4 FG-modules

We now introduce the concept of an FG-module, and show that there is a close connection between FG-modules and representations of Gover F. Much of the material in the remainder of the book will be presented in terms of FG-modules, as there are several advantages to this approach to representation theory.

FG-modules

Let G be a group and let F be \mathbb{R} or \mathbb{C} .

Suppose that $\rho: G \to GL(n, F)$ is a representation of G. Write $V = F^n$, the vector space of all row vectors $(\lambda_1, \ldots, \lambda_n)$ with $\lambda_i \in F$. For all $v \in V$ and $g \in G$, the matrix product

 $v(g\rho),$

of the row vector v with the $n \times n$ matrix $g\rho$, is a row vector in V (since the product of a $1 \times n$ matrix with an $n \times n$ matrix is again a $1 \times n$ matrix).

We now list some basic properties of the multiplication $\nu(g\rho)$. First, the fact that ρ is a homomorphism shows that

$$v((gh)\rho) = v(g\rho)(h\rho)$$

for all $v \in V$ and all $g, h \in G$. Next, since 1ρ is the identity matrix, we have

$$v(1\rho) = v$$

for all $v \in V$. Finally, the properties of matrix multiplication give

$$(\lambda \nu)(g\rho) = \lambda(\nu(g\rho)),$$

$$(u+\nu)(g\rho) = u(g\rho) + \nu(g\rho)$$

for all $u, v \in V, \lambda \in F$ and $g \in G$.

4.1 Example

Let $G = D_8 = \langle a, b: a^4 = b^2 = 1, b^{-1}ab = a^{-1} \rangle$, and let $\rho: G \to GL(2, F)$ be the representation of G over F given in Example 3.2(1). Thus

$$a\rho = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, b\rho = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

If $\nu = (\lambda_1, \lambda_2) \in F^2$ then, for example,

$$v(a\rho) = (-\lambda_2, \lambda_1),$$

$$v(b\rho) = (\lambda_1, -\lambda_2),$$

$$v(a^3\rho) = (\lambda_2, -\lambda_1).$$

Motivated by the above observations on the product $v(g\rho)$, we now define an *FG*-module.

4.2 Definition

Let V be a vector space over F and let G be a group. Then V is an FG-module if a multiplication vg ($v \in V, g \in G$) is defined, satisfying the following conditions for all $u, v \in V, \lambda \in F$ and $g, h \in G$:

(1) $vg \in V$; (2) v(gh) = (vg)h; (3) v1 = v; (4) $(\lambda v)g = \lambda(vg)$; (5) (u + v)g = ug + vg.

We use the letters F and G in the name 'FG-module' to indicate that V is a vector space over F and that G is the group from which we are taking the elements g to form the products vg ($v \in V$).

Note that conditions (1), (4) and (5) in the definition ensure that for all $g \in G$, the function

$$v \to vg \quad (v \in V)$$

is an endomorphism of V.

4.3 Definition

40

Let V be an FG-module, and let \mathscr{B} be a basis of V. For each $g \in G$, let

 $[g]_{\mathscr{B}}$

denote the matrix of the endomorphism $v \rightarrow vg$ of V, relative to the basis \mathcal{B} .

The connection between FG-modules and representations of G over F is revealed in the following basic result.

4.4 Theorem (1) If $\rho: G \to GL(n, F)$ is a representation of G over F, and $V = F^n$, then V becomes an FG-module if we define the multiplication vg by

 $\nu g = \nu(g\rho) \quad (\nu \in V, g \in G).$

Moreover, there is a basis \mathcal{B} of V such that

$$g\rho = [g]_{\mathscr{B}} \text{ for all } g \in G.$$

(2) Assume that V is an FG-module and let \mathcal{B} be a basis of V. Then the function

$$g \to [g]_{\mathscr{B}} \quad (g \in G)$$

is a representation of G over F.

Proof (1) We have already observed that for all $u, v \in F^n$, $\lambda \in F$ and $g, h \in G$, we have

$$v(g\rho) \in F^n,$$

$$v((gh)\rho) = (v(g\rho))(h\rho),$$

$$v(1\rho) = v,$$

$$(\lambda v)(g\rho) = \lambda(v(g\rho)),$$

$$(u+v)(g\rho) = u(g\rho) + v(g\rho).$$

Therefore, F^n becomes an FG-module if we define

$$\nu g = \nu(g\rho)$$
 for all $\nu \in F^n$, $g \in G$.

