
Chapter 2
Introduction to Nilpotent Groups

The aim of this chapter is to introduce the reader to the study of nilpotent groups.
In Section 2.1, we define a nilpotent group, as well as the lower and upper central
series of a group. Section 2.2 contains some classical examples of nilpotent groups.
In particular, we prove that every finite p-group is nilpotent for a prime p: In
Section 2.3, numerous properties of nilpotent groups are derived. For example,
we prove that every subgroup of a nilpotent group is subnormal, and thus satisfies
the so-called normalizer condition. Section 2.4 is devoted to the characterization of
finite nilpotent groups. In Section 2.5, we use tensor products to show that certain
properties of a nilpotent group are inherited from its abelianization. We focus on
torsion nilpotent groups in Section 2.6. We prove that every finitely generated
torsion nilpotent group must be finite, and that the set of torsion elements of a
nilpotent group form a subgroup. Section 2.7 deals with the upper central series and
its factors. Among other things, we illustrate how the center of a group influences
the structure of the group.

2.1 The Lower and Upper Central Series

In this section, we define a nilpotent group and discuss the lower and upper central
series of a group. First, we provide some standard terminology.

2.1.1 Series of Subgroups

Definition 2.1 Let G be a group. A series for G is a finite chain of subgroups

1 D G0 � G1 � � � � � Gn D G:
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24 2 Introduction to Nilpotent Groups

If the subgroups G0; : : : ; Gn are distinct, then n is called the length of the series.
The series is called normal if Gi E G for 0 � i � n; and subnormal if Gi E GiC1
for 0 � i � n � 1: The factors of a subnormal series are the quotients GiC1=Gi for
0 � i � n � 1:

Clearly, every normal series of a group is subnormal. On the other hand, not
every subnormal series is normal. Consider, for example, the symmetric group S4:
Let G1 D fe; .1 2/.3 4/g and G2 D fe; .1 2/.3 4/; .1 3/.2 4/; .1 4/.2 3/g:
It can be shown that the series

feg E G1 E G2 E A4 E S4

is subnormal. It is not normal, however, because G1 is not a normal subgroup of S4:
Notice, for instance, that

.1 2 3 4/�1.1 2/.3 4/.1 2 3 4/ … G1:

Definition 2.2 Let G1; G2; G3; : : : be a sequence of subgroups of a group G:

(i) If Gi � Gj for 1 � i � j; then

G1 � G2 � G3 � � � � (2.1)

is an ascending series (or an ascending chain of subgroups).
(ii) If Gi � Gj for 1 � i � j; then

G1 � G2 � G3 � � � � (2.2)

is a descending series (or a descending chain of subgroups).

An ascending series may not reach G: If it does, then we say that the series
terminates in G. Similarly, a descending series which reaches the identity is said to
terminate in the identity. If there exists an integer m > 1 such that Gm�1 ¤ Gm and
Gm D GmC1 D GmC2 D � � � in either (2.1) or (2.2), then the series is said to stabilize
in Gm.

2.1.2 Definition of a Nilpotent Group

Definition 2.3 A group G is called nilpotent if it has a normal series

1 D G0 � G1 � � � � � Gn D G (2.3)

such that

GiC1=Gi � Z.G=Gi/
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for i D 0; 1; : : : ; n � 1: Such a series (2.3) is called a central series for G: The
shortest length of all central series for G is called the nilpotency class, or simply the
class, of G:

An equivalent definition of a central series which involves commutators is given
in the next lemma.

Lemma 2.1 Let G be a group with a series

1 D G0 � G1 � � � � � Gn D G: (2.4)

The series (2.4) is central if and only if ŒGiC1; G� � Gi for 0 � i � n � 1:
Proof If the series (2.4) is central, then setting H D GiC1 and N D Gi in Lemma 1.9
yields the desired result.

Conversely, suppose that ŒGiC1; G� � Gi for 1 � i � n � 1: We claim that (2.4)
is a normal series. Let g 2 G and gi 2 Gi for some i D 1; 2; : : : ; n: By Lemma 1.4
(ii), we have

gg
i D giŒgi; g� 2 GiGi�1 D Gi:

Thus Gi E G: The rest follows from Lemma 1.9. ut
The trivial group is regarded as a nilpotent group of class 0; and nontrivial abelian

groups are nilpotent of class 1: To see why this is the case, suppose that G is a
nontrivial abelian group. Since Z.G/ D G; the series 1 < G is a central series for
G of shortest length (simply take G1 D G in Definition 2.3). More examples of
nilpotent groups are given in the next section.

The following lemma shows that the only nilpotent group with trivial center is
the trivial group.

Lemma 2.2 If G is a nontrivial nilpotent group, then Z.G/ ¤ 1:

Proof Suppose that 1 D G0 � G1 � � � � � Gn D G is a central series for G: There
exists an integer i � 0 such that Gi D 1 and GiC1 ¤ 1: Thus, GiC1=Gi � Z.G=Gi/

becomes GiC1 � Z.G/: And so, Z.G/ ¤ 1: ut
Remark 2.1 An important collection of groups which arises in many areas of
research (Galois theory, for example) are solvable groups. A group G is solvable
if it has a subnormal series

1 D G0 E G1 E � � � E Gn D G

such that GiC1=Gi is abelian for 0 � i � n � 1: Every nilpotent group is solvable
since the series (2.3) is subnormal and each factor is abelian. On the other hand,
not every solvable group is nilpotent. For example, S3 is a solvable group because it
has a series 1 C A3 C S3 which is subnormal and has abelian factors. However,
Lemma 2.2 shows that S3 is not nilpotent because it has trivial center (refer to
Example 1.2).
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2.1.3 The Lower Central Series

One series which is fundamental in the study of nilpotent groups is the lower central
series.

Definition 2.4 Let G be a group. The descending series

G D �1G � �2G � � � � (2.5)

recursively defined by �iC1G D Œ�iG; G� for i 2 N is called the lower central series
of G: Its terms are called the lower central subgroups of G:

In particular, �2G D ŒG; G� D G0 is the commutator (or derived) subgroup of G:
By definition,

�iG D ŒG; � � � ; G
„ ƒ‚ …

i

�

for i � 2: Thus, �iG E G for i � 1 by Corollary 1.3.

Remark 2.2 Let G be any group.

(i) If �iG D 1 for some i � 1; then �iC1G D Œ�iG; G� D Œ1; G� D 1: It follows
by induction on j that �jG D 1 for all j D i; i C 1; : : : : In this case, the
lower central series of G is a central series in the sense of Definition 2.3 (see
Lemma 2.1).

(ii) If �2G D G; then �3G D Œ�2G; G� D ŒG; G� D �2G D G: Continuing this
argument shows that �jG D G for all j � 1:

In the next examples, we give the lower central subgroups of some groups.

Example 2.1 If G is an abelian group, then ŒG; G� D 1 (see Example 1.6). Thus,
�iG D 1 for all i � 2 by Remark 2.2 (i).

Example 2.2 We find the lower central subgroups of An; the alternating group on
S D f1; 2; : : : ; ng: By Example 2.1, �iAn D feg for n D 1; 2; 3 and i � 2 since
A1; A2; and A3 are abelian.

It was shown in Example 1.7 that ŒA4; A4� D K: We claim that �iA4 D K for
i � 3: It suffices to consider the case i D 3:We begin by noting that any nonidentity
element of K can be written as

.a d/.b c/ D Œ.a c b/; .a b/.c d/� ;

where a; b; c; d are distinct elements of S D f1; 2; 3; 4g: Since A4 is generated
by 3-cycles, K � ŒK; A4�: Consequently, K D ŒK; A4� D �3A4 as claimed. We
conclude that �iA4 D K for i � 2:

If n � 5; then each lower central subgroup of An equals An: This is a consequence
of Example 1.7 and Remark 2.2 (ii).
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This example illustrates that the lower central series (2.5) may not descend to the
identity, and consequently, may not be a central series in the sense of Definition 2.3.

Example 2.3 As before, let Sn be the symmetric group on S D f1; 2; : : : ; ng:
Clearly, �iS1 D �iS2 D feg for i � 2: We claim that �iSn D An for i � 2 and n � 3:

Consider the case n D 3: By Example 1.8, ŒS3; S3� D A3: It is easy to verify that

Œ.a c b/; .a b/� D .a c b/ for distinct a; b; c 2 S:

It follows that �3S3 D Œ�2S3; S3� D ŒA3; S3� D A3: And so, �iS3 D A3 for i � 2 as
claimed.

Next, consider the case n D 4: We found that ŒS4; S4� D A4 in Example 1.8. The
computation given in the same example also shows that A4 � ŒS4; A4�: Thus,

ŒS4; A4� � ŒS4; S4� D A4 � ŒS4; A4�:

We conclude that A4 D ŒS4; A4�: Hence, �3S4 D A4; and thus �iS4 D A4 for i � 2:

Finally, suppose that n � 5: We know that ŒSn; Sn� D An whenever n � 5 from
Example 1.8. Furthermore, An D ŒAn; An�whenever n � 5 from Example 2.2. Thus,

An D ŒAn; An� � ŒSn; An� � ŒSn; Sn� D An:

This implies that �3Sn D ŒSn; An� D An; and in general, �iSn D An for i � 2:

Example 2.4 We give the lower central subgroups of the dihedral group Dn: See
Examples 1.4 and 1.9 for notations and [4] for details.

• If n � 3 is odd, then �2Dn D gp
�

x2
�

D gp.x/ and

�3Dn D Œ�2Dn; Dn� D Œgp.x/; Dn� D gp.x/:

Thus, �iDn D gp.x/ for i � 2:

• If n D 2km; where m � 3 is odd and k � 1; then

�2D2km D gp
�

x2
�

; �3D2km D gp
�

x4
�

; : : : ; �iD2km D gp
�

x2
i�1
�

for 2 � i � k C1: Since x2
k

has odd order m; �iD2km D gp
�

x2
k
�

when i � k C1:

• If n D 2k for some k > 1; then

�2D2k D gp
�

x2
�

; �3D2k D gp
�

x4
�

; : : : ; �iD2k D gp
�

x2
i�1
�

for 2 � i � k C 1: In particular, �kC1D2k D gp
�

x2
k
�

D 1; and thus �iD2k D 1

for i � k C 1 by Remark 2.2. This shows that the lower central series of D2k is
central in the sense of Definition 2.3. Therefore, D2k is nilpotent.
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Example 2.5 Consider the Heisenberg group. It was shown in Example 1.10 that
ŒH ; H � D Z.H / or, equivalently, �2H D Z.H /: Clearly,

�3H D ŒZ.H /; H � D I3:

By Remark 2.2 (i), �iH D I3 for i � 3: Hence, the lower central series of H is
central in the sense of Definition 2.3. Therefore, H is nilpotent.

We give some useful properties enjoyed by the lower central subgroups.

Lemma 2.3 The lower central subgroups of a group are fully invariant (hence,
characteristic).

Proof Apply Proposition 1.2 (i) repeatedly. ut
Lemma 2.4 If G is any group and H � G; then �iH � �iG for each i 2 N:

Proof The proof is done by induction on i: If i D 1; then the result is obvious.
Assume that �iH � �iG holds for i > 1: Then �iC1H D Œ�iH; H� � Œ�iG; G� D
�iC1G: ut
Lemma 2.5 Let G and K be groups. If ' W G ! K is a homomorphism, then
'.�iG/ D �i.'.G// for each i 2 N: Thus, '.�iG/ � �iK with equality when ' is
surjective.

Proof The proof is done by induction on i. If i D 1; then

'.�1G/ D '.G/ D �1.'.G//:

Assume that '.�iG/ D �i.'.G// holds for i > 1: By Proposition 1.2 (i), we obtain

'.�iC1G/ D ' .Œ�iG; G�/ D Œ'.�iG/; '.G/�

D Œ�i.'.G//; '.G/� D �iC1.'.G//:

This completes the proof. ut
Corollary 2.1 If G is a group and N E G; then �i.G=N/ D .�iG/N=N for each
i 2 N:

Proof If   W G ! G=N is the natural homomorphism, then

.�iG/N=N D  .�iG/ D �i. .G// D �i.G=N/

by Lemma 2.5. ut
The lower central subgroups of a group can always be generated by a certain

collection of simple commutators.

Lemma 2.6 Let G be any group. For any n 2 N; we have

�nG D gp .Œg1; : : : ; gn� j gi 2 G/ : (2.6)
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Furthermore, if X is a generating set of G; then �nG is generated by all simple
commutators of weight n or more in the elements of X and their inverses.

Proof Corollary 1.6 immediately gives (2.6). Suppose that G D gp.X/: Each
element of G can be written as a product of the elements of X and their inverses.
In particular, we may replace each gi in a simple commutator Œg1; : : : ; gn� 2 G of
weight n by such a product. Since �nG is generated by such simple commutators,
the result follows from repeatedly applying Lemma 1.4. ut
Example 2.6 Let G be a group generated by x; y; and z, and consider the simple

commutator
h

x�1y2; z
i

of weight 2: By Lemma 2.6, this commutator can be

expressed as a product of simple commutators of weight 2 or more in the elements
of the set

˚

x; x�1; y; y�1; z; z�1� : To see how this is done, we use Lemma 1.4 (v)
to (vi) and get

h

x�1y2; z
i

D
h

x�1; z
ih

x�1; z; y2
ih

y2; z
i

D
h

x�1; z
ih

x�1; z; y
ih

x�1; z; y
ih

x�1; z; y; y
ih

y; z
ih

y; z; y
ih

y; z
i

:

2.1.4 The Upper Central Series

The upper central series plays a key role in the study of nilpotent groups. This series
is constructed as follows:

Let G be any group. Set �1G D Z.G/; and let  1 W G ! G=�1G be the natural
homomorphism of G onto G=�1G: Define

�2G D  �1
1 .Z.G=�1G//;

so that �2G=�1G D Z.G=�1G/: Observe that �2G E G by the Correspondence
Theorem.

