
CHAPTER III 

Free Groups and 
Free Products of Groups 

§1. Introduction 

In the preceding chapters we have introduced the fundamental group of a 
space and actually determined its structure in some of the simplest cases. In 
more complicated cases we need a larger vocabulary and a greater knowledge 
of group theory to describe its structure and actually to make use of its 
properties. The object of this chapter is to supply this need. We first discuss 
the case of abelian groups because this case is simpler and more closely related 
to the student's previous experience. Then we discuss the general case of not 
necessarily abelian groups. Here the results are entirely analogous to the 
abelian case, but the possibilities are more varied and less intuitive. 

The three main group theoretic concepts introduced in this chapter are the 
following: free group, free product of groups, and presentation of a group by 
generators and relations. These concepts will be used throughout the next two 
chapters. The definition of a free group or a free product of groups involves 
a mathematical concept of wide application, the so-called "universal mapping 
problem," which is also a basic concept in Chapter IV. 

§2. The Weak Product of Abelian Groups 

We assume the student is familiar with the concept of the direct product of a 
finite number of groups, 

G = G1 X G2 X • • • X Gn. 

The elements of G are ordered n-tuples 

9 = (g1, 92• • • • • On), 
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where g1 e G1 fori= 1, 2, ... , n, with multiplication defined componentwise: 

It is easy to extend this definition to the case of an infinite collection of groups 
{ G1 : i e I}. Here I is an index set, which may be countable or uncountable. 
The direct product of such a collection is denoted by 

Its elements are functions g which assign to each index i e I an element g1 e G1• 

These elements are multiplied componentwise: if g and h are elements of the 
direct product, then 

(gh); = (g;)(h;) 

for any i e I. 
Let { G1 : i e I} be any collection of groups, and let 

G=0G1 
iel 

be their product. 

Definition. The weak product1 of the collection { G1 : i e I} is the subgroup of 
their product G consisting of all elements g e G such that g1 is the identity 
element of G1 for all except a finite number of indices i. 

Obviously, if { G1 : i e I} is a finite collection of groups, then the product 
and weak product are the same. 

If G denotes either the product or weak product of the collection { G1 : i e I}, 
then, for each index i e I, there is a natural monomorphism qJ1 : G1 -+ G defined 
by the following rule: For any element x e G1 and any indexj e I, 

{
X ifj=i 

(({J;X)j = 1 if j i. 

In the case where each G1 is an abelian group, the following theorem gives an 
important characterization of their weak product G and the monomorphisms 
(/);. 

Theorem 2.1. If { G1 : i e I} is a collection of abelian groups and G is their weak 
product, then for any abelian group A and any collection of homomorphisms 

1/1;: G;-+ A, i E I, 

1 When each group G1 is abelian and the group operation is addition, it is customary to call the 
weak product the "direct sum." In this definition, we do not require that any two groups in the 
collection { G,} be non isomorphic. In fact, it may even occur that all of the groups of the collection 
are isomorphic to some given group. 
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there exists a unique homomorphism f: G --.A such that for any i e I the 
following diagram is commutative: 

PROOF. Given the 1/1/s, define f by the following rule: For any x e G, f(x) wiU 
be the product ofthe elements I/J1(x1) for all i e I. Because x1 = 1 for all except 
a finite number of indices i, this product is really a finite product; and because 
all the groups involved are abelian, the order of multiplication is immaterial. 
Thus, f(x) is well defined, and it is readily verified that f is a homomorphism, 
which renders the given diagram commutative. It is easy to see that f is the 
unique homomorphism having this property. Q.E.D. 

Our next proposition states that this theorem actually characterizes the 
weak product of abelian groups. 

Proposition 2.2. Let { G1}, G, and cp1 : G1 --. G be as in Theorem 2.1; let G' be any 
abelian group and let cp; : G1 --. G' be any collection of homomorphisms such that 
the conclusion of Theorem 2.1 holds with G' and cp; substituted for G and 
respectively. Then, there exists a unique isomorphism h : G --. G' such that the 
following diagram is commutative for any i e I: 

PROOF. The existence of a homomorphism h: G --. G' making the required 
diagram commutative is assured by Theorem 2.1. Because Theorem 2.1 also 
applies to G' and the cp; (by hypothesis), there exists a unique homomorphism 
k : G' --. G such that the following diagram is commutative for any index i e I: 

From these facts, we readily conclude that the following two diagrams are 
commutative for any i e I: 



§3. Free Abelian Groups 63 

However, these two diagrams would also be commutative if we replaced kh 
by the identity map G -+ G in the first, and hk by the identity map G' -+ G' in 
the second. We now invoke the uniqueness statement in the conclusion of 
Theorem 2.1 to conclude that kh and hk are both identity maps. Hence, hand 
k are inverse isomorphisms of each other. Q.E.D. 

The student should reflect on the significance of the characterization of the 
weak product given by Theorem 2.1. We may consider any other abelian 
group A with definite homomorphisms 1/J;: G;-+ A as a candidate for some 
kind of a "product" of the abelian groups G;; then this theorem asserts that 
the weak product G is the "freest" among all such candidates in the sense that 
there exists a homomorphism of G into A commuting with cp; and 1/J; for all i. 
Here we use the word "freest" in the sense of "fewest possible relations 
imposed," and the general philosophy is that if certain relations hold for the 
group G, they also hold for any homomorphic image of G; of course, additional 
relations may hold for the homomorphic image. This same philosophy also 
holds for other kinds of algebraic objects, such as rings, etc. 

As we shall see, the argument used to prove Proposition 2.2 applies almost 
verbatim to many other cases. 

Since the weak product G of a collection { G;} of abelian groups is com
pletely characterized by the properties of the monomorphisms cp;: G;-+ G 
stated in Theorem 2.1, we could just as well ignore the fact that G is a subgroup 
of the product 

and focus our attention instead on the group G and the homomorphisms cp;. 
Furthermore, because each cp; is a monomorphism, we can identify G; with its 
image in Gunder cp;, and consider cp; as an inclusion map, if this is convenient. 
In this case, we say that G is the weak product of the subgroups G;, it being 
understood that each cp; is an inclusion map. 