Moreover, if we let \mathcal{B} be the basis

 $(1, 0, 0, \dots, 0), (0, 1, 0, \dots, 0), \dots, (0, 0, 0, \dots, 1)$ of F^n , then $g\rho = [g]_{\mathscr{R}}$ for all $g \in G$. (2) Let V be an FG-module with basis \mathcal{B} . Since v(gh) = (vg)h for all g, $h \in G$ and all v in the basis \mathcal{B} of V, it follows that

$$[gh]_{\mathscr{B}} = [g]_{\mathscr{B}}[h]_{\mathscr{B}}.$$

In particular,

$$[1]_{\mathscr{B}} = [g]_{\mathscr{B}}[g^{-1}]_{\mathscr{B}}$$

for all $g \in G$. Now v1 = v for all $v \in V$, so $[1]_{\mathscr{B}}$ is the identity matrix. Therefore each matrix $[g]_{\mathscr{B}}$ is invertible (with inverse $[g^{-1}]_{\mathscr{B}}$).

We have proved that the function $g \to [g]_{\mathscr{B}}$ is a homomorphism from G to GL(n, F) (where $n = \dim V$), and hence is a representation of G over F.

Our next example illustrates part (1) of Theorem 4.4.

4.5 Examples (1) Let $G = D_8 = \langle a, b: a^4 = b^2 = 1, b^{-1}ab = a^{-1} \rangle$ and let ρ be the representation of G over F given in Example 3.2(1), so

$$a
ho = egin{pmatrix} 0 & 1 \ -1 & 0 \end{pmatrix}, \ b
ho = egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix}.$$

Write $V = F^2$. By Theorem 4.4(1), V becomes an FG-module if we define

$$\nu g = \nu(g\rho) \quad (\nu \in V, g \in G).$$

For instance,

$$(1, 0)a = (1, 0) \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = (0, 1).$$

If v_1 , v_2 is the basis (1, 0), (0, 1) of V, then we have

$$v_1 a = v_2, \quad v_1 b = v_1, v_2 a = -v_1, \quad v_2 b = -v_2.$$

If \mathscr{B} denotes the basis v_1, v_2 , then the representation

$$g \to [g]_{\mathscr{B}} \quad (g \in G)$$

is just the representation ρ (see Theorem 4.4(1) again). (2) Let $G = Q_8 = \langle a, b; a^4 = 1, a^2 = b^2, b^{-1}ab = a^{-1} \rangle$. In Example 1.2(4) we defined Q_8 to be the subgroup of GL (2, \mathbb{C}) generated by

$$A = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$,

so we already have a representation of G over \mathbb{C} . To illustrate Theorem 4.4(1) we must this time take $F = \mathbb{C}$. We then obtain a $\mathbb{C}G$ -module with basis v_1 , v_2 such that

$$v_1 a = iv_1, \quad v_1 b = v_2, v_2 a = -iv_2, \quad v_2 b = -v_1.$$

Notice that in the above examples, the vectors v_1a , v_2a , v_1b and v_2b determine vg for all $v \in V$ and $g \in G$. For instance, in Example 4.5(1),

$$(v_1 + 2v_2)ab = v_1ab + 2v_2ab$$

= $v_2b - 2v_1b$
= $-v_2 - 2v_1$.

A similar remark holds for all *FG*-modules *V*: if v_1, \ldots, v_n is a basis of *V* and g_1, \ldots, g_r generate *G*, then the vectors $v_i g_j$ $(1 \le i \le n, 1 \le j \le r)$ determine vg for all $v \in V$ and $g \in G$.

Shortly, we shall show you various ways of constructing FG-modules directly, without using a representation. To do this, we turn a vector space V over F into an FG-module by specifying the action of group elements on a basis v_1, \ldots, v_n of V and then extending the action to be linear on the whole of V; that is, we first define v_ig for each i and each g in G, and then define

$$(\lambda_1 \nu_1 + \ldots + \lambda_n \nu_n)g \quad (\lambda_i \in F)$$

to be

$$\lambda_1(v_1g) + \ldots + \lambda_n(v_ng).$$

As you might expect, there are restrictions on how we may define the vectors v_{ig} . The next result will often be used to show that our chosen multiplication turns V into an FG-module.