Next, take  2 W G ! G=�2G to be the natural homomorphism of G onto G=�2G,
and define

�3G D  �1
2 .Z.G=�2G//:

Thus, �3G=�2G D Z.G=�2G/: As before, �3G E G: Continuing in this way, we
obtain the subgroups of the upper central series of G:

Definition 2.5 Let G be any group. The ascending series

1 D �0G � �1G � � � � (2.7)

recursively defined by �iC1G=�iG D Z.G=�iG/ for i � 0 is called the upper central
series of G; and its terms are called the upper central subgroups of G:
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If  i W G ! G=�iG is the natural homomorphism of G onto G=�iG; then

�iC1G D  �1
i .Z.G=�iG//

D fg 2 G j g�iG is central in G=�iGg
D fg 2 G j .g�iG/.h�iG/ D .h�iG/.g�iG/ for all h 2 Gg
D fg 2 G j Œg; h� 2 �iG for all h 2 Gg:

In particular, �1G is the center of G: By taking N D �iG and H D �iC1G in
Lemma 1.9, we find that Œ�iC1G; G� � �iG:

Remark 2.3 Let G be any group.

(i) If �iG D G for some i � 0; then

�iC1G D fg 2 G j Œg; h� 2 �iG for all h 2 Gg
D fg 2 G j Œg; h� 2 G for all h 2 Gg
D G:

It follows by induction on j that �jG D G for j � i: In this situation, the upper
central series of G is a central series in the sense of Definition 2.3.

(ii) If Z.G/ D 1; then

�2G D fg 2 G j Œg; h� 2 Z.G/ for all h 2 Gg
D fg 2 G j Œg; h� D 1 for all h 2 Gg
D Z.G/:

Thus, �2G D 1: Continuing in this way, we find that �jG D 1 for j � 0:

We provide the upper central subgroups of some groups.

Example 2.7 If G is an abelian group, then �1G D G: Thus, �iG D G for all i � 1

by Remark 2.3 (i).

Example 2.8 If n � 3; then the upper central subgroups of Sn are trivial from
Example 1.2 and Remark 2.3 (ii). The same is true for the upper central subgroups
of An when n > 3 (see Example 1.3). This illustrates that the upper central series of
a group does not necessarily ascend to the group.

Example 2.9 We find the upper central subgroups of Dn: The last two cases rely on
the fact that D2n=Z.D2n/ is isomorphic to Dn: See [4] for details.

• For all i � 1; �iD1 D D1 and �iD2 D D2 since D1 and D2 are abelian. This
follows from Remark 2.3 (i).

• If n � 3 is odd, then Dn has trivial center (see Example 1.4). By Remark 2.3 (ii),
�iDn D 1 for all i � 0:
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• If n D 2km; where m � 3 is odd and k � 1; then �iD2km D gp
�

xn=2i
�

for

1 � i � k: In particular,

�kD2km D gp
�

xn=2k
�

D gp .xm/ :

It follows that �iD2km D gp .xm/ for i � k:

• If n D 2k for some k > 1; then �iD2k D gp
�

xn=2i
�

for 1 � i � k�1: In particular,

�k�1D2k D gp
�

xn=2k�1
�

D gp
�

x2
�

:

For i D k; we get �kD2k D D2k ; and consequently, �iD2k D D2k for i � k: Thus,
the upper central series of D2k is central in the sense of Definition 2.3.

Example 2.10 We find the upper central subgroups of the Heisenberg group. By
Example 1.10, we know that Z.H / D ŒH ; H �: Consequently,

�2H D fg 2 H j Œg; h� 2 Z.H / for all h 2 H g D H :

By Remark 2.3, �iH D H for i � 2: We conclude that �1H D H D
�2H ; �2H D �1H ; and �3H D I3 D �0H : Thus, the upper and lower central
series of H coincide.

The next lemma deals with epimorphic images of the upper central subgroups of
a group.

Lemma 2.7 If G and H are any groups and ' W G ! H is an epimorphism, then
'.�iG/ � �iH for i � 0:

Proof The proof is done by induction on i: The result is obviously true when i D 0:

Suppose that '.�i�1G/ � �i�1H for i > 0; and let g 2 '.�iG/: We claim that
g 2 �iH: Since g 2 '.�iG/; there exists x 2 �iG such that g D '.x/: Suppose that
h is any element of H: Since ' is an epimorphism, there exists y 2 G such that
h D '.y/: Now,

Œg; h� D Œ'.x/; '.y/� D '.Œx; y�/

and

Œx; y� 2 Œ�iG; G� � �i�1G:

By induction,

'.Œx; y�/ 2 '.�i�1G/ � �i�1H:

Thus, Œg; h� 2 �i�1H and g 2 �iH: ut
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If we put G D H in Lemma 2.7, then we obtain:

Corollary 2.2 The upper central subgroups of a group are characteristic.

Remark 2.4 In contrast to the lower central subgroups, the upper central subgroups
of a group are not necessarily fully invariant. For instance, let G be a nontrivial
abelian group, and let H be a nontrivial group with trivial center. Suppose, in
addition, that H contains a subgroup K which is isomorphic to G: We claim that
the center of G � H is not fully invariant. Let   W G � H ! G be the standard
projection map, and suppose that ’ is an isomorphism from G to K: By Lemma 1.2,
Z.G � H/ D G: However, the endomorphism ’ı  of G � H clearly does not map G
to itself. As a particular example, take G D Z2; H D S3; and K D fe; .1 2/g Š G:

2.1.5 Comparing Central Series

The upper central series of a nilpotent group ascends to the group faster than any
other central series, whereas its lower central series descends to the identity faster
than any other central series. This is highlighted in the next theorem.

Theorem 2.1 If G is a nilpotent group with a (descending) central series

G D G1 � G2 � � � � � Gn � GnC1 D 1;

then �iG � Gi and Gn�jC1 � �jG for 1 � i � n C 1 and 0 � j � n:

Proof First, we prove that �iG � Gi: If i D 1; then �1G D G D G1: Let i > 1 and
assume that �i�1G � Gi�1: By Proposition 1.1 (iii) and Lemma 2.1,

�iG D Œ�i�1G; G� � ŒGi�1; G� � Gi:

Next, we show that Gn�jC1 � �jG: If j D 0; then GnC1 D 1 D �0G: Let j > 0

and assume the result holds for j � 1: Lemma 2.1 now gives

�

Gn�jC1; G
� � Gn�jC2 � �j�1G:

By setting H D Gn�jC1 and N D �j�1G in Lemma 1.9, we obtain

�

Gn�jC1�j�1G
�

=�j�1G � Z
�

G=�j�1G
� D �jG=�j�1G:

Thus, Gn�jC1 � �jG: ut
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Remark 2.5 By Theorem 2.1, we have

�iC1G � �n�iG for 0 � i � n: (2.8)

If G has nilpotency class c and we set i D c�1 and n D c in (2.8), then �cG � Z.G/:

Remark 2.6 The proof of Theorem 2.1 shows that if

G D G1 � G2 � � � � � Gn � � � �

is any descending series such that ŒGi; G� � GiC1 for i D 1; 2; : : : ; then �iG � Gi:

Corollary 2.3 Let G be a group. The following are equivalent:

(i) G is nilpotent of class at most cI
(ii) �cC1G D 1I

(iii) �cG D GI
(iv) Œg1; : : : ; gcC1� D 1 for all gi 2 G:

Proof The result follows from Theorem 2.1 and Lemma 2.6. ut
The next theorem is another consequence of Theorem 2.1. It shows that the

lengths of the upper and lower central series (when finite) coincide with the
nilpotency class of the group, and no other central series has smaller length.

Theorem 2.2 Let G be a group. The following are equivalent:

(i) G is nilpotent of class c � 1I
(ii) �cC1G D 1 and �cG ¤ 1I

(iii) �cG D G and �c�1G ¤ G:

Example 2.11 The dihedral group D2k (k > 1) has nilpotency class k (see
Examples 2.4 and 2.9).

Example 2.12 The Heisenberg group has nilpotency class 2 (see Example 2.10).

We have seen that some groups coincide with their derived subgroup (refer to
Example 1.7). This never happens for nontrivial nilpotent groups.

Corollary 2.4 If G is a nontrivial nilpotent group, then �2G is a proper subgroup
of G:

Proof The proof is done by contradiction. If �2G D G; then �iG D G for all i � 2

by Remark 2.2 (ii). However, Theorem 2.2 implies that �iG D 1 for some i since G
is nilpotent. Consequently, G must be trivial. ut
Remark 2.7 In fact, if G is a nontrivial nilpotent group and N ¤ 1 is a normal
subgroup of G; then ŒN; G� is a proper subgroup of G:
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2.2 Examples of Nilpotent Groups

In this section, we give more examples of nilpotent groups.

2.2.1 Finite p-Groups

A classical result in finite group theory is that finite p-groups are nilpotent.

Theorem 2.3 Every finite p-group is nilpotent, where p is any prime.

Proof We use the fact that the center of a finite p-group is itself a finite p-group.
Let G be a finite p-group of order pn for some n 2 N: By Theorem 1.2, Z.G/ is
nontrivial, and thus G=Z.G/ is a finite p-group of order pr for some r 2 N with
r < n: Invoking Theorem 1.2 again, we have that G=Z.G/ has nontrivial center.
Hence, Z.G=Z.G// D �2G=Z.G/ is a p-group of order ps for some s 2 N with
s < r: This means that jZ.G/j < j�2Gj; so Z.G/ < �2G: By iterating this procedure,
we see that j�iGj < j�iC1Gj for i � 0; and thus �iG is a proper subgroup of �iC1G for
i � 0: And so, the upper central series for G is strictly increasing. Since G is finite,
the series must terminate at �kG D G for some k 2 N: Therefore, G is nilpotent. ut
Example 2.13 The dihedral groups D2n for n � 1 are finite 2-groups, and thus
nilpotent.

Example 2.14 The quaternion group Q is the group with presentation

Q D
D

x; y
ˇ

ˇ

ˇ x4 D 1; x2 D y2; y�1xy D x�1E:

The elements of Q are 1; x; x2; x3; y; xy; x2y; and x3y: Since Q has order 8 D 23;

it is nilpotent.

Example 2.15 If G and H are finite groups of orders m and n respectively, then both
the direct product G � H and semi-direct product G Ì' H by ' have order mn: In
particular, the direct and semi-direct product of any two finite p-groups is itself a
finite p-group.

An important construction of groups is the wreath product. Let A and T be any
two groups. For each s 2 T; let As be an isomorphic copy of A; and let as denote
the isomorphic image of a 2 A in As: Consider the direct product B D Q

s2T As; and
define the standard (or restricted) wreath product of A by T as

W D A o T D B Ì' T;

where ' W T ! Aut.B/ is the homomorphism that maps each t 2 T to '.t/; where
'.t/ is the automorphism of B induced by the mapping

as 7! ast for all a 2 A and s; t 2 T:
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Thus, T acts on B by permuting its factors. This action can be realized as
conjugation, so that t�1ast D ast in W for all a 2 A and s; t 2 T: A presentation for
W is

W D A o T D ˝

B; T
ˇ

ˇ t�1ast D ast .a 2 A; s; t 2 T/
˛

:

We call W the unrestricted wreath product of A by T in case B is an unrestricted
direct product of the As: In both situations, B is called the base group, A is the
bottom group, and T is the top group.

Example 2.16 Suppose that A and T are finite groups of orders m and n; respec-
tively. Using the notation above, we have that B D Q

s2T As is a finite group of order
mn; and thus A o T has order nmn: In particular, if jAj D pm and jTj D pn for some
prime p; then

jA o Tj D pn.pm/p
n D pnCmpn

:

Thus, the wreath product of any two finite p-groups is a finite p-group.

Remark 2.8 In contrast to Theorem 2.3, an infinite p-group does not have to be
nilpotent. In [2], G. Baumslag showed how to construct infinite p-groups which are
not nilpotent using wreath products. Take a nontrivial p-group A and an infinite p-
group B; and form the wreath product W D A o B: Clearly, W is an infinite group.
By Corollary 3.2 of [2], W must have trivial center, and thus fails to be nilpotent
by Lemma 2.2. Furthermore, W is a p-group since it is the wreath product of two
p-groups (see [11]). Thus, W is an infinite p-group that is not nilpotent.

Two groups which are infinite p-groups that are not nilpotent are the wreath
products Zp o Zp1 and Zp1 o Zp1 ; where Zp is the cyclic group of order p and

Zp1 D hx1; x2; : : : j px1 D 0; pxnC1 D xn for n D 1; 2; : : :i (2.9)

is an additively written presentation for the Prüfer p-group (or p-quasicyclic group).

2.2.2 An Example Involving Rings

Nilpotency in ring theory relates to nilpotency in group theory in a natural way.

Definition 2.6 Let R be a ring with unity 1; and let T be a subring of R: For any
k 2 N; let Tk be the subring of T consisting of all finite sums of the form

X

ap1���pk xp1 � � � xpk

�

ap1���pk 2 Z; xp1 ; : : : ; xpk 2 T
�

:

If there exists a natural number m such that Tm D f0g; then T is termed a nilpotent
subring of R:
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Let R be as in Definition 2.6, and suppose that S is a nilpotent subring of R with
Sn D f0g: Define

G D 1C S D f1C x j x 2 Sg :

Clearly, G is closed under multiplication since

.1C x/.1C y/ D 1C y C x C xy 2 G

for all x; y 2 S; and it is closed under inverses because

�

1C x
��

1 � x C x2 � x3 C � � � C .�1/n�1xn�1� D 1

for all x 2 S: Thus, G is a subgroup of the group of units of R:
We claim that G is nilpotent of class at most n � 1: Let

Gi D 1C Si D
n

1C x j x 2 Si
o

for i D 1; 2; : : : ; n:

By the same argument as before, we find that Gi is a subgroup of G:
Consider the (descending) series

G D G1 � G2 � � � � � Gn D 1: (2.10)

We claim that (2.10) is a central series for G: By Lemma 2.1, it suffices to show that
ŒGi; G� � GiC1 for i D 1; 2; : : : ; n � 1: Let g D 1C x 2 Gi and h D 1C y 2 G;
where x 2 Si and y 2 S: A straightforward computation gives

gh � hg D .1C x/.1C y/ � .1C y/.1C x/

D xy � yx 2 S.iC1/:

Thus,

Œg; h� D g�1h�1.gh � hg/C 1 2 S.iC1/ C 1 D GiC1;

and consequently, G is nilpotent of class at most n � 1 as claimed.