§3. Free Abelian Groups 

We recall that, if S is a subset of a group G, then Sis said to generate G in 
case every element of G can be written as a product of positive and negative 
powers of elements of S. (An equivalent condition is the following: S is not 
contained in any proper subgroup of G.) For example, if G is a cyclic group 
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of order n, 
G = {x, x 2, x3, ... , x" = 1}, 

then the setS= {x} generates G. 
If the set S generates the group G, certain products of elements of S may 

be the identity element of G. For example, 

(a) If x e S, then xx-1 = 1. 
(b) If G is a cyclic group of order n generated by {x}, then x" = 1. 

Any such product of elements of S that is equal to the identity is often called 
a relation between the elements of the generating set S. Roughly speaking, we 
may distinguish between two types of relations between generators: trivial 
relations, as in Example (a), which are a direct consequence of the axioms for 
a group and thus hold no matter what the choice of G and S, and nontrivial 
relations, such as Example (b), which are not a consequence of the axioms for 
a group, but depend on the particular choice of G and S. 

These notions lead naturally to the following definition: Let S be a set of 
generators for the group G. We say that G is freely generated by S or a free 
group on S in case there are no nontrivial relations between the elements of 
S. For example, if G is an infinite cyclic group consisting of all positive and 
negative powers of the element x, then G is a free group on the set S = { x }. 

These notions also lead to the idea that we can completely prescribe a group 
by listing the elements of a generating set S and listing the nontrivial relations 
between them. 

The ideas described in the preceding paragraphs have been current among 
group theorists for a long time. Unfortunately, when stated as above, these 
ideas are lacking in mathematical precision. For example, what precisely is a 
nontrivial relation? It cannot be an element of G, because considered as 
elements of G, all relations give the identity. Also, under what conditions are 
two relations to be considered the same? For example, in a cyclic group of 
order n, are the relations 

x" = 1, 

to be considered the same or different? 
We should emphasize that it was not an easy matter for mathematicians 

to find an entirely satisfactory and precise way of treating these questions. 
Fortunately, such a treatment has been found in recent years. This treatment 
has the advantage that it applies not only to groups, but also to other algebraic 
structures such as rings, and even to many situations in other branches of 
mathematics. As so often happens in mathematics, the method of definition 
finally chosen seems rather roundabout and nonobvious.2 This method of 
definition depends on the following rather simple observations: 

2 An analogous situation occurs in the problem of precisely defining limits in the calculus. The 
e - li technique which is standard today seems rather far removed from our intuitive notion of 
a variable quantity approaching a limit. 
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(1) LetS be a set of generators for G, and letf: G-+ G' be an epimorphism; 
i.e., G' is a homomorphic image of G. Then, the set f(S) is a set of generators 
for G'. Moreover, any relation which holds between the elements of S also holds 
between the elements of f(S). Thus, the group G' satisfies at least as many 
relations as or more relations than G. 

(2) Let S be a set of generators for G, and let f: G -+ G' be an arbitrary 
homomorphism. Then, f is completely determined by its restriction to the set 
S. However, we do not assert that any map g : S-+ G' can be extended to a 
homomorphism f: G -+ G' (the student should give a counterexample). The 
intuitive reason for this is clear: Given a map g: S -+ G' there may be nontrivial 
relations between the elements of S which do not hold between the elements 
of g(S). 

We shall now give a precise definition of a free abelian group on a given 
set S; in §5 we shall discuss the case of general (i.e., not necessarily abelian) 
groups. The case of abelian groups is discussed first because it is simpler. 

Definition. Let S be an arbitrary set. A free abelian group on the set S is an 
abelian group F together with a function qJ : S -+ F such that the following 
condition holds: For any abelian group A and any function t/1 : S -+ A, there 
exists a unique homomorphism f: F -+ A such that the following diagram is 
commutative: 

First, we show that this definition does indeed characterize free abelian 
groups on a given set S. 

Proposition 3.1. Let F and F' be free abelian groups on the set S with respect 
to the functions qJ : S -+ F and qJ' : S -+ F', respectively. Then, there exists a 
unique isomorphism h : F -+ F' such that the following diagram is commutative: 

PROOF. The proof is completely analogous to that of Proposition 2.2, and may 
be left to the reader. 

Let us emphasize that all we have done so far is make a definition; given 
the set S, it is not at all clear that there exists a free abelian group F on the 
set S. Moreover, even ifF exists, it is conceivable that the map qJ need not be 
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one-to-one, or that F may not be generated by the subset tp(S) in the sense of 
the definition at the beginning of this section. We shall clarify all these points 
by actually proving the existence ofF and elucidating its structure completely. 

EXERCISES 

3.1. Prove directly from the definition that q>(S) generates F. [HINT: Assume not; 
consider the subgroup F' generated by q>(S).] 

As a first step, we consider the following situation. Assume that { S1 : i e !} 
is a family of nonempty subsets of S, which are pairwise disjoint and such that 

S= U S1• 
lei 

For each index i e /,let F1 be a free abelian group on the set S1 with respect 
to a function tp1 : S1 --+ F1• Let F denote the weak product of the groups F1 for 
all i E /,and let 1'/; : F1 --+ F denote the natural monomorphism. Since the S1 are 
pairwise disjoint, we can define a function tp : S --+ F by the rule 

<PIS,= 1'/;fP;. 

Proposition 3.2. Under the above hypotheses, F is a free abelian group on the 
set S with respect to the function tp : S --+ F. 

Roughly speaking, this proposition means that the weak product of any 
collection of free abelian groups is a free abelian group. 

PROOF. Let A be an abelian group and let 1/1: S--+ A be a function. We have 
to prove the existence of a unique homomorphism f: F -+ A such that 1/1 = ftp. 
For each index i, let 1/11 : S1 --+ A denote the restriction of 1/1 to the subset S1• 

Because F1 is a free abelian group on the set S1, there exists a unique homomor
phism/; : F1 -+ A such that the following diagram is commutative: 

/F' S;i-,J 
.p, A 

(3.3.1) 

We now invoke the fundamental property of the weak product of groups 
contained in Theorem 2.1 to conclude that there exists a unique homo
morphism f: F --+ A such that the following diagram is commutative for any 
index i: 

(3.3.2) 
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We can put these two commutative diagrams together into a single diagram 
as follows: 

S "'' F F 

A 

(3.3.3) 

Because tpjSi = 1li£Pi, we conclude that the following diagram is commutative 
for each index i. 

·\/ (3.3.4) 

A 

Finally, because 1/ti = 1/tiS; for each i and S = US;, we conclude that 1/t = ftp, 
as required. 