4.6 Proposition Assume that v_1, \ldots, v_n is a basis of a vector space V over F. Suppose that we have a multiplication vg for all v in V and g in G which satisfies the following conditions for all i with $1 \le i \le n$, for all $g, h \in G$, and for all $\lambda_1, \ldots, \lambda_n \in F$:

- (1) $v_i g \in V$;
- (2) $v_i(gh) = (v_i g)h;$
- (3) $v_i 1 = v_i$;

(4)
$$(\lambda_1 \nu_1 + \ldots + \lambda_n \nu_n)g = \lambda_1(\nu_1 g) + \ldots + \lambda_n(\nu_n g).$$

Then V is an FG-module.

Proof It is clear from (3) and (4) that v1 = v for all $v \in V$.

Conditions (1) and (4) ensure that for all g in G, the function $v \rightarrow vg$ ($v \in V$) is an endomorphism of V. That is,

$$vg \in V,$$

 $(\lambda v)g = \lambda(vg),$
 $(u+v)g = ug + vg,$

for all $u, v \in V, \lambda \in F$ and $g \in G$. Hence

(4.7)
$$(\lambda_1 u_1 + \ldots + \lambda_n u_n)h = \lambda_1(u_1 h) + \ldots + \lambda_n(u_n h)$$

for all $\lambda_1, \ldots, \lambda_n \in F$, all $u_1, \ldots, u_n \in V$ and all $h \in G$.

Now let $v \in V$ and $g, h \in G$. Then $v = \lambda_1 v_1 + \ldots + \lambda_n v_n$ for some $\lambda_1, \ldots, \lambda_n \in F$, and

$$v(gh) = \lambda_1(v_1(gh)) + \ldots + \lambda_n(v_n(gh)) \text{ by condition (4)}$$

= $\lambda_1((v_1g)h) + \ldots + \lambda_n((v_ng)h)$ by condition (2)
= $(\lambda_1(v_1g) + \ldots + \lambda_n(v_ng))h$ by (4.7)
= $(vg)h$ by condition (4).

We have now checked all the axioms which are required for V to be an FG-module.

Our next definitions translate the concepts of the trivial representation and a faithful representation into module terms.

4.8 Definitions

(1) The *trivial FG*-module is the 1-dimensional vector space V over F with

$$vg = v$$
 for all $v \in V, g \in G$.

(2) An *FG*-module V is *faithful* if the identity element of G is the only element g for which

$$vg = v$$
 for all $v \in V$.

For instance, the FD_8 -module which appears in Example 4.5(1) is faithful.

Our next aim is to use Proposition 4.6 to construct faithful *FG*-modules for all subgroups of symmetric groups.

Permutation modules

Let G be a subgroup of S_n , so that G is a group of permutations of $\{1, \ldots, n\}$. Let V be an *n*-dimensional vector space over F, with basis v_1, \ldots, v_n . For each i with $1 \le i \le n$ and each permutation g in G, define

$$v_i g = v_{ig}$$

Then $v_i g \in V$ and $v_i 1 = v_i$. Also, for g, h in G,

$$\nu_i(gh) = \nu_{i(gh)} = \nu_{(ig)h} = (\nu_i g)h.$$

We now extend the action of each g linearly to the whole of V; that is, for all $\lambda_1, \ldots, \lambda_n$ in F and g in G, we define

 $(\lambda_1 v_1 + \ldots + \lambda_n v_n)g = \lambda_1(v_1g) + \ldots + \lambda_n(v_ng).$

Then V is an FG-module, by Proposition 4.6.