Example 2.17 Let R be a commutative ring with unity, and let T be the ring of n � n
matrices over R: Let S be the subring of T consisting of all n � n matrices over R
whose entries on and below the main diagonal are equal to zero. Thus,

S D

8

ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
:

0

B

B

B

@

0 b12 : : : b1n

0 0 : : : b2n
:::
:::
: : :

:::

0 0 : : : 0

1

C

C

C

A

ˇ

ˇ

ˇ

ˇ

ˇ

bij 2 R

9

>
>
>
=

>
>
>
;

:
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A direct computation shows that Sp consists of all elements of S whose first p �1
superdiagonals have zero entries. Thus, a typical matrix in Sp has the form

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 � � � � � � 0 c1 pC1 c1 pC2 � � � c1n

0 � � � � � � 0 0 c2 pC2 � � � c2n

0 � � � � � � 0 0
: : :

: : :
:::

::: � � � � � � � � � : : :
: : :

: : : cpC1 n
::: � � � � � � � � � : : :

: : : 0 0
::: � � � � � � � � � : : :

: : :
:::

:::

0 � � � � � � � � � � � � � � � 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

;

where cij 2 R: In particular, Sn is the n � n zero matrix. Let

UTn.R/ D fIn C M j M 2 Sg;

where In is the n � n identity matrix (we use this notation throughout the book). It
follows from the above that UTn.R/ is a nilpotent group of class less than n; called
the (upper) unitriangular group of degree n over R. A typical element of UTn.R/ is
an n � n upper unitriangular matrix of the form

0

B

B

B

B

B

B

B

B

B

@

1 a12 a13 � � � � � � a1n

0 1 a23 � � � � � � a2n

0 0 1 � � � � � � a3n
:::
:::
: : :

: : :
: : :

:::
:::
::: � � � � � � � � � an�1 n

0 � � � � � � � � � 0 1

1

C

C

C

C

C

C

C

C

C

A

;

where aij 2 R: In particular, UT3.Z/ is the Heisenberg group H :

For more on nilpotent rings and nilpotent groups which arise from them, see [6].

2.3 Elementary Properties of Nilpotent Groups

In this section, we take a look at some fundamental results on nilpotent groups. The
first one deals with subgroups and homomorphic images of nilpotent groups.

Theorem 2.4 If G is a nilpotent group of class c; then every subgroup and
homomorphic image of G is nilpotent of class at most c:
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Proof Suppose that H is a subgroup of G:By Lemma 2.4, �iH � �iG for each i 2 N:

Since G has nilpotency class c; �cC1G D 1 by Theorem 2.2. Thus, �cC1H D 1 and
H is nilpotent of class at most c by Corollary 2.3.

Let K be any group and ' 2 Hom.G; K/: By Lemma 2.5, '.�iG/ D �i.'.G//
for each i 2 N: Since �cC1G D 1 and ' is a homomorphism,

1 D '.�cC1G/ D �cC1.'.G//:

It follows from Corollary 2.3 that '.G/ is nilpotent of class at most c: ut
Corollary 2.5 If G is a nilpotent group of class c and N E G; then G=N is nilpotent
of class at most c:

This is immediate from Theorem 2.4 since G=N is a homomorphic image of G:
Note that Corollary 2.5 is also a consequence of Corollaries 2.1 and 2.3.

2.3.1 Establishing Nilpotency by Induction

Many of the theorems on nilpotent groups are proven using induction on the
nilpotency class. The next few results are commonly used.

Lemma 2.8 If G is a nilpotent group of class c � 1; then G=�cG is nilpotent of
class c � 1:
Proof Let  W G ! G=�cG be the natural homomorphism. By Corollary 2.5, G=�cG
is a nilpotent group of class at most c: Furthermore, for any n 2 N;

�n.G=�cG/ D  .�nG/ D �nG=�cG

by Lemma 2.5. In particular, �c�1.G=�cG/ D �c�1G=�cG ¤ 1 and �c.G=�cG/ D 1:

Thus, G=�cG has nilpotency class c � 1 by Theorem 2.2. ut
Lemma 2.9 Let G be a nilpotent group of class c � 2. For any element g 2 G; the
subgroup H D gp.g; �2G/ is nilpotent of class less than c:

Proof We prove that �iH � �iC1G for i � 2 by induction on i: If i D 2; then

�2H D gp .Œgmh; gnk� j h; k 2 �2G and m; n 2 Z/ :

By Lemmas 1.1 and 1.4 (iv), (v), and (vi),

Œgmh; gnk� D Œgm; gnk�h Œh; gnk�

D �

Œgm; k� Œgm; gn�k
�h
Œh; gnk�

D Œgm; k�h Œgm; gn�kh Œh; gnk� :
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Now, Œgm; k�h and Œh; gnk� are contained in �3G and Œgm; gn� D 1: Therefore,
Œgmh; gnk� 2 �3G; and consequently, �2H � �3G:

If we assume that �i�1H � �iG for i > 2; then

�iH D Œ�i�1H; H� � Œ�iG; H� � Œ�iG; G� D �iC1G:

Thus, �iH � �iC1G. In particular, �cH � �cC1G D 1: By Corollary 2.3, H has
nilpotency class less than c: ut
Lemma 2.10 If G is any group, then �nG=Z.G/ Š �n�1.G=Z.G// for any n 2 N:

Proof The proof is done by induction on n: If n D 1; then the result is obviously
true. Suppose that �iG=Z.G/ Š �i�1.G=Z.G// for 2 � i � n � 1: We claim that
�nG=Z.G/ Š �n�1.G=Z.G//: By definition, �nG=�n�1G D Z.G=�n�1G/: By the
Third Isomorphism Theorem,

�nG=Z.G/

�n�1G=Z.G/
Š Z

	

G=Z.G/

�n�1G=Z.G/




: (2.11)

By induction, �n�1G=Z.G/ Š �n�2.G=Z.G//: Substituting this in (2.11) yields

�nG=Z.G/

�n�2.G=Z.G//
Š Z

	

G=Z.G/

�n�2.G=Z.G//




D �n�1.G=Z.G//

�n�2.G=Z.G//
:

The result follows. ut
More generally, we have the next result of P. Hall.

Lemma 2.11 If G is any group, then �i.G=�jG/ Š �iCjG=�jG for i; j � 0:

Proof The proof is done by induction on j: Lemma 2.10 settles the case for j D 1:

Suppose that the lemma is true for j > 1: By the Third Isomorphism Theorem,

�iCjC1G
�jC1G

Š �.iC1/CjG=�jG

�jC1G=�jG
:

By induction, �.iC1/CjG=�jG Š �iC1
�

G=�jG
�

: Since �jC1G=�jG is just Z
�

G=�jG
�

;

we have

�iCjC1G
�jC1G

Š �iC1
�

G=�jG
�

Z
�

G=�jG
� Š �i

 

G=�jG

Z
�

G=�jG
�

!

by Lemma 2.10. However,

�i

 

G=�jG

Z.G=�jG/

!

Š �i

 

G

�jC1G

!

by the Third Isomorphism Theorem. This completes the proof. ut
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Theorem 2.5 Let G be a group, and suppose that N E G: If N � �iG for some
i 2 N and G=N is nilpotent, then G is nilpotent.

Proof Consider the upper central series

1 D �0.G=�iG/ � �1.G=�iG/ � � � � (2.12)

for G=�iG: By Lemma 2.11, �k.G=�iG/ Š �kCiG=�iG for k � 0: Thus, (2.12)
becomes

1 D �iG=�iG � �iC1G=�iG � � � � : (2.13)

Since G=�iG Š .G=N/=.�iG=N/ by the Third Isomorphism Theorem and G=N
is nilpotent, then G=�iG is nilpotent by Corollary 2.5. Thus, the series (2.13)
terminates at G=�iG: Therefore, there exists an integer n � i such that �nG=�iG D
G=�iG; and hence, �nG D G: By Theorem 2.3, G is nilpotent. ut

If N � Z.G/ in Theorem 2.5, then the next theorem gives information about the
nilpotency class of G:

Theorem 2.6 Let G be a group, and suppose that N � Z.G/: If G=N is nilpotent of
class c; then G is nilpotent of class either c or c C 1:

Proof We first prove that if gN 2 �n.G=N/ for any g 2 G and n � 0; then
g 2 �nC1G: If n D 0; then �0.G=N/ D N: In this case, gN 2 �0.G=N/ D N;
and thus g 2 N: And so, g is central because N � Z.G/ by the hypothesis. Assume
that hN 2 �k�1.G=N/ implies h 2 �kG for 2 � k � n; and let gN 2 �n.G=N/: Since

Œ�n.G=N/; G=N� � �n�1.G=N/;

we have ŒgN; hN� 2 �n�1.G=N/ for all h 2 G: Thus, Œg; h� 2 �nG by the induction
hypothesis. Consequently, g 2 �nC1G as claimed.

Next, we prove that G D �cC1G: If g 2 G; then gN 2 G=N D �c.G=N/
by Theorem 2.2. This implies that g 2 �cC1G by our discussion above. Hence
G D �cC1G: Now, if �cG ¤ G; then G has nilpotency class c C 1 by Theorem 2.2.
Suppose that �cG D G: If �c�1G D G; then G is of class d � c � 1 by Theorem 2.3.
By Corollary 2.5, G=N is of class at most d: However, G=N is of class c by
hypothesis. Thus, c � d � c � 1; which is false. It follows from Theorem 2.2
that �c�1G ¤ G; and thus G is of nilpotency class c: ut

If N D Z.G/ in Theorem 2.6, then the nilpotency class can be determined.

Lemma 2.12 A group G is nilpotent of class c � 1 if and only if G=Z.G/ is
nilpotent of class c � 1:
Proof We invoke Theorem 2.2 (iii). If G is nilpotent of class c; then �cG D G and
�c�1G ¤ G: Thus,

�c�1.G=Z.G// Š �cG=Z.G/ D G=Z.G/
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and

�c�2.G=Z.G// Š �c�1G=Z.G/ ¤ G=Z.G/

by Lemma 2.10. Therefore, G=Z.G/ is of class c � 1: The converse is similar. ut

2.3.2 A Theorem on Root Extraction

We illustrate how Lemma 2.9 is used to prove a theorem on the extraction of roots
in nilpotent groups by induction on the nilpotency class.

Definition 2.7 Let G be a group, and let P be a set of primes. A natural number n
is called a P-number if every prime divisor of n belongs to P:

By convention, 1 is a P-number for any set of primes P: If P happens to be the
empty set, then the only P-number is 1:

Definition 2.8 Let G be a group, and let P be a set of primes.

1. An element of G is called a P-torsion element if its order is a P-number. The set
of P-torsion elements of G is denoted by �P.G/: Thus,

�P.G/ D fg 2 G j gn D 1 for some P-number ng :

2. If every element of G is P-torsion, then G is called a P-torsion group.
3. If G has no P-torsion elements other than the identity, then G is P-torsion-free.

If P D fpg; then a P-torsion group is just a p-group by Definition 1.7. If P is
the set of all primes, then �P.G/ is the set of all elements of finite order of G and is
written as �.G/: Note that G is P-torsion-free whenever P is empty.

An element of �.G/ is called a torsion element of G; and G is a torsion (or
periodic) group if �.G/ D G: We say that G is torsion-free if it has no torsion
elements other than the identity element.

The group properties “P-torsion” and “P-torsion-free” are preserved under
extensions.

Definition 2.9 Let G; H; and N be groups.

(i) If N E G and G=N Š H; then G is called an extension of H by N: Thus, there
exists a short exact sequence

1 ! N ! G ! H ! 1:

(ii) An extension G of H by N is called central if N � Z.G/:
(iii) Let N E G; and suppose that G is an extension of H by N: A property Q of

groups is said to be preserved under extensions if G has property Q whenever
both N and H have property Q:
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Lemma 2.13 If P is a set of primes, then “P-torsion” and “P-torsion-free” are
preserved under extensions.

Proof Let G be a group with N E G:

• Suppose that N and G=N are P-torsion, and let g 2 G. Since G=N is P-torsion, the
element gN 2 G=N has order a P-number n: Thus, .gN/n D N; or equivalently,
gn 2 N: Since N is also P-torsion, there exists a P-number m such that .gn/m D 1I
that is, gnm D 1: Since nm is a P-number, G is P-torsion.