To prove uniqueness, let f be any homomorphism F-+ A having the 
required property. Define/;: F;-+ A by/; = frli· With this definition, it follows 
that diagram (3.3.1) is commutative for each index i; for, 

hiPi = frliiPi = f(tpiS;) = (1/tiS;) 

= 1/t;. 

Because F; is the free abelian group on S; (with respect to tpJ, it follows that 
each/; is unique. Then because (3.3.2) is commutative for each i, and F is the 
weak product of the F;, it follows that f is unique. Q.E.D. 

We now apply this theorem as follows: Suppose that 

For each index i, letS; denote the subset {xd having only one element, and 
let F; be an infinite cyclic group consisting of all positive and negative powers 
of the element x;: 

F;={xf:neZ}. 

Let tp; : S; -+ F; denote the inclusion map, i.e., tp;(xJ = xl. It is clear that F; is 
a free abelian group on the set S;. Therefore, all the hypotheses of Proposition 
3.2 are satisfied. Thus, we conclude that a free abelian group on any set S is 
a weak product of a collection of infinite cyclic groups, with the cardinal 
number of the collection equal to that of S. 

Because F is the weak product of the F;, any element g E F is of the 
following form: For any index i, the ith component gi = x;• where each n; E Z 
and n; = 0 for all but a finite number of indices i. Moreover, the function tp is 
defined by the following rule: For any indexj E /, 
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{xl ifi =j 
(q>x;)J = o .f. 4 • 

Xj I I r}• 

From this formula, it is clear that q> is a one-to-one map. 
As q> is a one-to-one map, if we wish, we can identify each x1 e S with its 

image q>(x1) e F. Then S becomes a subset of F, and it is clear that we can 
express each element g :/: l ofF uniquely in the following form: 

(3.3.5) 

where the indices i 1 , i2 , ••• ,it are all distinct, and n2 , ••• , nt are nonzero 
integers. This expression for the element g is unique except for the order of 
the factors. Moreover, each such product of the x/s represents a unique 
element g :/: l of F. From this it is clear that F is generated by the subset 
S = q>(S). 

This identification of Sand q>(S) is quite customary in the discussion of free 
abelian groups. When this is done, q> : S -+ F becomes an inclusion map, and 
often it is not even mentioned in the discussion. 

An alternative approach to the topic of free abelian groups would be to 
define an abelian group F to be free on the subset { x 1 : i e f} c F if every 
element g :1: I ofF admits an expression of the form (3.3.5), which is unique 
up to order of the factors. Actually, this procedure would be somewhat quicker 
and easier than the one we have chosen. However, it would suffer from the 
disadvantage that it could not be generalized to non-abelian groups and other 
situations which will actually be our main concern. 

One reason for the importance of free abelian groups is the following 
proposition. 

Proposition 3.3. Any abelian group is the homomorphic image of a free abelian 
group; i.e., given any abelian group A, there exists a free abelian group F and 
an epimorphism f: F -+ A. 

PROOF. The proof is very simple. Let S c A be a set of generators for A (e.g., 
we could take S = A), and let F be a free group on the set S with respect to a 
function q> : S -+ F. Let 1/1 : S -+ A denote the inclusion map. By definition, 
there exists a homomorphism f: F-+ A such that fq> = 1/1. It is clear that f 
must be an epimorphism, since S was chosen to be a set of generators for A. 

Q.E.D. 

This proposition enables us to attach a precise meaning to the notion 
"nontrivial relation between the generators S," mentioned earlier. Let A, S, F, 
and f have the meaning just described; then we define any element r :/: l of 
kernel f to be a nontrivial relation between the set of generators S. If {r1 : i e f} 
is any collection of such relations, and r is an element of the subgroup of F 
generated by the r;'s, then the relation r is said to be a consequence of the 
relations r1• This implies that r can be expressed as a product of the r1's and 
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their inverses. If the collection {r1 : i e I} generates the kernel off, then the 
group A is completely determined up to isomorphism by the set of generators 
S and the set of relations {r1 : i e I}; A is isomorphic to the quotient group of 
F modulo the subgroup generated by the r;'s. 

It is clear that, if S and S' are sets having the same cardinal number, and 
F and F' are free abelian groups on SandS', respectively, then F and F' are 
isomorphic. We shall now show that the converse of this statement is true, at 
least for the case of finite sets. For this purpose, we make the following 
definition. If G is any group, and n is any positive integer, then G" denotes the 
subgroup of G generated by the set 

{g": g e G}. 

If the group G is abelian, then the set {g": g e G} is actually already a 
subgroup. 

Lemma 3.4. Let F be a free abelian group on a set consisting of k elements. 
Then, the quotient group F/F" is a finite group of order nk. 

PROOF. We leave the proof to the reader; it is not difficult if one makes use of 
the explicit structure of free abelian groups described above. 

Corollary 3.5. Let S and S' be finite sets whose cardinals are not equal, and let 
F and F' be free abelian groups on SandS', respectively. Then, F and F' are 
nonisomorphic. 

PROOF. The proof is by contradiction. Any isomorphism between F and F' 
would induce an isomorphism between the quotient groups F/F" and F'/F'", 
which is impossible by the lemma. 

EXERCISES 

3.2. Prove that the statement of this corollary is still true if S is a finite set and S' is 
an infinite set. 

Let F be a free abelian group on a setS. The cardinal number of the setS 
is called the rank of F. We have proved that two free abelian groups are 
isomorphic if and only if they have the same rank, at least in the case where 
one of them has finite rank. 

We shall conclude this section on abelian groups with a brief discussion of 
the structure of finitely generated abelian groups. Let A be an abelian group; 
the set of all elements of A which have finite order is readily seen to be a 
subgroup, called the torsion subgroup of A. When the torsion subgroup 
consists of the element 1 alone, A is called a torsion-free abelian group. On 
the other hand, if every element of A has finite order, then A is caUed a torsion 
group. If we denote the torsion subgroup by T, then the quotient group A/T 
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is obviously torsion free. It is clear that, if A and A' are isomorphic, then so 
are their torsion subgroups, T and T', and their torsion-free quotient groups, 
A/T and A'/T'. However, the converse is not true in general; we cannot 
conclude that A is isomorphic to A' if T:::::: T' and A/T:::::: A' /T'. However, for 
abelian groups which are generated by a finite subset we have the following 
theorem which describes their structure completely: 

Theorem 3.6. (a) Let A be a finitely generated abelian group and let T be its 
torsion subgroup. Then, T and A/Tare also finitely generated, and A is isomor
phic to the direct product T x A/T. Hence, the structure of A is completely 
determined by its torsion subgroup T and its torsion-free quotient group A/T. 
(b) Every finitely generated torsion-free abelian group is a free abelian group 
of finite rank. (c) Every finitely generated torsion abelian group Tis isomorphic 
to a product C 1 x C 2 x · · · x C,, where each C1 is a finite cyclic group of order 
81 such that 81 is a divisor of 81 +1 for i = 1, 2, ... , n - 1. Moreover, the integers 
8 1, 82 , ••• , 811 are uniquely determined by the torsion group T and they completely 
determine its structure. 