4.9 *Example* Let $G = S_4$ and let \mathscr{B} denote the basis v_1, v_2, v_3, v_4 of V. If g = (1 2), then

$$v_1g = v_2, v_2g = v_1, v_3g = v_3, v_4g = v_4.$$

And if $h = (1 \ 3 \ 4)$, then

$$v_1h = v_3, v_2h = v_2, v_3h = v_4, v_4h = v_1.$$

We have

$$[g]_{\mathscr{B}} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, [h]_{\mathscr{B}} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

4.10 Definition

Let G be a subgroup of S_n . The FG-module V with basis v_1, \ldots, v_n such that

$$v_i g = v_{ig}$$
 for all *i*, and all $g \in G$,

is called the *permutation module* for G over F. We call v_1, \ldots, v_n the *natural basis* of V.

Note that if we write \mathscr{B} for the basis v_1, \ldots, v_n of the permutation module, then for all g in G, the matrix $[g]_{\mathscr{B}}$ has precisely one non-zero entry in each row and column, and this entry is 1. Such a matrix is called a *permutation matrix*.

Since the only element of G which fixes every v_i is the identity, we see that the permutation module is a faithful FG-module. If you are aware of the fact that every group G of order n is isomorphic to a subgroup of S_n , then you should be able to see that G has a faithful FG-module of dimension n. We shall go into this in more detail in Chapter 6.

4.11 Example

Let $G = C_3 = \langle a: a^3 = 1 \rangle$. Then G is isomorphic to the cyclic subgroup of S_3 which is generated by the permutation (1 2 3). This alerts us to the fact that if V is a 3-dimensional vector space over F, with basis v_1 , v_2 , v_3 , then we may make V into an FG-module in which

$$v_1 1 = v_1, v_2 1 = v_2, v_3 1 = v_3,$$

 $v_1 a = v_2, v_2 a = v_3, v_3 a = v_1,$
 $v_1 a^2 = v_3, v_2 a^2 = v_1, v_3 a^2 = v_2$

Of course, we define νg , for ν an arbitrary vector in V and g = 1, a or a^2 , by

$$(\lambda_1\nu_1 + \lambda_2\nu_2 + \lambda_3\nu_3)g = \lambda_1(\nu_1g) + \lambda_2(\nu_2g) + \lambda_3(\nu_3g)$$

for all $\lambda_1, \lambda_2, \lambda_3 \in F$. Proposition 4.6 can be used to verify that *V* is an *FG*-module, but we have been motivated by the definition of permutation modules in our construction.

FG-modules and equivalent representations

We conclude the chapter with a discussion of the relationship between FG-modules and equivalent representations of G over F. An FG-

module gives us many representations, all of the form

$$g \to [g]_{\mathscr{B}} \quad (g \in G)$$

for some basis \mathscr{B} of V. The next result shows that all these representations are equivalent to each other (see Definition 3.3); and moreover, any two equivalent representations of G arise from some FG-module in this way.

4.12 Theorem

Suppose that V is an FG-module with basis \mathcal{B} , and let ρ be the representation of G over F defined by

 $\rho: g \to [g]_{\mathscr{B}} \quad (g \in G).$

(1) If \mathscr{B}' is a basis of V, then the representation

 $\phi \colon g \to [g]_{\mathscr{B}'} \quad (g \in G)$

of G is equivalent to ρ .

(2) If σ is a representation of G which is equivalent to ρ , then there is a basis \mathscr{B}'' of V such that

$$\sigma: g \to [g]_{\mathscr{B}''} \quad (g \in G).$$

Proof (1) Let T be the change of basis matrix from \mathcal{B} to \mathcal{B}' (see Definition 2.23). Then by (2.24), for all $g \in G$, we have

$$[g]_{\mathscr{B}} = T^{-1}[g]_{\mathscr{B}'}T.$$

Therefore ϕ is equivalent to ρ .

(2) Suppose that ρ and σ are equivalent representations of G. Then for some invertible matrix T, we have

$$g\rho = T^{-1}(g\sigma)T$$
 for all $g \in G$.

Let \mathscr{B}'' be the basis of V such that the change of basis matrix from \mathscr{B} to \mathscr{B}'' is T. Then for all $g \in G$,

$$[g]_{\mathscr{B}} = T^{-1}[g]_{\mathscr{B}''}T,$$

and so $g\sigma = [g]_{\mathscr{B}''}$.