• Suppose that N and G=N are P-torsion-free. Let g 2 G such that gn D 1 for some
P-number n: Then .gN/n D N in G=N: Since G=N is P-torsion-free, gN D NI
that is, g 2 N: Therefore, g D 1 because N is P-torsion-free. ut
We now prove a classical result on extraction of roots in nilpotent groups. If G

is any group and g 2 G; then h 2 G is an nth root of g if hn D g for some natural
number n > 1:

Theorem 2.7 (S. N. C̆ernikov, A. I. Mal’cev) Let P be a nonempty set of primes.
A nilpotent group G is P-torsion-free if and only if the following condition holds:

if g; h 2 G and gn D hn for some P-number n; then g D h: (2.14)

Equation (2.14) is equivalent to the condition that every element of G has at most
one nth root for every P-number n:

Proof Suppose that G is P-torsion-free, and assume that gn D hn for some g; h 2 G
and P-number n:We prove that g D h by induction on the class c of G: If c D 1; then
G is abelian. In this case, gn D hn for some P-number n implies that

�

gh�1�n D 1:

Since G is P-torsion-free, gh�1 D 1 and g D h:
Suppose that c > 1; and assume that the result holds for all P-torsion-free

nilpotent groups of class less than c: By Lemma 2.9, H D gp.g; �2G/ is nilpotent of
class less than c: It is clear that h�1gh 2 H because h�1gh D gŒg; h�: Now, gn D hn

is the same as gn D h�1hnh which, after replacing hn by gn; becomes

gn D h�1gnh D �

h�1gh
�n
:

By induction, g D h�1gh; so g and h commute. Hence, the equality gn D hn can be
expressed as

�

gh�1�n D 1: Since G is P-torsion-free, gh�1 D 1; and thus g D h:
Conversely, suppose that G is any group such that (2.14) is satisfied for any

elements g and h in G: If we take h D 1; then gn D 1n D 1 implies g D 1:

And so, G is P-torsion-free. ut
Example 2.18 The Heisenberg group is torsion-free. To see this, suppose that

0

@

1 a b
0 1 c
0 0 1

1

A

n

D
0

@

1 0 0

0 1 0

0 0 1

1

A (2.15)
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for some a; b; c 2 Z and n 2 N: We use the Binomial Theorem to compute the
left-hand side of (2.15):

0

@

1 a b
0 1 c
0 0 1

1

A

n

D
0

@

0

@

1 0 0

0 1 0

0 0 1

1

AC
0

@

0 a b
0 0 c
0 0 0

1

A

1

A

n

D
0

@

1 0 0

0 1 0

0 0 1

1

AC n

0

@

0 a b
0 0 c
0 0 0

1

AC
 

n

2

!
0

@

0 a b
0 0 c
0 0 0

1

A

2

C � � �

D
0

@

1 0 0

0 1 0

0 0 1

1

AC n

0

@

0 a b
0 0 c
0 0 0

1

AC
 

n

2

!
0

@

0 0 ac
0 0 0

0 0 0

1

AC � � �

D
0

@

1 na nb C �n
2

�

ac
0 1 nc
0 0 1

1

A :

Therefore,

0

@

1 na nb C �n
2

�

ac
0 1 nc
0 0 1

1

A D
0

@

1 0 0

0 1 0

0 0 1

1

A ;

and thus a D b D c D 0:

Since H is torsion-free, (2.14) must hold in H : Indeed, suppose that

0

@

1 a1 b1
0 1 c1
0 0 1

1

A

n

D
0

@

1 a2 b2
0 1 c2
0 0 1

1

A

n

for some a1; a2; b1; b2; c1; c2 2 Z and n 2 N: The same computation used above
gives

0

@

1 na1 nb1 C �n
2

�

a1c1
0 1 nc1
0 0 1

1

A D
0

@

1 na2 nb2 C �n
2

�

a2c2
0 1 nc2
0 0 1

1

A :

Therefore, a1 D a2; b1 D b2; and c1 D c2: Hence,

0

@

1 a1 b1
0 1 c1
0 0 1

1

A D
0

@

1 a2 b2
0 1 c2
0 0 1

1

A as

claimed.
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2.3.3 The Direct Product of Nilpotent Groups

The direct product of finitely many nilpotent groups is again nilpotent. This is the
point behind the next theorem.

Theorem 2.8 If fH1; : : : ; Hng is a set of nilpotent groups of class c1; : : : ; cn

respectively, then the direct product H1 � � � � � Hn is nilpotent of class
maxfc1; : : : ; cng:
Proof We prove the theorem for n D 2: Assume that H1 and H2 are nontrivial
groups of nilpotency classes c1 and c2 respectively, and suppose that c1 � c2 > 0:

The proof is done by induction on c1: If c1 D 1; then H1 and H2 are abelian, and
thus H1 � H2 is abelian.

Suppose that c1 > 1: By Lemma 1.3,

H1 � H2

Z.H1 � H2/
Š H1

Z.H1/
� H2

Z.H2/
: (2.16)

Note that the right side of (2.16) is a direct product of nilpotent groups of classes
less than c1: By Lemma 2.12, the class of H1=Z.H1/ is c1 � 1: By induction,
.H1 � H2/=Z.H1 � H2/ is a nilpotent group of class c1 � 1: The result follows from
Lemma 2.12. ut
Remark 2.9 It is not always the case that the direct product of an arbitrary number of
nilpotent groups is nilpotent. For example, suppose that fG1; G2; : : :g is an infinite
set of nilpotent groups, and assume that Gi has nilpotency class at least i for each
i D 1; 2; : : : : We claim that the infinite direct product of the groups G1; G2; : : : is
not nilpotent. Assume, on the contrary, that this direct product is nilpotent of class c:
By Theorem 2.4, each of its subgroups is of class at most c: Consequently, every Gi

is of class at most c: This contradicts the fact that Gj is of class at least j whenever
j > c:

On the other hand, if the nilpotency class of each Gi is bounded above, then their
direct product is nilpotent. The proof of this is analogous to that of Theorem 2.8.

2.3.4 Subnormal Subgroups

Subgroups of nilpotent groups enjoy several noteworthy properties, one of which is
subnormality.

Definition 2.10 A subgroup H of a group G is called subnormal if there is a
subnormal series of subgroups of G beginning at H and terminating at G:
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Theorem 2.9 Every subgroup of a nilpotent group is subnormal.

Proof Let H be a subgroup of a nilpotent group G of class c; and consider the
subgroups H�iG of G for i D 1; 2; : : : ; c: Since the upper central series of G is
normal, we have

H D H�0G � H�1G � � � � � H�cG D G: (2.17)

We claim that (2.17) is a subnormal series. If h 2 H and z 2 �iC1G; then

z�1hz D hŒh; z� 2 HŒH; �iC1G� D H�iG:

Therefore, z 2 NG.H�iG/; and thus �iC1G < NG.H�iG/: Since H < NG.H�iG/ as
well, H�iC1G < NG.H�iG/ and the claim is proved. Thus, (2.17) is a subnormal
series from H to G in c steps. ut
Remark 2.10 Another subnormal series from H to G can be constructed using
successive normalizers. Put H0 D H; and recursively define HiC1 D N.Hi/: It is
simple to verify that the series

H D H0 < H1 < � � � < Hc D G

is, indeed, subnormal.

Corollary 2.6 If G is a nilpotent group and H < G with ŒG W H� D n; then gn 2 H
for all g 2 G:

Proof Suppose that G has nilpotency class c: If H is a normal subgroup of G; then
jG=Hj D ŒG W H� D n: Hence, .gH/n D H for all g 2 G; and thus gn 2 H:

Assume that H is any subgroup of G: By Theorem 2.9, there is a subnormal series

H D H0 C H1 C � � � C Hc D G:

Furthermore, each Hi is nilpotent by Theorem 2.4. If we put ŒHiC1 W Hi� D mi; so
that n D mc�1mc�2 � � � m0; then we obtain

gn D ..gmc�1 /mc�2 /���m0 :

Since each Hi is normal in G; we have

gmc�1 2 Hc�1; .gmc�1 /mc�2 2 Hc�2; : : : :

Continuing in this way leads to gn 2 H0 D H: ut
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2.3.5 The Normalizer Condition

An important feature of nilpotent groups is that all of their maximal subgroups are
normal. In fact, this property leads to a structure theorem for finite nilpotent groups
which will be proven in the next section. Groups whose maximal subgroups are
normal satisfy the so-called normalizer condition.

Definition 2.11 A group G satisfies the normalizer condition if H is a proper
subgroup of NG.H/ whenever H is a proper subgroup of G:

Lemma 2.14 If a group G satisfies the normalizer condition, then every maximal
subgroup of G is normal.

Proof Let M be a maximal subgroup of G: By hypothesis, M is a proper subgroup
of NG.M/: Thus, NG.M/ D G because M is maximal. And so, M C G: ut
Lemma 2.15 If every subgroup of a group G is subnormal, then G satisfies the
normalizer condition.

Proof Suppose that H is a proper subgroup of G: Since H is subnormal, there exists
a subnormal series

H D H0 C H1 C � � � C Hn D G

for some n 2 N: Clearly, H1 properly contains and normalizes H since H C H1: ut
Theorem 2.10 Every nilpotent group satisfies the normalizer condition.

Proof This is a consequence of Theorem 2.9 and Lemma 2.15. ut
Corollary 2.7 Every maximal subgroup of a nilpotent group is normal.

Proof The result follows at once from Theorem 2.10 and Lemma 2.14. ut

2.3.6 Products of Normal Nilpotent Subgroups

We prove a theorem pertaining to the product of normal nilpotent subgroups of an
arbitrary group.

Theorem 2.11 (H. Fitting) Let G be any group, and suppose that H and K are
normal nilpotent subgroups of G of classes c and d respectively. Then HK is a
normal nilpotent subgroup of G of class at most c C d:
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Proof By Theorem 2.2, �cC1H D 1 and �dC1K D 1: The result will follow at once
from Theorem 2.3 once we prove that �cCdC1.HK/ D 1: By repeatedly applying
Lemma 1.11, we get

�cCdC1.HK/ D ŒHK; HK; � � � ; HK
„ ƒ‚ …

cCdC1
�

D ŒH; HK; � � � ; HK
„ ƒ‚ …

cCdC1
�ŒK; HK; � � � ; HK
„ ƒ‚ …

cCdC1
�

D � � �

Thus, �cCdC1.HK/ is a product of commutators of the form

ŒX1; X2; : : : ; XcCdC1�;

where Xj is either H or K for 1 � j � c C d C 1: Let Y D ŒX1; X2; : : : ; XcCdC1� be
one of the commutators arising in this product. Since Y contains (c C d C 1) Xj’s,
either H appears at least (c C 1) times in Y or K appears at least (d C 1) times in Y:
Now, �mH E G and �nK E G for each m; n > 0 by Corollary 1.3 because both H
and K are normal in G: By Theorem 1.4,

Œ�mH; K� � �mH and Œ�nK; H� � �nK: (2.18)

Hence, if s of the Xj’s in the commutator Y equal H; then Y � �sC1H by (2.18).
Similarly, if t of the Xj’s in the commutator Y equal K; then Y � �tC1K: It follows
that if H occurs at least (c C1) times in Y; then Y � �cC1H: However, if K occurs at
least (dC1) times in Y; then Y � �dC1K: In either case, we obtain Y D 1: Therefore,
�cCdC1.HK/ D 1: ut

2.4 Finite Nilpotent Groups

In this section, we give a characterization of finite nilpotent groups. We begin by
mentioning some of the well-known Sylow theorems and consequences of them.
These play a fundamental role in the study of finite groups, and their proofs can be
found in various places in the literature (see [3, 9], or [10] for instance).

Definition 2.12 Let G be a finite group of order pnk; where p is a prime, k 2 N;

and p doesn’t divide k: A subgroup of G whose order is exactly pn is called a Sylow
p-subgroup of G:
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A subgroup H of a finite group G is called a Sylow subgroup of G if it is a Sylow
p-subgroup of G for some prime p: The fact that a finite group has Sylow subgroups
is contained in the next fundamental theorem.

Theorem 2.12 (Sylow) Let G be a finite group of order pnk; where p is a prime,
k 2 N; and p doesn’t divide k:

(i) G has at least one subgroup of order pi for each i D 1; 2; : : : ; n:
(ii) If H � G and jHj D pn; then H is contained in some Sylow p-subgroup.

(iii) Any two Sylow p-subgroups of G are conjugate.

A consequence of Theorem 2.12 (iii) is:

Corollary 2.8 Let p be a prime, and suppose that P is a Sylow p-subgroup of a
finite group G: Then P E G if and only if P is the unique Sylow p-subgroup of G:

Another result which will be needed later is:

Lemma 2.16 Let P be a Sylow p-subgroup of a finite group G:

(i) If K � G and K contains NG.P/; then K D NG.K/:
(ii) If N C G; then P \ N is a Sylow p-subgroup of N and PN=N is a Sylow

p-subgroup of G=N:

The proof of Lemma 2.16 (i) relies on the so-called Frattini Argument.

Lemma 2.17 (Frattini Argument) Let G be a finite group and H E G: If P is a
Sylow p-subgroup of H for some prime p; then G D HNG.P/:

We now prove the main theorem of this section.

Theorem 2.13 Let G be a finite group. The following are equivalent:

(i) G is nilpotent.
(ii) Every subgroup of G is subnormal.

(iii) G satisfies the normalizer condition.
(iv) Every maximal subgroup of G is normal.
(v) Every Sylow subgroup of G is normal.

(vi) G is a direct product of its Sylow subgroups.
(vii) Elements of coprime order commute.

Proof (i) ) (ii) by Theorem 2.9, (ii) ) (iii) by Lemma 2.15, and (iii) ) (iv) by
Lemma 2.14.

We prove (iv) ) (v) by contradiction. Let P be a Sylow subgroup of G; and
assume that P is not normal in G: Then NG.P/ < G; and consequently, NG.P/ < M
for some maximal subgroup M of G: Since M C G; we have NG.M/ D G: This
contradicts Lemma 2.16 (i).