The numbers 8 1, ••• , 811 are caJled the torsion coefficients of T, or more 
generally, if Tis the torsion subgroup of A, they are called the torsion coeffi
cients of A. Similarly, the rank of the free group A/Tis called the rank of A. 
With this terminology, we can summarize Theorem 3.6 by stating that the 
rank and torsion coefficients are a complete set of invariants of a finitely 
generated abelian group. Theorem 3.6 asserts that every finitely generated 
abelian group is a direct product of cyclic groups, but it also asserts much 
more. Note that a finitely generated torsion group is actually of finite order. 

A word of explanation about the various isomorphisms mentioned in 
Theorem 3.6 seems in order here. These isomorphisms are not natural, or 
uniquely determined in any way. In each case, there are usuaJly many different 
choices for the isomorphism in question and one choice is as good as another. 

Theorem 3.7. Let F be a free abelian group on a set S, and let F' be a subgroup 
of F. Then, F' is a free abelian group on a certain setS', and the cardinal of S' 
is less than or equal to that of S. 

Although the proofs of Theorems 3.6 and 3. 7 are not difficult, we shall not 
give them here, because they properly belong in the study of linear algebra 
and modules over a principal ideal domain. 

EXERCISES 

3.3. Give an example of a torsion-free abelian group which is not free. 

3.4. Let A be an abelian group which is a direct product of two cyclic groups of orders 
12 and 18, respectively. What are the torsion coefficients of A? (Note that the 
torsion coefficients are required to satisfy a divisibility condition.) 
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3.5. Give an example to show that in Theorem 3. 7 the subset S c F and the subgroup 
F' c F may be disjoint, even in the case where the cardinals of Sand S' are equal. 

§4. Free Products of Groups 

The free product of a collection of groups is the exact analog for arbitrary (i.e., 
not necessarily abelian) groups of the weak product for abelian groups. (It 
should be emphasized that any groups considered in this section may be either 
abelian or non-abelian, unless the contrary is explicitly stated.) 

Definition. Let { G;: i E I} be a collection of groups, and assume there is given 
for each index i a homomorphism C(J; of G; into a fixed group G. We say that 
G is the free product or coproduct of the groups G; (with respect to the 
homomorphisms cp;) if and only if the following condition holds: For any 
group H and any homomorphisms 

there exists a unique homomorphism f: G -+ H such that for any i E I, the 
following diagram is commutative: 

First, we have the following uniqueness proposition about free products: 

Proposition 4.1. Assume that G and G' are free products of a collection 
{G;: i E I} of groups (with respect to homomorphisms CfJ;: G;-+ G and cp;: 
G;-+ G', respectively). Then, there exists a unique isomorphism h: G-+ G' such 
that the following diagram is commutative for any i E I: 

PROOF. The proof is almost word for word that of Proposition 2.2. 

Although we have defined free products of groups and proved their unique
ness, it still remains to prove that they always exist. We shall also show that 
each of the homomorphisms CfJ; occurring in the definition is a monomorphism, 
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that the free product is generated by the union of the images q>1(G1), and get 
more detailed insight into the algebraic structure of a free product. 

Theorem 4.2. Given any collection { G1 : i e I} of groups, their free product 
exists. 

PROOF. We define a word in the G;'s to be a finite sequence (x1, x 2 , ••• , x,) 
where each x. belongs to one of the groups G1, any two successive terms in the 
sequence belong to different groups, and no term is the identity element of any 
G1• The integer n is the length of the word. We also include the empty word, 
i.e., the unique word of length 0. Let W denote the set of all such words. 

For each index i, we now define left operations of the group G1 on the 
set W (see Appendix B). Let g e G1 and (x1, ••• , x,) e W; we must define 
g(x 1 , •• • , x,). 

Case 1: x1 ¢ G1• Then, if g "1: 1, 

g(x 1, ••• , x,.) = (g, x1, ••• , x,). 

We shall also define the action of g on the empty word by a similar formula, 
i.e., g( ) = (g). If g = 1, then, 

g(x 1, ••• , x,.) = (x 1, ••• , x,.). 

Case 2: x 1 e G1• Then, 

( ) - {(gx 1,x2 , ... ,x,) ifgx1 "1: 1 
g X I' ... ' X, - 'f (x2 , ... , x,) 1 gx 1 = 1. 

[Where gx 1 = 1 and n = 1, it is understood, of course, that g(x 1 ) is the empty 
word.] 

We must now verify that the requirements for left operations of G1 on W 
are actually satisfied; i.e., for any word w, 

1w= w, 

(gg')w = g(g'w). 

This verification is a trivial checking of various cases. 
It is clear that each of the groups G1 acts effectively. Thus, each element g 

of G1 may be considered as a permutation of the set W, and G1 may be 
considered as a subgroup of the group of all permutations of W (see Appendix 
B). Let G denote the subgroup of the group of all permutations of W which 
is generated by the union of the G;'s. Then, G contains each G1 as a subgroup; 
we let 

denote the inclusion map. 
Any element of G may be expressed as a finite product of elements from 

the various G;'s. If two consecutive factors in this product come from the same 
G1, it is clear that they may be replaced by a single factor. Thus, any element 
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9 #- 1 of G may be expressed as a finite product of elements from the G;'s in 
reduced form, i.e., so no two consecutive factors belong to the same group, 
and so no factor is the identity element. We now assert that the expression of 
any element g #- 1 of g in reduced form is unique: If 

g = UtU2 · --gm = h1h2 · · · hn 

with both products in reduced form, then m =nand 91 = h1 for 1 i m. To 
see this, consider the effect of the permutations 9 192 · .. 9m and h1 h2 · · · hn on 
the empty word; the results are the words (9 1 , g2 , ••• , Um) and (h 1 , h2 , ••• , hn), 
respectively. Because these two words must be equal, the conclusion follows. 

