
v_{1} b=v_{3}, & v_{2} b=v_{4}, & v_{3} b=-v_{1}, & v_{4} b=-v_{2} .
\end{array}
$$

4. Let A be an $n \times n$ matrix and let B be a matrix obtained from A by permuting the rows. Show that there is an $n \times n$ permutation matrix P such that $B=P A$. Find a similar result for a matrix obtained from A by permuting the columns.