Next, we prove (v) ) (vi). Suppose that G has order pr1
1 pr2

2 � � � prn
n ; where the pi’s

are distinct primes and ri 2 N: Assume that each Sylow subgroup of G is normal.
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By Corollary 2.8, there is a unique Sylow pi-subgroup Pi of order pri
i for each pi:

We claim that G is the direct product of the Pi’s. Observe that if gi 2 Pi and gj 2 Pj

for i ¤ j; then

�

gi; gj
� 2 Pi \ Pj D 1

by Lagrange’s Theorem and normality of Pi and Pj: Thus, the elements of Pi

commute with the elements of Pj whenever i ¤ j: Now, define the map

' W P1 � � � � � Pn ! G by '.g1; : : : ; gn/ D g1 � � � gn:

By the observation above, we have that ' is a homomorphism. We claim that ' is
injective. Suppose that

'.h1; : : : ; hn/ D h1 � � � hn D 1

for some hi 2 Pi: Since the hi and hj commute and have coprime order when i ¤ j;
we have

jh1h2 � � � hnj D jh1jjh2j � � � jhnj D 1:

This means that jh1j D jh2j D � � � D jhnj D 1; and thus h1 D h2 D � � � D hn D 1:

And so, ker ' is trivial. This proves the claim. Since ' is an injective map between
finite groups of equal order, it is an isomorphism. Therefore, G is a direct product
of its Sylow subgroups.

Next, we prove (vi) , (vii). Suppose that G D P1 � � � � � Pn for Sylow pi-
subgroups Pi (here, of course, the pi are distinct primes). Let g D g1 � � � gn and
h D h1 � � � hn be elements of coprime order in G; where gi; hi 2 Pi: Since

�

gi; gj
� D �

hi; hj
� D 1

when i ¤ j; we have jgj D jg1j � � � jgnj and jhj D jh1j � � � jhnj: Now, jgj and jhj are
coprime only if one of the gi or hi equals 1 for each i D 1; 2; : : : ; n: We conclude
that gh D hg:

Conversely, suppose that the elements of coprime order commute. Let p1; : : : ; pn

be the distinct prime divisors of jGj; and let P1; : : : ; Pn be corresponding Sylow
subgroups associated with these primes. We assert that G Š P1 � � � � � Pn: Let
g 2 G and h 2 Pi for some 1 � i � n: Clearly, hg 2 Pi if g 2 Pi: If g … Pi; then
jgj is coprime to jhj: By assumption, Œg; h� D 1; and thus hg D h 2 Pi: And so,
Pi E G: Furthermore, G D P1P2 � � � Pn because Pi and Pj are commuting subgroups
for i ¤ j: Finally, we find that

gp.P1; : : : ; bPi; : : : ; Pn/ \ Pi D 1
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for any 1 � i � n by Lagrange’s Theorem. Here, bPi means that Pi is omitted from
the collection P1; : : : ; Pn: This proves the assertion.

It remains to prove that (vii) ) (i). Suppose that the elements of coprime order in
G commute. By (vii) ) (vi), G is a direct product of its Sylow subgroups. Since the
Sylow subgroups have prime power order, each of them is nilpotent by Theorem 2.3.
The result follows from Theorem 2.8. ut

2.5 The Tensor Product of the Abelianization

Tensor products serve as a useful tool in the study of nilpotent groups. In this section,
we discuss the connection between the factors �iG=�iC1G of the lower central series
of a group G and the i-fold tensor product of Ab.G/; the abelianization of G: In
particular, we demonstrate that certain properties of a nilpotent group are inherited
from its abelianization.

2.5.1 The Three Subgroup Lemma

We begin with a result of P. Hall and L. Kalužnin.

Lemma 2.18 (Three Subgroup Lemma) Let G be a group with subgroups H; K;
and L: If N E G and any two of the following subgroups ŒH; K; L�, ŒK; L; H�,
ŒL; H; K� are subgroups of N; then the third subgroup is also a subgroup of N:

Proof Let h; k; and l be any elements of the subgroups H; K; and L respectively.
By Corollary 1.5, the groups ŒH; K; L�, ŒK; L; H�, and ŒL; H; K� are generated by
conjugates of commutators of the forms

�

h; k�1; l
�

;
�

k; l�1; h
�

; and
�

l; h�1; k
�

respectively. By Lemma 1.5,

h

h; k�1; l
ikh

k; l�1; h
ilh

l; h�1; k
ih D 1:

Without loss of generality, suppose that ŒH; K; L� and ŒK; L; H� are contained in
N: Since N E G; we have

�

h; k�1; l
�k 2 N and

�

k; l�1; h
�l 2 N: Hence,

h

l; h�1; k
i

D
h

k; l�1; h
i�l
 

h

h; k�1; l
i�k

!h�1

belongs to N; and consequently, ŒL; H; K� is contained in N: ut
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Corollary 2.9 If H; K; and L are normal subgroups of a group G; then

ŒH; K; L� � ŒK; L; H�ŒL; H; K�:

Proof The result follows from Corollary 1.3 by putting N D ŒK; L; H�ŒL; H; K� in
Lemma 2.18. ut

The Three Subgroup Lemma plays a fundamental role in establishing certain
connections between the commutators of the upper and lower central subgroups.

Theorem 2.14 (P. Hall) Let G be any group and i; j 2 N:

(i)
�

�iG; �jG
� � �iCjG;

(ii) �i
�

�jG
� � �ijG;

(iii) If j � i; then
�

�iG; �jG
� � �j�iG:

Proof The proofs of (i), (ii), and (iii) are done by induction on i:

(i) If i D 1; then
�

�1G; �jG
� D �1CjG by Definition 2.4. Assume that i > 1 and

the result holds for i � 1: By definition,

�

�iG; �jG
� D ��

�1G; �i�1G
�

; �jG
� D �

�1G; �i�1G; �jG
�

:

We examine the subgroups obtained by permuting the entries of
�

�1G; �i�1G; �jG
�

: Observe that

�

�i�1G; �jG; �1G
� D ��

�i�1G; �jG
�

; �1G
� � �

�i�1CjG; �1G
� D �iCjG

and

�

�jG; �1G; �i�1G
� D ��

�jG; �1G
�

; �i�1G
� D �

�jC1G; �i�1G
� � �iCjG:

Setting N D �iCjG in Lemma 2.18 gives
�

�iG; �jG
� D �

�1G; �i�1G; �jG
� � �iCjG:

(ii) The result is obvious when i D 1: Suppose that i > 1; and assume that the
result holds for i � 1: By (i), we have

�i
�

�jG
� D �

�i�1
�

�jG
�

; �jG
� � �

�.i�1/jG; �jG
� � �.i�1/jCjG D �ijG:

(iii) If i D 1; then
�

�1G; �jG
� D �

G; �jG
� � �j�1G and the result holds by

Lemma 2.1. Let j � i > 1; and suppose that the result is true for i � 1: By
induction and Lemma 2.1, we have

�

G; �jG; �i�1G
� D ��

G; �jG
�

; �i�1G
� � �

�j�1G; �i�1G
� � �j�iG
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and

�

�jG; �i�1G; G
� D ��

�jG; �i�1G
�

; G
� D �

�j�iC1G; G
� � �j�iG:

Lemma 2.18 ultimately gives

�

�iG; �jG
� D �

�i�1G; G; �jG
� � �j�iG:

This completes the proof. ut

2.5.2 The Epimorphism
Nn

Z
Ab.G/ ! �nG=�nC1G

We illustrate how the abelianization of a group influences the factors of its lower
central series.

Definition 2.13 Suppose that A; B; and M are R-modules. A function ' W A � B !
M is called bilinear if, for all a; a1; a2 2 A; b; b1; b2 2 B; and r 2 R; we have:

'.a1 C a2; b/ D '.a1; b/C '.a2; b/I
'.a; b1 C b2/ D '.a; b1/C '.a; b2/I

'.ra; b/ D '.a; rb/ D r'.a; b/:

If the R-modules are written using multiplicative notation, then the conditions above
become:

'.a1a2; b/ D '.a1; b/'.a2; b/I
'.a; b1b2/ D '.a; b1/'.a; b2/I
'.ar; b/ D '.a; br/ D .'.a; b//r:

In this case, ' is said to be multiplicative in each variable. In what follows, all
Z-modules (equivalently, abelian groups) are written multiplicatively.

Theorem 2.15 (D. J. S. Robinson) Let G be any group. For each integer n > 1,
the mapping

 W �n�1G=�nG
O

Z

Ab.G/ ! �nG=�nC1G

defined by

 .x�nG ˝ y�2G/ D Œx; y��nC1G .x 2 �n�1G; y 2 G/

is a well-defined Z-module epimorphism.
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Proof Consider the function

'n W �n�1G=�nG � Ab.G/ ! �nG=�nC1G

defined by

.x�nG; y�2G/ 7! Œx; y��nC1G .x 2 �n�1G; y 2 G/:

We claim that 'n is well defined and multiplicative in each variable.

• 'n is well defined.

(i) Let g 2 G; gn�1 2 �n�1G; and gn 2 �nG: By Theorem 2.14 (i),
the commutators Œgn; g� and Œgn�1; g; gn� are contained in �nC1G: By
Lemma 1.4 (v), we have

'n.gn�1gn�nG; g�2G/ D Œgn�1gn; g��nC1G

D Œgn�1; g�Œgn�1; g; gn�Œgn; g��nC1G

D Œgn�1; g��nC1G

D 'n.gn�1�nG; g�2G/:

(ii) Let g 2 G; gn�1 2 �n�1G; and g2 2 �2G: The commutators Œgn�1; g2� and
Œgn�1; g; g2� are elements of �nC1G by Theorem 2.14 (i). An application of
Lemma 1.4 (vi) gives

'n.gn�1�nG; gg2�2G/ D Œgn�1; gg2��nC1G

D Œgn�1; g2�Œgn�1; g�Œgn�1; g; g2��nC1G

D Œgn�1; g��nC1G

D 'n.gn�1�nG; g�2G/:

Hence, 'n is well defined. Consequently, 'n naturally extends to a Z-module
homomorphism from the free Z-module on �n�1G=�nG � Ab.G/ to
�nG=�nC1G:

• 'n is multiplicative in each variable.

(i) Let a1; a2 2 �n�1G: By Theorem 2.14 (i), Œa1; g; a2� 2 �nC1G: Thus,

'n.a1a2�nG; g�2G/ D Œa1a2; g��nC1G

D Œa1; g�Œa1; g; a2�Œa2; g��nC1G

D Œa1; g�Œa2; g��nC1G

D 'n.a1�nG; g�2G/'n.a2�nG; g�2G/:



54 2 Introduction to Nilpotent Groups

(ii) Let b1; b2 2 G: Since Œgn�1; b1; b2� 2 �nC1G by Theorem 2.14 (i), we have

'n.gn�1�nG; b1b2�2G/ D Œgn�1; b1b2��nC1G

D Œgn�1; b2�Œgn�1; b1�Œgn�1; b1; b2��nC1G

D Œgn�1; b2�Œgn�1; b1��nC1G

D Œgn�1; b1�Œgn�1; b2��nC1G

D 'n.gn�1�nG; b1�2G/'n.gn�1�nG; b2�2G/:

This shows that 'n is multiplicative in each variable.
By the Universal Mapping Property of the Tensor Product, there is an induced

Z-module homomorphism from the tensor product �n�1G=�nG
N

Z
Ab.G/ to

�nG=�nC1G given by

x�nG ˝ y�2G 7! Œx; y��nC1G .x 2 �n�1G; y 2 G/:

This map is an epimorphism since �nG D Œ�n�1G; G�: ut
Remark 2.11 Theorem 2.15 also holds for groups which come equipped with
operator domains. See [7].

In the next few results, we exploit Theorem 2.15. Some notation is needed. If M
is an R-module, then the n-fold tensor product of M is written as

n
O

R

M D M ˝R � � � ˝R M
„ ƒ‚ …

n

:

By convention, we set
N1

R M D M:

Corollary 2.10 Let G be any group. For each n 2 N; the mapping

'n W
n
O

Z

Ab.G/ ! �nG=�nC1G

defined by

'n.x1�2G ˝ � � � ˝ xn�2G/ D Œx1; : : : ; xn��nC1G

is a Z-module epimorphism.

Proof This easily follows by induction on n: ut
Corollary 2.11 Suppose that G is a finitely generated group with generating set
X D fx1; : : : ; xkg: For each n 2 N; the factor group �nG=�nC1G is finitely
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generated, modulo �nC1G; by the simple commutators of weight n of the form
�

xi1 ; : : : ; xin

�

; where the xij ’s vary over all elements of X and are not necessarily
distinct.

Proof Since G is finitely generated by X; Ab.G/ is finitely generated by the
elements x1�2G; : : : ; xk�2G: Hence,

Nn
Z

Ab.G/ is finitely generated by the kn n-
fold tensor products of the form

xi1�2G ˝ � � � ˝ xin�2G;

where the xij vary over X: It follows from Corollary 2.10 that �nG=�nC1G
is finitely generated by the simple commutators, modulo �nC1G; of the form
�

xi1 ; : : : ; xin

�

; where the xij ’s vary over all elements of X: ut
Remark 2.12 Corollary 2.11 could also be proven using Lemma 2.6. Notice
however, that Lemma 2.6 allows inverses of elements of the generating set in the
simple commutators, whereas the corollary does not. This issue can be resolved by
a repeated application of Lemmas 1.4 and 1.13.

Example 2.19 Let G be a group generated by X D fx1; x2; x3g: If g D x32x
�1
1 and

h D x1x�4
2 x23 are elements of G; then Œg; h��3G 2 �2G=�3G: Using Lemmas 1.4

and 1.13, together with the fact that all simple commutators of weight 2 are central,
modulo �3G; we have

Œg; h��3G D
h

x32x
�1
1 ; x1x

�4
2 x23

i

�3G

D
h

x32; x1x
�4
2 x23

ih

x�1
1 ; x1x

�4
2 x23

i

�3G

D
h

x32; x1
ih

x32; x�4
2

ih

x32; x23
ih

x�1
1 ; x1

ih

x�1
1 ; x�4

2

ih

x�1
1 ; x23

i

�3G

D Œx2; x1�
3Œx2; x2�

�12Œx2; x3�
6Œx1; x1�

�1Œx1; x2�
4Œx1; x3�

�2�3G

D Œx2; x1�
3Œx2; x3�

6Œx1; x2�
4Œx3; x1�

2�3G;

which illustrates that Œg; h� modulo �3G is expressible as a product of commutators
of weight 2 in the elements of X:

Corollary 2.10 can be used to prove that a nilpotent group is finitely generated
whenever its abelianization is finitely generated. We need some preliminary mate-
rial.