It is clear how to form the inverse of an element of G written in reduced 
form, and how to form the product of two such elements. 

It is now an easy matter to verify that G is actually the free product of the 
G;'s with respect to the qJ/s. For, let H be any group and let t/11 : G1 -+ H, i E /, 

be any collection of homomorphisms. Define a function f : G -+ H as follows. 
Express any given 9 #- 1 in reduced form, 

9 = 9t92 ... 9m> 9k E Gi.• 1 k m, 
and then set 

f(g) = (t/Jt,9d(t/J;292) · · · (t/J;'"9m). 

We also set f(1) = 1, of course. It is clear that f is a homomorphism, and that 
f makes the required diagrams commutative. It is also clear that f is the only 
homomorphism that makes these diagrams commutative. Q.E.D. 

Because the homomorphisms qJ1 : G1 -+ G are monomorphisms, it is cus
tomary to identify each group G1 with its image under qJ1, and to regard it as 
a subgroup of the free product G. Then, qJ1 becomes an inclusion map, and it 
is not usually necessary to mention it explicitly. 

The two most important facts to remember from the proof of Theorem 4.2 
are the following: 

(a) Any element 9 #- 1 of the free product can be expressed uniquely as a 
product in reduced form of elements from the groups G1• 

(b) The rules for multiplying two such products in reduced form (or for 
forming their inverses) are the obvious and natural ones. 

These facts give one great insight into the structure of a free product of 
groups. 

Examples 

4.1. Let G1 and G2 be cyclic groups of order 2, G1 = {1, xt} and G2 = 
{l, x2 }. Then, any element g #- 1 of their free product can be written uniquely 
as a product of x 1 and x 2 , with the factors x 1 and x 2 alternating. For example, 
the following are such elements: 
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or 

Note that the elements x 1x2 and x2 x 1 are both of infinite order, and they are 
different. Note also the great difference between the direct product or weak 
product of G1 and G2 and their free product in this case. The direct product 
is an abelian group of order 4, whereas the free product is a non-abelian group 
with elements of infinite order. 

Notation: We denote thefree product of groups G1 , G2 , ..• , Gn by G1 • G2 • ... • 

Gn or 

The free product of the family of groups { Gi : i e J} is denoted by 

fl*Gi. 
ie I 

EXERCISES 

4.1. Let {G;: i E I} be a collection containing more than one group, each of which 
has more than one element. Prove that their free product is non-abelian, contains 
elements of infinite order, and that its center consists of the identity element 
alone. 

4.2. For each index i, let Gj be a subgroup of G; (proper or improper). Prove that the 
free product of the collection { Gj: i E /} may be considered as a subgroup of the 
free product of the G;. 

4.3. Let { G;: i E I} and { Gj : i E I} be two families of groups indexed by the same set 
I. Assume that for each index i E I there is given a homomorphism J;: G;-+ Gj. 
Prove that there exists a unique homomorphism f: G-+ G' of the free product 
of the first family of groups into the free product of the second family such that 
the following diagram is commutative for each index i: ,, 

G; -----> G 

-----> G' 
I qJ; 

Show that if each J; is a monomorphism (respectively, epimorphism), then f is a 
monomorphism (respectively, epimorphism). 

4.4. Prove that if an element x of the free product G * H has finite order, then x is an 
element of G or H, or is conjugate to an element of G or H. (HINT: Express x as 
a word in reduced form; then make the proof by induction on the length of the 
word.) Deduce that if G and Hare cyclic groups of orders m and n, respectively, 
wherem >I andn > l,thenthemaximumorderofanyelementofG•Hoffinite 
order is max(m, n). 
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4.5. Let { G1 : i e I} be a collection of abelian groups, and let G be their free product 
with respect to homomorphisms q>1 : G1 -> G. Let G' = Gf[G, G] be the quotient 
of G by its commutator3 subgroup and let q>;: G1 -> G' be the composition of q>1 

with the natural homomorphism G-+ G'. Prove that G' is a weak product of the 
groups {G1} with respect to the homomorphisms q>; (i.e., the conclusion of 
Proposition 2.1 holds). 

4.6. Let G, H, G', and H' be cyclic groups of orders m, n, m', and n', respectively. If 
G • His isomorphic toG' • H', then m = m' and n = n' or else m = n' and n = m'. 
(HINT: Apply Exercise 4.5 toG • Hand G' • H'; thus we see that, if we "abelianize" 
G • Hand G' • H', we obtain finite abelian groups of orders mn and m'n', respec
tively. Now apply Exercise 4.4.) 

4.7. Let Hand H' be conjugate subgroups of G. Prove that iff is any homomorphism 
of G into some other group such that f(H) = l, then f(H') = l also. 

4.8. Let G be the free product of the family of groups { G1 : i e 1}, where it is assumed 
that G1 -# { l} for any index i. Prove that, for any two distinct indices i and i' e I, 
the subgroups G1 and G1. of G are not conjugate. (HINT: Apply Exercise 4.7. Use 
Exercise 4.3 to construct a homomorphism f of G into another free product with 
the required properties.) 

4.9. Let G = G1 • G2 , and let N be the least normal subgroup of G which contains 
G1. Prove that G/N is isomorphic to G2. (HINT: Use Exercise 4.3. Let = {1}, 

= G2,J1 : G1 -> G'1 be the trivial homomorphism, and letf2 : G2 -> be the 
identity map. Prove that N is the kernel of the induced homomorphism 
f: G-+ G'.) 

4.10. Let G admit two different decompositions as a free product: 

G = Go•(n• = Ho•(n• Hi) 
1 e I Je I 

with the same index set I. Assume that, for each index i e I, G1 and H1 are 
conjugate subgroups of G. Prove that G0 and H 0 are isomorphic. (HINT: The 
method of proof is similar to that of Exercise 4.9.) 

§5. Free Groups 

As the reader may have guessed, the definition of a free group is entirely 
analogous to that of a free abelian group. 