4.13 Example

Again let $G = C_3 = \langle a: a^3 = 1 \rangle$. There is a representation ρ of G which is given by

FG-modules

$$1\rho = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, a\rho = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}, a^2\rho = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}.$$

(To see this, simply note that $(a\rho)^2 = a^2\rho$ and $(a\rho)^3 = I$; see Exercise 3.2.)

If V is a 2-dimensional vector space over \mathbb{C} , with basis v_1, v_2 (which we call \mathscr{B}), then we can turn V into a $\mathbb{C}G$ -module as in Theorem 4.4(1) by defining

$$v_1 1 = v_1, \quad v_1 a = v_2, \quad v_1 a^2 = -v_1 - v_2,$$

 $v_2 1 = v_2, \quad v_2 a = -v_1 - v_2, \quad v_2 a^2 = v_1.$

We then have

$$[1]_{\mathscr{B}} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, [a]_{\mathscr{B}} = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}, [a^2]_{\mathscr{B}} = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}.$$

Now let $u_1 = v_1$ and $u_2 = v_1 + v_2$. Then u_1 , u_2 is another basis of V, which we call \mathscr{B}' . Since

$$u_1 1 = u_1, \quad u_1 a = -u_1 + u_2, \quad u_1 a^2 = -u_2,$$

 $u_2 1 = u_2, \quad u_2 a = -u_1, \quad u_2 a^2 = u_1 - u_2,$

we obtain the representation $\phi: g \to [g]_{\mathscr{B}'}$ where

$$[1]_{\mathscr{B}'} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, [a]_{\mathscr{B}'} = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}, [a^2]_{\mathscr{B}'} = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}.$$

Note that if

$$T = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

then for all g in G, we have

$$[g]_{\mathscr{B}} = T^{-1}[g]_{\mathscr{B}'}T,$$

and so ρ and ϕ are equivalent, in agreement with Theorem 4.12(1).

Summary of Chapter 4

1. An *FG*-module is a vector space over *F*, together with a multiplication by elements of *G* on the right. The multiplication satisfies properties (1)-(5) of Definition 4.2.

- 2. There is a correspondence between representations of G over F and FG-modules, as follows.
 - (a) Suppose that $\rho: G \to GL(n, F)$ is a representation of G. Then F^n is an FG-module, if we define

$$\nu g = \nu(g\rho) \quad (\nu \in F^n, g \in G).$$

- (b) If V is an FG-module, with basis \mathscr{B} , then $\rho: g \to [g]_{\mathscr{B}}$ is a representation of G over F.
- 3. If G is a subgroup of S_n , then the permutation FG-module has basis v_1, \ldots, v_n , and $v_i g = v_{ig}$ for all i with $1 \le i \le n$, and all g in G.

Exercises for Chapter 4

- Suppose that G = S₃, and that V = sp (v₁, v₂, v₃) is the permutation module for G over C, as in Definition 4.10. Let ℬ₁ be the basis v₁, v₂, v₃ of V and let ℬ₂ be the basis v₁ + v₂ + v₃, v₁ v₂, v₁ v₃. Calculate the 3 × 3 matrices [g]ℬ₁ and [g]ℬ₂ for all g in S₃. What do you notice about the matices [g]ℬ₂?
- 2. Let $G = S_n$ and let V be a vector space over F. Show that V becomes an FG-module if we define, for all ν in V,

$$\nu g = \begin{cases} \nu, & \text{if } g \text{ is an even permutation,} \\ -\nu, & \text{if } g \text{ is an odd permutation.} \end{cases}$$

Let Q₈ = ⟨a, b: a⁴ = 1, b² = a², b⁻¹ab = a⁻¹⟩, the quaternion group of order 8. Show that there is an ℝQ₈-module V of dimension 4 with basis v₁, v₂, v₃, v₄ such that

$$v_1a = v_2$$
, $v_2a = -v_1$, $v_3a = -v_4$, $v_4a = v_3$, and
 $v_1b = v_3$, $v_2b = v_4$, $v_3b = -v_1$, $v_4b = -v_2$.

4. Let A be an $n \times n$ matrix and let B be a matrix obtained from A by permuting the rows. Show that there is an $n \times n$ permutation matrix P such that B = PA. Find a similar result for a matrix obtained from A by permuting the columns.