Definition 2.14 A group G is said to satisfy condition Max (the maximal condition
on subgroups) if every subgroup of G is finitely generated.

A group in which every ascending series of subgroups stabilizes is said to satisfy
the Noetherian condition.

Theorem 2.16 A group G satisfies Max if and only if it satisfies the Noetherian
condition.
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Proof Suppose that G satisfies Max, and let

H1 < H2 < H3 < � � �

be an ascending series of subgroups of G: We assert that this series stabilizes. Put
H D S1

iD1 Hi: Clearly, H is a subgroup of G and is finitely generated by hypothesis.
Let X D fh1; : : : ; hkg be a set of generators of H: It is evident that each element of
X is contained in some Hi since X generates H: Thus, there exists n 2 N such that
X � Hn: It follows that H � Hn: Since Hn � H; we have H D Hn and the series
stabilizes.

Conversely, suppose that every ascending series of subgroups stabilizes. Let H
be a subgroup of G; and choose an element h1 2 H: If H D gp.h1/; then H is finitely
generated. Otherwise, there exists an element h2 2 H such that h2 … gp.h1/: Now, if
H D gp.h1; h2/; then H is finitely generated. If H ¤ gp.h1; h2/; then we continue
this argument to obtain an ascending series of subgroups

gp.h1/ � gp.h1; h2/ � � � �

which stabilizes by assumption. Hence, H D gp.h1; h2; : : : ; hn/ for some n 2 N:

And so, H is finitely generated. ut
Groups which satisfy Max must be finitely generated. There are finitely generated

groups, however, which do not satisfy Max. For example, let F D ˝

x; y
˛

be the free
group of rank two, and let

Gi D gp
�

x; yxy�1; : : : ; yixy�i
�

:

Every element of Gi can be written as

ym1xn1ym2�m1xn2ym3�m2 � � � y�mk .0 � mr � i/:

Thus, yiC1xy�.iC1/ is not an element of Gi: This implies that the ascending sequence
of subgroups

G1 < G2 < G3 < � � �

does not stabilize. By Theorem 2.16, F does not satisfy Max.

Lemma 2.19 Max is preserved under extensions.

Proof Let G be a group with N E G; and suppose that G=N and N satisfy Max. Let
H be any subgroup of G: Clearly, H \ N is finitely generated since H \ N < N and
N satisfies Max. By the Second Isomorphism Theorem,

H=.H \ N/ Š HN=N < G=N:
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This implies that H=.H \ N/ is finitely generated because G=N satisfies Max. It
follows that H is finitely generated. ut
Theorem 2.17 Every finitely generated abelian group satisfies Max.

Proof Let G be a finitely generated abelian group with generating set fx1; : : : ; xkg:
The proof is done by induction on k: If k D 1; then G is cyclic. In this case, it is easy
to show that ŒG W H� < 1 for every nontrivial subgroup H of G: Hence, H must be
finitely generated.

Suppose that the theorem is true for 1 � i � k � 1; and consider the subgroup
H D gp.x1; : : : ; xk�1/ of G: Since H is finitely generated and abelian, H satisfies
Max by induction. Furthermore, G=H Š gp.xk/ is cyclic, and thus satisfies Max.
The result follows from Lemma 2.19. ut
Theorem 2.18 (R. Baer) Every finitely generated nilpotent group satisfies Max.

Proof Let G be a finitely generated nilpotent group of class c; and let H � G: Set
Hi D H \ �iG for 1 � i � c: It follows from Lemma 2.1 that the series

H D H1 � H2 � � � � � Hc � HcC1 D 1

is a central series for H: Furthermore, the Second Isomorphism Theorem gives

Hi

HiC1
D H \ �iG

H \ �iC1G
D H \ �iG

.H \ �iG/ \ �iC1G
Š �iC1G.H \ �iG/

�iC1G

for 1 � i � c: Therefore, each Hi=HiC1 is isomorphic to a subgroup of �iG=�iC1G:
Since �iG=�iC1G is finitely generated and abelian by Corollary 2.11, so is Hi=HiC1
by Theorem 2.17. In particular, Hc D Hc=HcC1 is finitely generated. Thus, Hc�1 is
finitely generated since both Hc�1=Hc and Hc are finitely generated. Repeating this
argument gives that Hi is finitely generated for 1 � i � c � 2: In particular, H1 D H
is finitely generated. ut

We now prove that nilpotent groups with finitely generated abelianization must
be finitely generated.

Corollary 2.12 If G is a nilpotent group and Ab.G/ is finitely generated, then G
satisfies Max. Hence, G is finitely generated.

Proof The proof is done by induction on the class c of G: Theorem 2.17 takes care
of the case c D 1: Assume that the corollary is true for nilpotent groups of class
less than c; and let n 2 f1; : : : ; cg: The tensor product

Nn
Z

Ab.G/ is finitely
generated because it involves a finite number of finitely generated abelian groups.
By Corollary 2.10, each �nG=�nC1G is finitely generated abelian, and thus satisfies
Max by Theorem 2.17. In particular, �cG satisfies Max. By the induction hypothesis,
G=�cG also satisfies Max. The result now follows from Lemma 2.19. ut
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2.5.3 Property P

The proof of Corollary 2.12 shows that certain properties of the abelianization of a
nilpotent group can be passed on to the group itself. This is the substance of the next
result.

Definition 2.15 A group-theoretical property is called property P if it satisfies the
following criteria:

1. Property P is preserved under extensions.
2. If G is an abelian group having property P and k 2 N; then any homomorphic

image of the k-fold tensor product
Nk

Z
G has property P:

It is clear that finiteness is a property P: Other possibilities for property P
include finite generation, P-torsion for a set of primes P (see Lemma 2.13), and
Max (see Lemma 2.19 and the proof of Corollary 2.12).

Theorem 2.19 (D. J. S. Robinson) If G is nilpotent and Ab.G/ has property P;

then G has property P:

Proof Suppose that G is of class c; and let k > 0: By Corollary 2.10, �kG=�kC1G
is an image of the k-fold tensor product

Nk
Z

Ab.G/: Thus, each �kG=�kC1G has
property P because Ab.G/ does. Now, �cC1G D 1 by Theorem 2.3. This means that
�cG has property P: Since �c�1G=�cG has property P and �c�1G is an extension
of �c�1G=�cG by �cG; we have that �c�1G also has property P: We continue this
argument to conclude that G has property P: ut
Definition 2.16 The exponent of a torsion group G is the smallest natural number
m; if it exists, satisfying gm D 1 for every g 2 G: If no such m exists, then G has
infinite exponent.

Every finite group has finite exponent dividing the order of the group. For any
prime p; both the infinite direct product

Zp � Zp2 � Zp3 � � � �

and the p-quasicyclic group are infinite torsion groups with infinite exponent. Thus,
torsion groups need not be finite nor have finite exponent. A group with infinite
exponent is necessarily infinite. However, the infinite direct product of cyclic groups
of order p is an example of an infinite group with finite exponent.

Theorem 2.20 (S. Dixmier) Let G be a nilpotent group of class c: If Ab.G/ has
finite exponent m; then G has finite exponent dividing mc.

Proof The exponent of
Ni

Z
Ab.G/ divides m for 1 � i � c because Ab.G/ has

exponent m: Thus, �iG=�iC1G also has exponent dividing m by Corollary 2.10.
In particular, �cG D �cG=�cC1G has exponent dividing m: This, combined with
the fact that �c�1G=�cG also has exponent dividing m; gives that the exponent of
�c�1G divides m2: We iterate this process to finally obtain that the exponent of
G D �c�.c�1/G divides mc: ut
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2.5.4 The Hirsch-Plotkin Radical

We end this section with an important result whose proof depends on Theorem 2.18.
Motivated by Theorem 2.11, it is natural to ask whether or not a group has a maximal
normal nilpotent subgroup.

Definition 2.17 A maximal normal nilpotent subgroup of a group is called a
nilpotent radical of the group.

One attempt to construct a nilpotent radical is by trying to use Zorn’s Lemma.
Suppose that

N1 < N2 < N3 < � � �

is an ascending chain of normal nilpotent subgroups of a group G; where Ni is of
class ci for i D 1; 2; : : : : A nilpotent radical would exist if [k

iD1Ni were normal and
nilpotent for all k � 1: However, it is not nilpotent since the class of

k
[

iD1
Ni D N1 � � � Nk;

which is c1 C � � � C ck according to Theorem 2.11, becomes unbounded as k
approaches infinity. Hence, Zorn’s Lemma does not apply.

Even though the nilpotent radical doesn’t always exist, one can always find a
locally nilpotent radical. This is the basis of our next discussion.

Definition 2.18 A group G is called locally nilpotent if every finitely generated
subgroup of G is nilpotent.

Clearly, every nilpotent group is locally nilpotent. If G D Q1
iD1 Gi; where each

Gi is nilpotent of class ci and ck < ckC1 for k � 1; then G is locally nilpotent. In
particular,

Q1
iD1 Zpi and

Q1
iD1 UTi.Z/ are locally nilpotent.

Lemma 2.20 (i) Every nilpotent group is locally nilpotent.
(ii) Every subgroup of a locally nilpotent group is locally nilpotent.

(iii) Every homomorphic image of a locally nilpotent group is locally nilpotent.

Proof

(i) This is immediate from Theorem 2.4.
(ii) Let G be a locally nilpotent group, and suppose that H < G: If K is a finitely

generated subgroup of H; then it is also a finitely generated subgroup G: Since
G is locally nilpotent, K is nilpotent, and thus K is a nilpotent subgroup of H:
This means that H is locally nilpotent.

(iii) Let G be a locally nilpotent group, and suppose that ' 2 Hom.G; H/ for some
group H: Let K be a finitely generated subgroup of '.G/ with finite generating
set fx1; : : : ; xmg: There exist elements g1; : : : ; gm in G such that '.gi/ D xi
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for 1 � i � m: Consider the subgroup L D gp.g1; : : : ; gm/ of G: It is finitely
generated, and thus nilpotent since G is locally nilpotent. By Theorem 2.4,
'.L/ D K is also nilpotent. And so, '.G/ is locally nilpotent. ut

Theorem 2.21 (K. Hirsch, B. Plotkin) If H and K are normal locally nilpotent
subgroups of a group G; then HK is a normal locally nilpotent subgroup of G:

Proof We adopt the proof given by D.J.S. Robinson in [8]. Clearly, HK E G since
H E G and K E G: We claim that HK is locally nilpotent. Let

fh1; : : : ; hmg � H and fk1; : : : ; kmg � K:

Then fh1k1; : : : ; hmkmg � HK: Define the subgroups

A D gp.h1; : : : ; hm/ � H and B D gp.k1; : : : ; km/ � K;

and set C D gp.A; B/ and S D gp.h1k1; : : : ; hmkm/: In order to prove the claim,
we need to establish that S is nilpotent. Since S � C; it suffices to show that C is
nilpotent.

Define the set T D ˚�

hi; kj
� ˇ

ˇ i; j D 1; : : : ; m
�

; and observe that T � H \ K
since H E G and K E G: Clearly, both A and T are finitely generated and contained
in H: Thus, gp.A; T/ is a finitely generated subgroup of H: Since H is locally
nilpotent, gp.A; T/ is also nilpotent. By Theorems 2.4 and 2.18, the normal closure
TA of T in gp.A; T/ is finitely generated and nilpotent. Furthermore, TA � H \ K;
and consequently, gp

�

B; TA
� � K: Therefore, gp

�

B; TA
�

is finitely generated and

nilpotent. By Corollary 1.5, we have ŒA; B� D �

TA
�B
: Hence,

gp
�

B; TA
� D gp

�

B;
�

TA
�B
�

D gp.B; ŒA; B�/ D BA:

It follows that BA is nilpotent, and similarly, AB is nilpotent. By Theorem 2.11,
ABBA D C is nilpotent. ut
Corollary 2.13 Every group G has a unique maximal normal locally nilpotent
subgroup containing all normal locally nilpotent subgroups of G:

This subgroup is called the Hirsch-Plotkin radical of G:

Proof If N1 < N2 < � � � is a chain of locally nilpotent subgroups of G; then [1
iD1Ni

is locally nilpotent. By Zorn’s Lemma, each normal locally nilpotent subgroup of G
is contained in a maximal normal locally nilpotent subgroup of G:

We establish uniqueness. Suppose that M1 and M2 are both maximal normal
locally nilpotent subgroups of G: By Theorem 2.21, the product M1M2 is locally
nilpotent. The maximality of M1 and M2 implies that M1 D M1M2 D M2: ut



2.5 The Tensor Product of the Abelianization 61

The Hirsch-Plotkin radical is a valuable tool for studying various generalized
nilpotent groups. We refer the reader to [8] for a discussion of such groups.

2.5.5 An Extension Theorem for Nilpotent Groups

The symmetric group S3 is an extension of S3=A3 by A3; groups of order 2 and 3
respectively. Both of these groups are cyclic (hence, nilpotent). However, S3 is not
nilpotent. This illustrates that nilpotency is not preserved under extensions. The next
theorem addresses the following question: when is an extension of a nilpotent group
by another group again nilpotent?

Theorem 2.22 (P. Hall, A. G. R. Stewart) Let G be any group, and suppose that
N C G: If N is nilpotent of class c and G=�2N is nilpotent of class d; then G is
nilpotent of class at most cd C .c � 1/.d � 1/:

In [5], P. Hall initially found the bound on the class of G to be at most

 

c C 1

2

!

d �
 

c

2

!