Definition. LetS be an arbitrary set. A free group on the setS (or a free group 
generated by S) is a group F together with a function qJ : S -+ F such that the 
following condition holds: For any group Hand any function 1/J: S-+ H, there 
exists a unique homomorphism f: F -+ H such that the following diagram is 

3 This terminology and notation is explained in the following section just before the statement 
of Proposition 5.3. 
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commutative: 

Exactly as in the previous cases we have encountered, this definition 
completely characterizes a free group. To be precise: 

Proposition 5.1. Let F and F' be free groups on the set S with respect to 
functions qJ: S-+ F and qJ': S-+ F', respectively. Then, there exists a unique 
isomorphism h : F -+ F' such that the following diagram is commutative: 

It still remains to prove that, given any set S, there exists a free group on 
the setS, and to establish its principal properties. We shall do this by exactly 
the same method as that used for the case of free abelian groups. 

Assume, then, that 

iel 

where the subsets S1 are disjoint and nonempty. For each index i, let F1 be a 
free group on the set S1 with respect to a function f/J;: S1 -+ F1• Let F denote 
the free product of the groups F1 with respect to homomorphisms 'I; : F1 -+ F 
(recall that we have proved that each 'I; is actually a monomorphism!). Because 
the subsets S1 are pairwise disjoint, we can define a function qJ : S -+ F by the 
rule 

Proposition 5.2. Under the above hypotheses, F is the free group on the setS 
with respect to the function qJ: S -+F. 

The proof of this proposition is the same as that of Proposition 3.2 except 
for obvious modifications. Hence, it is not necessary to go through these 
details again. This proposition may be restated as follows: The free product 
of any collection of free groups is a free group. 

We shall now apply this proposition to prove the existence of free groups 
exactly as we applied Proposition 3.2 to prove the existence of free abelian 
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groups. The details are as follows: LetS = { x1 : i e /} be an arbitrary nonempty 
set, and, for each index i, let S1 = {xJ. Let F1 denote an infinite cyclic group 
generated by x1, 

F1 = {xi: n e Z}, 

and let lP : S1 -+ F1 denote the inclusion map. Then, F1 is readily seen to be a 
free group on the set S1 with respect to the map qJ1 (as we shall see later, this 
case, where S has only one element, is the only one where the free group on a 
set S and the free abelian group on S are the same). The hypotheses of 
Proposition 5.2 are all satisfied; we conclude that F is a free group on the set 
S with respect to the functon lP: S-+ F. Note that F is a free product of infinite 
cyclic groups. From what we have learned about free products, we see that 
every element g :F 1 of the free group F can be expressed uniquely in the form 

where x 1 , x 2 , ••• , x,. are elements of S such that any two successive elements are 
different, and n 1 , n2 , ••• , n,. are nonzero integers, positive or negative. Such an 
expression for g is called a reduced word in the elements of S. To avoid 
exceptions, we say that the identity 1 is represented by the empty word. The 
rules for forming inverses and products ofreduced words are the obvious ones. 

From these facts, it is clear that the function lP : S --+ F is one-to-one, and 
that F is actually generated by the subset qJ{S) in the sense defined earlier. 

In many cases it is convenient to take S to be a subset ofF and lP to be the 
inclusion map. If this is the case, we may as well omit any mention of lfJ. 

EXERCISES 

5.1. Prove that a free group on a nonempty setS is abelian if and only if S has exactly 
one element. 

5.2. Prove that the center of a free group on a set having more than one element 
consists of the identity element alone. 

5.3. Let g and h be two elements of a free group on a set S having more than one 
element. Give a necessary and sufficient condition for g and h to be conjugate in 
terms of their expressions as reduced words. (HINT: Consider cyclic permutations 
of the factors of a reduced word.) 

We shall conclude this section by considering the relation between free 
groups and free abelian groups. Recall that, if x and y are any two elements 
of a group G, the notation [x, y] denotes the element xyx-1y-1 e G, and it is 
called the commutator of x andy (in the given order). The notation [G, G] 
denotes the subgroup of G generated by all commutators; it is called the 
commutator subgroup and is readily verified to be a normal subgroup. The 
quotient group G/[G,.G] is abelian. Conversely, if N is any normal subgroup 
of G such that G/N is abelian, then N ::J [G, G]. 
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Proposition 5.3. Let F be a free group on the set S with respect to a function 
cp: S-+ F, and let n:: F-+ F/[F, F] denote the natural projection ofF onto the 
quotient group. Then, F /[ F, F] is a free abelian group on S with respect to the 
function n:cp: S-+ F/[F, F]. 

The proof is a nice exercise in the use of the definitions and the facts stated 
in the preceding paragraph. 

Corollary 5.4. IfF and F' are free groups on finite sets SandS', then F and F' 
are isomorphic if and only if SandS' have the same cardinal number. 

PROOF. Any isomorphism of F onto F' would induce an isomorphism of the 
quotient groups, F/[F, F] and F'/[F', F']. We now reach a contradiction by 
using the preceding proposition and Corollary 3.5. This proves the "only if" 
part of the coronary. The proof of the "if" part is trivial. 

EXERCISES 

5.4. Prove that this corollary is still true if S is a finite set and S is an arbitrary set. 

IfF is a free group on a set S, the cardinal number of S is called the rank 
of F. Corollary 5.4 shows that the rank is an invariant of the group at least in 
the case of free groups of finite rank. It can also be proved that the rank of a 
free group is an invariant even in the case where it is an infinite cardinal. The 
proof is more of an exercise in the arithmetic of cardinal numbers than in 
group theory, and we shall not give it here. 

If F is a free group on the set S with respect to the function cp : S-+ F, 
because cp is one-to-one it is usually convenient to consider S as a subset of 
F and cp as an inclusion map, as we mentioned above. With this convention, 
Sis called a basis for F. In other words, a basis for F is any subset S ofF such 
that F is a free group on S with respect to the inclusion map S -+ F. A free 
group has many different bases. 

§6. The Presentation of Groups by 
Generators and Relations 

We begin with a result that is the analog for arbitrary groups of Proposition 
3.3. 

Proposition 6.1. Any group is the homomorphic image of a free group. To be 
precise, if S is any set of generators for the group G, and F is a free group on 
S, then the inclusion map S -+ G determines a unique epimorphism of F onto G. 
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The proof is the same as that of Proposition 3.3. This proposition enables 
us to give a mathematically precise meaning to the term "nontrivial relation 
between generators" by a method analogous to that used in the case of abelian 
groups. There is one slight difference between the abelian case and the present 
case because, in the case of abelian groups, any subgroup can be the kernel 
of a homomorphism, whereas in the case of non-abelian groups, only a normal 
subgroup can be a kernel. For this reason we shall give a complete discussion 
of this case. 

Let S be a set of generators for the group G, let F be a free group on the set 
S with respect to a map qJ : S -+ F, let 1/J : S -+ G be the inclusion map, and let 
f: F-+ G be the unique homomorphism such that jqJ = 1/J. Any element r -¥ 1 
of the kernel off is (by definition) a relation between the generators of S for 
the group G. In view of what we have proved, r can be expressed uniquely as 
a reduced word in the elements of S. Because every element of S is also an 
element of G, this reduced word can also be considered as a product in G; 
however, in G, this product reduces to the identity element. Thus, by this device 
of introducing the free group F on the set S, we have given the relation r a 
"place to live," to use a figure of speech. If { ri} is any collection of relations, 
then any other relation r is said to be a consequence of the relations ri if and 
only if r is contained in the least normal subgroup ofF which contains the 
relation ri. In the case where every relation is a consequence of the set of 
relations {ri}, the kernel off is completely determined by the set {ri}; it is the 
intersection of all normal subgroups ofF which contain the set {ri}. In this 
case, the group G is completely determined up to isomorphism by the set of 
generators S and the set of relations {ri}, because it is isomorphic to the 
quotient ofF modulo the least normal subgroup containing the set {ri}. Such 
a set of relations is called a complete set of relations. 

Definition. A presentation of a group G is a pair (S, { ri}) consisting of a set of 
generators for G and a complete set of relations between these generators. The 
presentation is said to be finite in case both Sand {ri} are finite sets, and the 
group G is said to be finitely presented in case it has at least one finite 
presentation. 

Let us emphasize that any group admits many different presentations, 
which may look quite different. Conversely, given two presentations (S, {ri}) 
and (S', { ri} ), it is often nearly impossible to determine whether or not the two 
groups thus defined are isomorphic. 

Examples 

6.1. A cyclic group of order n admits a presentation with one generator x 
and one relation x". 

6.2. We shall prove later that the fundamental group of the Klein bottle 
admits the following two different presentations (among others): 
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(a) Two generators a and b and one relation baba-1• 

(b) Two generators a and c and one relation a2c2• 

The relationship between the two presentations in this case is fairly simple: 
c = ba-1 orb = ca. To be precise, let F(a, b) and F(a, c) denote free groups on 
the sets {a, b} and {a, c }, respectively. Define homomorphisms f: F(a, b) -+ 
F(a, c) and g: F(a, c)-+ F(a, b) by the following conditions: 

f(a) = a, f(b) = ca, 

g(a) =a, g(c) = ba-1• 

It follows directly from the definition of a free group that these equations 
define unique homomorphisms. We compute that 

g[f(a)] =a, 

f[g(a)] =a, 

g[f(b)] = b, 

f[g(c)] =c. 

Therefore, gfis the identity map of F(a, b), andfg is the identity map of F(a, c). 
Hence, f and g are isomorphisms which are the inverse of eac other. Next, we 
check that 

a2c2 = c-1 [f(baba- 1 )]c, 

baba-1 = (ba- 1 )(g(a2c2)] (ba-1 )-1• 

Therefore, the normal subgroup of F(a, b), generated by baba-1, and the 
normal subgroup of F(a, c), generated by a2c2, correspond under the isomor
phisms f and g. Hence, f and g induce isomorphisms of the corresponding 
quotient groups. 

Note that the essence of the above argument is contained in the following 
two simple calculations: 

(a) If b = ca, then baba- 1 = ca2c and a2c2 = c-1 [baba- 1 ]c. 
(b) If c = ba-l' then a2c2 = a2ba-1ba-1 and baba- 1 = (ba- 1 )(a2c2 )(ba-1 r 1• 

6.3. Consider the following two group presentations: 

(a) Two generators a and band one relation a 3b- 2• 

(b) Two generators x andy and one relation xyxy-1 x-1 y-1• 

We assert that these are presentations of isomorphic groups. The relationship 
between the two different pairs of generators is given by the following system 
of equations: 

b = xyx, 

y = b-ta2. 

We leave it to the reader to work out the details. We shall see in Section IV.6 
that this is a presentation of the fundamental group of the complement of a 
certain knotted circle in Euclidean 3-space. 
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In dealing with groups presented by means of generators and relations, it 
is often convenient to take a more informal approach. To illustrate what we 
mean, consider the first presentation in Example 6.3. The group G under 
consideration is the quotient of a free group F on two generators a and b by 
the least normal subgroup containing the element a 3b- 2• Let us denote the 
image of the generators a and b in the group G by the same symbols. Then, 
a3b-2 = 1 in G, or a3 = b2 • When computing with elements of G (which are 
products of powers of a and b) we can use the equation a 3 = b2 in whatever 
way is convenient. 

EXERCISES 

6.1. Suppose we are given presentations of two groups G1 and G2 by means of 
generators and relations. Show how to obtain from this a presentation of the direct 
product G, x G2 , the free product G1 • G2 , and the commutator quotient group 
Gtf[G 1 , GtJ. 

§7. Universal Mapping Problems 

In the preceding sections of this chapter we have defined and studied the 
following types of algebraic objects: weak products of abelian groups, free 
abelian groups, free products of groups, and free groups. In each of these cases, 
the algebraic object in question was actually a system consisting of two things 
with a mapping between them, e.g., cp : S --+ G. This system consisting of two 
things and a mapping between them was characterized by a certain triangular 
diagram, e.g., 

As the reader will recall, the object H and the map tjt in this diagram could 
be chosen in a fairly arbitrary manner, subject only to minor restrictions. It 
was then required that there exist a unique map f making the diagram 
commutative. 

This method of characterizing the system cp : S --+ G is usually referred to 
by the statement that cp : S --+ G (or for brevity, G) is the solution of a "universal 
mapping problem." We shall see another important example of such a uni
versal mapping problem in the next chapter. Defining or characterizing 
mathematical objects as the solution to a universal mapping problem has 
become very common in recent years. For example, one oft he most prominent 
contemporary algebraists (C. Chevalley) has written a textbook on algebra 
[6] that has universal mapping problems as one of its main themes. 
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If a mathematical object is defined or characterized as being the solution 
to a universal mapping problem, it follows easily (by the method used to prove 
Proposition 2.2) that this object is unique up to an isomorphism. In fact, the 
isomorphism is even uniquely determined! However, the existence of an object 
satisfying a given universal mapping problem is another question. The reader 
will note that in the four cases discussed in this chapter, at least three different 
constructions were given to prove the existence of a solution. However, in 
each case, the existence proof carried with it a bonus, in that it gave great 
insight into the actual structure of the desired mathematical object. 