:

A. G. R. Stewart improved on this in [12] and obtained the bound to be at most

cd C .c � 1/.d � 1/:

In the same paper, he provided an example to illustrate that this bound cannot be
improved. We give A. G. R. Stewart’s proof below. In what follows, we define

ŒN; G; : : : ; G
„ ƒ‚ …

0

� D N:

Lemma 2.21 Let G be any group. If N E G; then

Œ�2N;G; G; : : : ; G
„ ƒ‚ …

s

� �
m
Y

kD1
Sk

for some m 2 N; where

Sk D ŒŒN; G; : : : ; G
„ ƒ‚ …

i

�; ŒN; G; : : : ; G
„ ƒ‚ …

s�i

��

for some i 2 f1; 2; : : : ; sg:
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Proof The proof is done by induction on s: Suppose that s D 1: By Proposition 1.1
(i) and Corollary 2.9, we have

Œ�2N; G� � ŒN; G; N�ŒG; N; N�

D ŒN; G; N�ŒN; G; N�

D ŒN; G; N�

D ŒŒN; G�; ŒN; G; : : : ; G
„ ƒ‚ …

0

��

and the lemma holds. Next, assume that the lemma is true for s � 1 W

Œ�2N;G; : : : ; G
„ ƒ‚ …

s�1
� �

n
Y

kD1
Tk

for some n 2 N; where

Tk D ŒŒN; G; : : : ; G
„ ƒ‚ …

i

�; ŒN; G; : : : ; G
„ ƒ‚ …

s�i�1
��

for some i 2 f1; 2; : : : ; s � 1g: Notice that

Œ�2N;G; : : : ; G
„ ƒ‚ …

s

� D Œ�2N;G; : : : ; G
„ ƒ‚ …

s�1
; G� �

"

n
Y

kD1
Tk; G

#

D
n
Y

kD1
ŒTk; G� ;

where the last equality follows from Lemma 1.10. By applying Proposition 1.1 (i)
and Corollary 2.9, we get

ŒTk; G� D ŒŒN; G; : : : ; G
„ ƒ‚ …

i

�; ŒN; G; : : : ; G
„ ƒ‚ …

s�i�1

�; G�

� ŒŒN; G; : : : ; G
„ ƒ‚ …

.s�1/�i

�; G; ŒN; G; : : : ; G
„ ƒ‚ …

i

��ŒG; ŒN; G; : : : ; G
„ ƒ‚ …

i

�; ŒN; G; : : : ; G
„ ƒ‚ …

s�i�1

��

D ŒŒN; G; : : : ; G
„ ƒ‚ …

s�i

�; ŒN; G; : : : ; G
„ ƒ‚ …

i

��ŒŒN; G; : : : ; G
„ ƒ‚ …

iC1

�; ŒN; G; : : : ; G
„ ƒ‚ …

s�.iC1/

��

D ŒŒN; G; : : : ; G
„ ƒ‚ …

i

�; ŒN; G; : : : ; G
„ ƒ‚ …

s�i

��ŒŒN; G; : : : ; G
„ ƒ‚ …

iC1

�; ŒN; G; : : : ; G
„ ƒ‚ …

s�.iC1/

��

and the result follows. ut
We now prove Theorem 2.22. First, note that �cC1N D 1 and �dC1G � �2N

by Theorem 2.2 because the classes of N and G=�2N are c and d respectively. The
proof is done by induction on c: If c D 1; then N is abelian. In this case, �2N D 1;

and thus G=�2N Š G is nilpotent of class d:
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Next, suppose that c > 1; and assume that the theorem is true for c � 1: For any
r 2 f1; 2; : : : ; cg; Mr D N=�rC1N is a normal subgroup of Hr D G=�rC1N; where
Mr is of class r and Hr=�2Mr is of class d by the Third Isomorphism Theorem. Thus,
we may assume by induction that

�2rd�r�dC2G � �rC1N (2.19)

for all r 2 f1; 2; : : : ; c � 1g: We invoke Lemma 2.21 to find that

�2cd�c�dC2G D Œ�dC1G; G; : : : ; G
„ ƒ‚ …

2cd�2d�cC1
� � Œ�2N; G; : : : ; G

„ ƒ‚ …

2cd�2d�cC1
� �

m
Y

kD1
Sk

for some m 2 N; where

Sk D ŒŒN; G; : : : ; G
„ ƒ‚ …

i

�; ŒN; G; : : : ; G
„ ƒ‚ …

2cd�2d�cC1�i

��

for some i 2 f1; 2; : : : ; .2cd � 2d � c C 1/g: Now, each

i 2 f1; 2; : : : ; .2cd � 2d � c C 1/g

is contained in one of the following sets:

2.j � 1/d � d � .j � 1/C 1 � i � 2jd � d � j C 1; where j 2 f1; 2; : : : ; cg:

For arbitrary j;

ŒŒN; G; : : : ; G
„ ƒ‚ …

i

�; ŒN; G; : : : ; G
„ ƒ‚ …

2cd�2d�cC1�i

�� � �

�jN; �wG
�

; (2.20)

where

w D 2d.c � j/ � d � .c � j/C 2C 2dj � d � j � i:

The result follows from the fact that ŒN; G; : : : ; G
„ ƒ‚ …

t

� � �tC1G: Since 2dj � d � j � 1

and �rCsG � �rG for all s � 0; we find that

�

�jN; �wG
� �

h

�jN; �2d.c�j/�d�.c�j/C2G
i

: (2.21)

Substituting r by (c � j) in (2.19) shows that

h

�jN; �2d.c�j/�d�.c�j/C2G
i

�
h

�jN; �c�jC1N
i

:
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By Theorem 2.14 (i),
h

�jN; �c�jC1N
i

� �cC1N: We conclude that for all possible

k; Sk � �cC1N D 1; and thus
Qm

kD1 Sk D 1: This completes the proof of
Theorem 2.22.

2.6 Finitely Generated Torsion Nilpotent Groups

In [1], R. Baer proved that every finitely generated torsion nilpotent group is finite.
This allows one to answer certain questions involving torsion in a nilpotent group
by passing to a finite group. In this section, we focus on some of these questions.
We begin with a result due to A. I. Mal’cev which contains R. Baer’s theorem as a
special case.

Theorem 2.23 (A. I. Mal’cev) Let G be a finitely generated nilpotent group, and
let H � G: If G has a finite set of generators X such that some positive power of
each element of X is contained in H; then a positive power of every element of G is
contained in H: Furthermore, H is of finite index in G:

Proof The proof is done by induction on the class c of G. If c D 1; then G is a
finitely generated abelian group and the result is clear.

Suppose that c > 1; and assume that the lemma is true for all finitely generated
nilpotent groups of class less than c: By Lemma 2.8, G=�cG is finitely generated
nilpotent of class c � 1: By induction, H�cG has finite index in G and a positive
power of every element of G is contained in H�cG: We claim that a positive power
of every element of G is contained in H and ŒG W H� < 1:

Let G D gp.g1; g2; : : : ; gs/ such that gmi
i 2 H, where mi>0 and 1� i � s. By

Theorem 2.18, �c�1G is finitely generated. Suppose that �c�1G D gp.x1; x2; : : : ;xt/

such that x
nj

j 2 H�cG, where nj > 0 and 1 � j � t. By Lemmas 1.4 and 1.13,
together with Remark 2.5, we have

�cG D gp
��

xj; gi
� ˇ

ˇ 1 � i � s; 1 � j � t
�

and

�

xj; gi
�njmi D

h

x
nj

j ; gmi
i

i

2 ŒH�cG; H� D ŒH; H� � H

for 1 � i � s and 1 � j � t: Since �cG � Z.G/; a positive power of every element
of �cG lies in H: If g 2 G; then there exists m 2 N such that gm D hz; where h 2 H
and z 2 �cG: Furthermore, there exists n 2 N such that zn 2 H: Thus,

gmn D .hz/n D hnzn 2 H

since z is central. This means that a positive power of every element of G is
contained in H:
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Next, we show that H�cG=H is a finite abelian group. This, together with the
fact that ŒG W H�cG� < 1; will give ŒG W H� < 1 as claimed. By the Second
Isomorphism Theorem, H�cG=H is abelian since it is isomorphic to �cG=.H\�cG/;
a quotient of the abelian group �cG: It is finite because it has a finite set of
generators, each having finite order. More precisely, �cG=.H \ �cG/ is finitely
generated because �cG is finitely generated, and each generator

�

xj; gi
�

.H \ �cG/
of �cG=.H \ �cG/ has finite order since

�

xj; gi
�njmi 2 H \ �cG: ut

An analogue of Theorem 2.23 for a given nonempty set of primes is:

Theorem 2.24 Let P be a nonempty set of primes. Suppose that G is a finitely
generated nilpotent group and H � G: If G has a finite set of generators X such that
some P-number power of each element of X is contained in H; then each element of
G has a P-number power contained in H: Furthermore, ŒG W H� is a P-number.

The proof is the same as for Theorem 2.23.

Theorem 2.25 (R. Baer) Let P be a nonempty set of primes. If there is a finite set
of generators X of a finitely generated nilpotent group G for which each element of
X has order a P-number, then G is a finite P-torsion group. In particular, finitely
generated torsion nilpotent groups are finite.

Proof Set H D 1 in Theorem 2.24. ut
We point out that the finiteness of G in Theorem 2.25 is a consequence of the

fact that the trivial subgroup H D 1 must be of finite index in G according to
Theorem 2.24.

Corollary 2.14 The elements of coprime order in any locally nilpotent group
commute.

Proof Let G be a locally nilpotent group, and suppose that g and h are elements of
coprime order in G: The subgroup H D gp.g; h/ of G is finitely generated, and
thus nilpotent. Since each generator g and h has finite order, H must be finite by
Theorem 2.25. Therefore, g and h commute by Theorem 2.13. ut

2.6.1 The Torsion Subgroup of a Nilpotent Group

If P is a nonempty set of primes and G is a group, then the set �P.G/ of P-torsion
elements of G is not necessarily a subgroup of G: For example, consider the (non-
nilpotent) infinite dihedral group

D1 D
D

x; y
ˇ

ˇ

ˇ x2 D 1; y2 D 1
E

:
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Clearly, xy is not a torsion element, even though x and y are torsion elements. For
nilpotent groups, however, we have:

Theorem 2.26 (R. Baer, K. A. Hirsch) If G is a nilpotent group and P is any
nonempty set of primes, then �P.G/ is a normal subgroup of G: Furthermore, if P
denotes the set of all prime numbers, then

�.G/ D
Y

p2P
�p.G/:

This coincides with Theorem 2.13 in the case when G is finite.

Proof Let g and h be P-torsion elements. By Theorem 2.25, gp.g; h/ is a finite P-
torsion group. Hence, g�1h is a P-torsion element, and thus �P.G/ is a subgroup of
G: It is easy to see that �P.G/ is, in fact, normal in G: In particular, �p.G/ is a normal
p-subgroup of G for any prime p: Moreover, if q is a prime different from p; then
�

�p.G/; �q.G/
� D 1 by Corollary 2.14. Thus,

Y

p2P
�p.G/ D gp

�

�p.G/
ˇ

ˇ p varies over all of P
�

: (2.22)

We claim that the right-hand side of (2.22) is just �.G/: It is clearly contained in
�.G/ by the previous discussion. We establish the reverse inclusion. Let g 2 �.G/
be a torsion element of order d D pm1

1 � � � pmn
n for some m1; : : : ; mn 2 N and distinct

primes p1; : : : ; pn: Define ai D d=pmi
i for i D 1; : : : ; n: Since .gai/p

mi
i D 1; we

have gai 2 �pi.G/: Furthermore, the greatest common divisor of a1; : : : ; an is 1
because they are pairwise relatively prime. Thus, there are integers s1; : : : ; sn such
that

Pn
iD1 aisi D 1: Hence,

g D ga1s1C���Cansn

D .ga1 /s1 � � � .gan/sn ;

which is contained in �p1 .G/�p2 .G/ � � � �pn.G/: This proves the claim. ut
Corollary 2.15 Let P be a nonempty set of primes. If G is a nilpotent group, then
G=�P.G/ is P-torsion-free.

Proof By Theorem 2.26, �P.G/ E G: Suppose that .g�P.G//n D �P.G/ for some
g�P.G/ 2 G=�P.G/ and P-number n: We need to show that g�P.G/ D �P.G/: Since
.g�P.G//n D �P.G/; we have gn 2 �P.G/: Thus, there is a P-number m such that
gnm D .gn/m D 1: Since mn is a P-number, g 2 �P.G/I that is, g�P.G/ D �P.G/: ut
Corollary 2.16 Let P be a nonempty set of primes. If G is a finitely generated
nilpotent group, then �P.G/ is a finite P-torsion group.
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Proof By Theorems 2.18 and 2.26, �P.G/ is a finitely generated P-torsion nilpotent
group. The result follows from Theorem 2.25. ut

Theorem 2.26 holds for locally nilpotent groups as well.

Theorem 2.27 If G is a locally nilpotent group and P is any nonempty set of primes,
then �P.G/ E G: If P denotes the set of all prime numbers, then

�.G/ D
Y

p2P
�p.G/:

Proof Let g; h 2 �P.G/; and put H D gp.g; h/: Since H is a finitely generated
subgroup of G; it is nilpotent. By Theorem 2.26, �P.H/ E H: Therefore,
gh 2 �P.H/; and thus gh 2 �P.G/: The rest of the proof is the same as for
Theorem 2.26. ut

An analogue of Corollary 2.15 clearly holds for locally nilpotent groups.

Corollary 2.17 If P is a nonempty set of primes and G is a locally nilpotent group,
then G=�P.G/ is P-torsion-free.

2.7 The Upper Central Subgroups and Their Factors

In this section, we focus our attention on some properties of the upper central
subgroups and their factors.

2.7.1 Intersection of the Center and a Normal Subgroup

We begin by proving that every nontrivial normal subgroup of a nilpotent group
contains a nonidentity central element.

Theorem 2.28 (K. A. Hirsch) If G is a nilpotent group and N is a nontrivial normal
subgroup of G; then N \ Z.G/ ¤ 1:

Proof If N � Z.G/; then the result is immediate. Suppose that N — Z.G/: Since G
is nilpotent, there exists i 2 N such that N \ �iG ¤ 1: If i D 1; then the result is
immediate. Assume that i > 1; and let n 2 N \ �iG for some n ¤ 1: If n 2 Z.G/;
then we have the result. If n … Z.G/; then there exists g 2 G such that Œn; g� ¤ 1:

Observe that Œn; g� 2 Œ�iG; G� � �i�1G and Œn; g� 2 N since N E G: Thus, if
N \ �iG ¤ 1; then N \ �i�1G ¤ 1 for i > 1: It follows that N \ Z.G/ ¤ 1: ut

Theorem 2.28 has several consequences.

Lemma 2.22 Every maximal normal abelian subgroup of a nilpotent group G
coincides with its centralizer in G:
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Proof The proof is done by contradiction. Let M be a maximal normal abelian
subgroup of G; and assume that M ¤ CG.M/: Clearly, M � CG.M/ and CG.M/=M
is a nontrivial normal subgroup of G=M: By Theorem 2.28, there exists an element

gM 2 Z.G=M/ \ .CG.M/=M/

such that g … M: Now, gp.g; M/ is abelian because g 2 CG.M/: Moreover,
gp.g; M/ is normal in G: To see this, let gkm 2 gp.g; M/ for some k 2 Z and
m 2 M; and let h 2 G: Since gkM 2 Z.G=M/; we have

h�1gkmh D gkm1 2 gp.g; M/

for some m1 2 M: By the maximality of M; we have g 2 M; a contradiction. ut
Corollary 2.18 Let G be a nilpotent group, and let K be any group. A homomor-
phism ' 2 Hom.G; K/ is a monomorphism if and only if 'jZ.G/; the restriction of '
to Z.G/; is a monomorphism.

Proof Suppose that 'jZ.G/ is a monomorphism. Assume, on the contrary, that '
is not a monomorphism. Then ker ' is a nontrivial normal subgroup of G: By
Theorem 2.28, ker ' \ Z.G/ ¤ 1; and thus 'jZ.G/ also has a nontrivial kernel.
Thus, 'jZ.G/ is not a monomorphism, a contradiction. The converse is clear. ut
Definition 2.19 A nontrivial normal subgroup N of a group G is termed a minimal
normal subgroup if there is no normal subgroup M of G such that 1 < M < N:

Thus, if N is a minimal normal subgroup of G and M E N; then either M D 1 or
M D N:

Corollary 2.19 If G is a nilpotent group, then every minimal normal subgroup of
G is contained in Z.G/:

Proof Let N be a minimal normal subgroup of G: Clearly, N \ Z.G/ E N: By
minimality, either N \ Z.G/ D 1 or N \ Z.G/ D N: However, N \ Z.G/ ¤ 1 by
Theorem 2.28. Thus, N \ Z.G/ D N and the result follows. ut

Corollary 2.19 allows us to characterize a finite nilpotent group in terms of a
certain type of series. Our discussion that follows is based on [9].

Definition 2.20 Let G be a group. A normal series

1 D G0 � G1 � � � � � Gn D G

of G is called a chief series if each factor group GiC1=Gi for i D 0; 1; : : : ; n � 1 is
a minimal normal subgroup of G=Gi: The factor groups GiC1=Gi are called the chief
factors of G:

Every finite group has a chief series. By the Correspondence Theorem, the
condition that GiC1=Gi is a minimal normal subgroup of G=Gi is equivalent to the
condition that if N C G and Gi � N � GiC1; then either N D Gi or N D GiC1:
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Lemma 2.23 Let G be a group with normal subgroups M and N; and suppose that
N < M: Further suppose that G has a chief series. The factor M=N is a minimal
normal subgroup of G=N if and only if it is a chief factor of G:

Proof Suppose that M=N is a minimal normal subgroup of G=N: Since G has a
chief series, every proper normal series of G can be refined to a chief series of G: In
particular, G has a chief series containing M and N as two of its terms. We conclude
that M=N is a chief factor of G: The converse is trivial. ut
Theorem 2.29 A finite group G is nilpotent if and only if every chief factor of G is
central.

Proof If G is nilpotent, then so is any factor group of G by Corollary 2.5. In view
of Lemma 2.23, it suffices to show that every minimal normal subgroup of G is in
Z.G/: This was done in Corollary 2.19.

Conversely, suppose that every chief factor of G is central. This implies that every
chief series of G is also a central series of G: Therefore, G is nilpotent. ut
Lemma 2.24 If G is any group with a chief series, then any central factor of the
series is finite and has prime order.

Proof In light of Lemma 2.23, it suffices to consider a minimal normal subgroup N
of G such that N � Z.G/ and to prove that jNj D p for some prime p: Clearly, every
subgroup of N is normal in G because N � Z.G/: By the minimality of N; the only
normal subgroups of N are 1 and N: It follows that jNj D p for some prime p: ut
Remark 2.13 By Theorem 2.29 and Lemma 2.24, every factor of a chief series in a
finite nilpotent group is central and has prime order. The converse need not be true
(consider S3).

2.7.2 Separating Points in a Group

Certain properties of the upper central subgroups of a group, as well as their factors,
are inherited from the center of the group. These properties allow one to understand
the structure of the group, especially when it is nilpotent. The next definition can be
found in [13] for abelian groups.

Definition 2.21 Let G and H be any pair of nontrivial groups. We say that H
separates G if for each element g ¤ 1 in G; there exists ' 2 Hom.G; H/ such
that '.g/ ¤ 1: Such elements of Hom.G; H/ are said to separate points in G:

Lemma 2.25 Let P be a nonempty set of primes. Suppose that G and H are groups
and H separates G:

(i) If H is P-torsion-free, then G is P-torsion-free.
(ii) If H has finite exponent m; then G has finite exponent dividing m:

In particular, if H is torsion-free and H separates G; then G is torsion-free.
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Proof Both results are proven by contradiction.

(i) Suppose that 1 ¤ g 2 G is a P-torsion element. There exists ' 2 Hom.G; H/
such that '.g/ ¤ 1: If gn D 1 for some P-number n; then '.gn/ D .'.g//n D 1I
that is, '.g/ is a P-torsion element of H: This contradicts the P-torsion-freeness
of H: Hence, G is P-torsion-free.

(ii) Assume that there exists g 2 G such that gm ¤ 1: There exists ' 2 Hom.G; H/
such that '.gm/ ¤ 1I that is, .'.g//m ¤ 1: However, '.g/ 2 H and H has
exponent m: Therefore, gm D 1 for every g 2 G: Thus, G has exponent
dividing m: ut

Theorem 2.30 If G is any group, then Z.G/ separates �iG=�i�1G:

Here of course, we are assuming that Z.G/ and �iG=�i�1G are nontrivial.
In particular, if both Z.G/ and Z.G=Z.G// are nontrivial, then there exists a
homomorphism of G onto a nontrivial subgroup of Z.G/: This is the case for i D 2

and it is due to O. Grün.

Proof The proof is done by induction on i: The case for i D 1 is obviously true.
Suppose i D 2: We prove that Z.G/ separates �2G=Z.G/: For any element g 2 G;
consider the map

 g W �2G ! Z.G/ defined by  g.x/ D Œx; g�:

This map makes sense since Œ�2G; G� � Z.G/: By Lemma 1.12,  g is a
homomorphism whose kernel clearly contains Z.G/: Thus,  g induces a well-
defined homomorphism

 g W �2G=Z.G/ ! Z.G/ given by  g.xZ.G// D Œx; g�:

Let hZ.G/ be a nonidentity element of �2G=Z.G/; so that h 2 �2G and h … Z.G/:
There exists some element g 2 G such that Œh; g� ¤ 1: This means that  g.h/ ¤ 1;

and consequently,  g.hZ.G// ¤ 1: Therefore, Z.G/ separates �2G=Z.G/:
Assume that Z.G/ separates �iG=�i�1G for i > 2: In order to prove that Z.G/

separates �iC1G=�iG; it is enough to show that �iG=�i�1G separates �iC1G=�iG: By
Lemma 2.11 and the Third Isomorphism Theorem,

�iC1G
�iG

Š �iC1G=�i�1G
�iG=�i�1G

Š �2.G=�i�1G/
Z.G=�i�1G/

: (2.23)

It follows from the previous case that �iG=�i�1G separates �iC1G=�iG: ut
By Lemma 2.25 (i) and Theorem 2.30, we have:

Corollary 2.20 (D. H. McLain) Let G be any group, and let P be a nonempty
set of primes. If Z.G/ is P-torsion-free, then �iC1G=�iG is P-torsion-free for each
integer i � 0:

We mention that A. I. Mal’cev and S. N. C̆ernikov proved Corollary 2.20 for the
case when P is the set of all primes.
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We offer another proof of Corollary 2.20 which uses Lemma 1.13. Let g ¤ 1 be
an element of �2G such that .gZ.G//n D Z.G/ in �2G=Z.G/; where n is a P-number.
This means that gn 2 Z.G/: If h 2 G; then

Œg; h�n D Œgn; h� D 1

by Lemma 1.13 because Œg; h� 2 Z.G/: Since Z.G/ is P-torsion-free, Œg; h� D 1:

Therefore, g 2 Z.G/ and �2G=Z.G/ is P-torsion-free. The rest now follows by
induction on i:

Corollary 2.21 Let P be a nonempty set of primes. A nilpotent group is P-torsion-
free if and only if its center is P-torsion-free.

Proof Suppose that G is nilpotent of class c and Z.G/ is P-torsion-free. By
Corollary 2.20, �iC1G=�iG is P-torsion-free for 0 � i � c � 1: Let 1 ¤ g 2 G;
and let n be any P-number. Since g ¤ 1; there exists an integer i 2 f0; : : : ; c � 1g
such that g 2 �iC1G X �iG: Now, .g�iG/n ¤ �iG because �iC1G=�iG is P-torsion-
free. Hence, gn … �iG: This means that gn ¤ 1; and thus G is P-torsion-free. The
converse is obvious. ut

By Corollaries 2.20 and 2.21, we see that each upper central factor of a torsion-
free nilpotent group must be torsion-free abelian.

Corollary 2.22 Let P be a nonempty set of primes. If G is a P-torsion-free nilpotent
group, then so is G=Z.G/:

Proof The center of G is P-torsion-free since G is. By Corollary 2.20, �2G=Z.G/
is P-torsion-free as well. The result follows from Corollary 2.21 since �2G=Z.G/ is
the center of G=Z.G/: ut
Remark 2.14 The lower central factors of a torsion-free nilpotent group are not
necessarily torsion-free. For example, fix a positive integer n > 1; and let

G D
(
0

@

1 xn y
0 1 z
0 0 1

1

A

ˇ

ˇ

ˇ

ˇ

ˇ

x; y; z 2 Z

)

:

It is easy to see that G is a subgroup of the Heisenberg group, which is torsion-free
and nilpotent (see Example 2.18). Thus, G is also torsion-free and nilpotent. Now,

�2G D
(
0

@

1 0 wn
0 1 0

0 0 1

1

A

ˇ

ˇ

ˇ

ˇ

ˇ

w 2 Z

)

:

It follows that G=�2G is isomorphic to the direct sum Z ˚ Z ˚ Zn; and this group
has torsion.
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Corollary 2.23 (S. Dixmier) Let G be a nilpotent group of class c: If Z.G/
has finite exponent m; then �iC1G=�iG has exponent dividing m for 0 � i � c:
Consequently, G has exponent dividing mc:

Proof By Theorem 2.30 and Lemma 2.25 (ii), each �iC1G=�iG has exponent
dividing m: Let 1 ¤ g 2 G: For some i 2 f0; : : : ; c � 1g ; we have g 2 �iC1G n �iG:
Since every upper central quotient has exponent dividing m; we have

gm 2 �iG; gm2 2 �i�1G; : : : ; gmiC1 2 �0G D 1:

Thus, gmc D 1: ut
Lemma 2.26 Let P be a nonempty set of primes. If G is a finitely generated
nilpotent group and Z.G/ is a P-torsion group, then G is a finite P-torsion group.

In particular, every finitely generated nilpotent group with finite center is finite.

Proof By Theorem 2.18, Z.G/ is finitely generated. Since Z.G/ is also P-torsion
and abelian, it must be finite with exponent a P-number. Thus, G has finite exponent
which is a P-number by Corollary 2.23. The result follows from Theorem 2.25. ut

The center of any torsion group is obviously a torsion group. There are nilpotent
groups which are torsion-free, yet their center is a torsion group. This is illustrated
in the next example.

Example 2.20 Suppose that A is an additive abelian torsion group with infinite
exponent, and let # 2 Aut.A ˚ A/ be defined by #.x; y/ D .x C y; y/: For each
m 2 N; set

#ım D # ı � � � ı #
„ ƒ‚ …

m

:

Since #ım.x; y/ D .x C my; y/ for every m 2 N; # has infinite order. Define a
mapping

' W Z ! Aut.A ˚ A/ by '.k/ D #ık;

and let G D .A ˚ A/ Ì' Z: Observe that

.i; .x; y//.j; .Qx; Qy// D .i C j; .'.j//.x; y/C .Qx; Qy//
D .i C j; .x C jy; y/C .Qx; Qy//
D .i C j; .x C Qx C jy; y C Qy//:

It is easy to check that G is torsion-free and

Z.G/ D f.0; .x; 0// j x 2 Ag Š A:

It follows that G is nilpotent of class 2:
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We end this section with a lemma which will be useful later.

Lemma 2.27 Every infinite finitely generated nilpotent group contains a central
element of infinite order.

Proof Let G be an infinite finitely generated nilpotent group. If G has no central
elements of infinite order, then Z.G/ is a torsion group. By Lemma 2.26, G must be
finite, a contradiction. Therefore, G has a central element of infinite order. ut
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