There exists a rather general method for proving the existence of solutions 
of universal mapping problems (see [5], [7]). However, this general method 
gives absolutely no insight into the mathematical structure of the solution. It 
is a pure existence proof. 

We now give two more examples of the characterization of mathematical 
objects as solutions of universal mapping problems. The examples are given 
for illustrative purposes only and will not be used in any of the succeeding 
chapters. 

Examples 

7.1. Free commutative ring with a unit. Let Z[x 1, x 2 , ••• , x,] denote, as 
usual, the ring of all polynomials with integral coefficients in the "variables" 
or "indeterminates" x 1, x 2 , ••• , x,. Each nonzero element of this ring can be 
expressed uniquely as a finite linear combination with integral coefficients of 
the monomials ••• x!•, where k1, k2 , ••• , k,are non-negative integrs. This 
ring may be considered to be the free commutative ring with unit generated 
by the set S = { x 1, ... , x,}. We make this assertion precise, as follows: Let 
qJ: S-+ Z[x 1 , ... , x,] denote the inclusion map. Then, for any commutative 
ring R (with unit) and any function t/1: S-+ R, there exists a unique ring 
homomorphism f: Z [x 1, ••• , x,] -+ R [with f( l) = l] such that the following 
diagram is commutative: 

/Z[x1 , ... ,x,] 

7.2. The Stone-Cech Compactification. For any Tychonoff space X, there 
is defined a certain compact Hausdorff space {J(X) which contains X as an 
everywhere dense subset; it is called the Stone-Cech Compactification of X. 
Let qJ : X -+ /J(X) denote the inclusion map. Then, we have the following 
characterization: For any compact Hausdorff space Y and any continuous 
map t/J : X -+ Y, there exists a unique continuous map f: /J(X)-+ Y such that 
the following diagram is commutative: 
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For a more complete discussion see J. L. Kelley, General Topology. Princeton, 
N.J.: Van Nostrand, 1955. pp. 152-153. (GTM 27, Springer) 

For a precise, axiomatic treatment of universal mapping problems and 
further examples, see references [5, 7]. 

NOTES 

Definition of free groups, free products, etc. 

The concepts of free abelian group, free group, free product of groups, etc., 
are rather old. The main difference between a modern treatment of the subject 
and one of the older treatments is the method of defining these algebraic 
objects. Formerly, they were defined in terms of what are now considered some 
of their characteristic properties. For example, a free group on set S was 
defined to be the collection of all equivalence classes of "words" formed from 
the elements of S. From a strictly logical point of view, there can be no 
objection to this procedure. However, from a conceptual point of view, it has 
the disadvantage that the definition of each type of free object requires new 
insight and ingenuity, and may be a difficult problem. The idea of defining 
free objects as solutions to universal mapping problems, which gradually 
evolved during the time of World War II and immediately thereafter, seems 
to be one of the important unifying ideas in modern mathematics. 

The elegant proof given in the text for the existence of free products of 
groups (Theorem 4.2), which is simpler than the older proofs, is due to B.L. 
Vander Waerden (Am. J. Math. 70 (1948), 527-528). In a more recent paper 
(Proc. Kon. Ned. Akad. Weten. (series A) 69 (1966), 78-83), Vander Waerden 
has pointed out how the basic idea of the procedure used for the proof of 
Theorem 4.2 is applicable to prove the existence of solutions to universal 
mapping problems in many other algebraic situations. 

Different levels of abstraction in mathematics 

The first time the student encounters the material in this chapter, it may seem 
rather foreign to him. The probable reason is that it is on a higher level of 
abstraction than any of his previous studies in mathematics. To make this 
point clearer, we shall try to describe briefly the different levels of abstraction 
that seem to occur naturally in mathematics. 

The lowest level of abstraction is the level of most high school and begin-
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ning undergraduate mathematics courses. This level is characterized by a 
concern with a few very explicit mathematical objects, e.g., the integers, 
rational numbers, real numbers, the complex numbers, the Euclidean plane, 
etc. The next level of abstraction occurs when certain properties common to 
several different concrete mathematical objects are isolated and studied for 
their own sake. This leads to the study of such abstract and general mathe
matical systems as groups, rings, fields, vector spaces, topological spaces, etc. 
Ordinarily the mathematics student makes the transition to this level of 
abstraction some time in this undergraduate career. 

The material of this chapter provides an introduction to the next higher 
level of abstraction. As was pointed out in Example 4.1, tbe weak direct 
product of two abelian groups, G 1 and G 2 , and their free product G 1 * G 2 , are 
quite different types of groups. Yet there is a strong analogy between the weak 
direct product of abelian groups and the free product of arbitrary groups. To 
perceive this analogy, it is necessary to consider the category of all abelian 
groups and the category of all (i.e., not necessarily abelian) groups, respectively. 
This is characteristic of this next.Jevel of abstraction: the simultaneous con
sideration of all mathematical systems (e.g., groups, rings, or topological 
spaces) of a certain kind, and the study of the properties of such a collection 
of mathematical systems. 

The history of mathematics in the last two hundred years or so has been 
characterized by the considerations of mathematical systems on ever higher 
levels of abstraction. Presumably this trend will continue in the future. It 
should be emphasized strongly, however, that this movement is not a case of 
abstraction for the sake of abstraction itself. Rather, it has been forced on 
mathematicians for various reasons, such as bringing out the analogies between 
seemingly quite different phenomena. 

Presentations of groups by generators and relations 

Let us emphasize that the specification of a group by means of generators and 
relations is very unsatisfactory in many respects, because some of the most 
natural problems that arise in connection with group presentations are very 
difficult or impossible. For a further discussion of this point, see the texts by 
Kurosh [1, Chap. X] or Rotman [4, Chap. 12]. 

That part of group theory which is concerned with groups presented by 
generators and relations is called "Combinatorial Group Theory." The stan
dard introductory text on this subject is Magnus, Karrass, and Solitar [3]. A 
more advanced treatise is Lyndon and Schupp [2]. 
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