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p'Alembert’s Principle

The principle Qf virmal. work deals only with statics. We are tempted at this point
o find a principle that involves the general motion of the system. Such a principle
was first suggested by Bernoulli and then developed by D’ Alembert. We first write
Newton’s second law of motion in the following form |

dp,' N
i i 0

If we regard —dp;/dt as a force, an inertial or reversed effective force as named

by Bernoulli and D’ Alembert, which added to F; produces equilibrium, then dy-
namics reduces to statics. Now instead of Eq 4.10 we have . |

N
S (F;— p)-dr=0 4.21)
i=1

F and forces of constraint f;, and if we

We now resolve F; into applied force
1 work of the forces of

again restrict ourselves to a system for which the virtua
constraint vanishes, we obtain

N .
> (FP —p)-dr; =0 | (4.22)
i=1 '

This equation is the Lagrangian form of D’Alembert’s principle.‘The superscript
ein Eq. 4.22 can now be dropped without ambiguity.
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Lagrange’s Equations: I'rom D’Alembert’s Principle

Lagrange selected D'Alembert’s prln(:ip](: an the starting point of ks, )

Analytique” and obtained the equations of motion, now knowr, a4 Lyg,
equations, from it, This is what we now prm:vml to do. We shall fip,, tr’.;,:i";"‘j"
Eq. 4.22 into an equation involving virtual displacements of the ;,".,,,.,,.)“7/"'(;'”;‘
ordinates g, which are independent of each other, In terms of the ;7.‘,“%“1'1,

" '"”, e

coordinates the virtual work done by the force Fy (the external appjog ( "‘"1
becomes 2,(); 8¢, as shown in Eq. 4.12: “)
' I\_J‘ X
oW = Z F/ for = Z Q/ ?)C[/ (4'23’
i=1 j=1

and () is given By Eq. 4.13. We now write the inertial force term in HEq, 4,22 4,

N N n

- ’ SRS - ) .
> pidri= 0 D mi (751 bq
i g

i=1 (4.24)
N . 2\ ] ‘
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%8 3 m [df (r' r’)q/) Cd (04/) J
and from Eq. 4.1 we find that
dr-=ﬁ:@d'+9i—"dt‘ and r=}":-r-’+d—r (4.25)
g T '

The partial derivatives in Eq. 4.25 are themselves functions of the generalized
coordinates g; and the time. As a result, the particle velocities have the following
functional form

i'/=fi(qlr---/qn;qlf'--/qn)r i=l/"'1N

Moreover, Eq 4.25 provides an explicit function of the indicated variables and
shows that 1, in fact depends linearly on the generalized velocities 4j. Thus we can
readily evaluate the partial derivative dt,/a4; to obtain

()l",'/aq, = ar;/aq, ‘ (426)

Note that now the independent variables appearing in parentheses in Eqs. 4.24
are physically independent, in the sense that each can be specified independently
at a given instant of time. The subsequent motion of the system is then, of course,
determined by the equations of motion. We now substitute Eq. 4.26 into the first
term on the right-hand side of Eq. 4.24, with the result that |

N i N ‘ :
Z mi"1 (I"i ' @) = E mid'% (i‘i . %>

i=1 aq,

ia /1N 7 o (4.27)
0
= —— — ...2 = e——

N
e ’ 02 . . .
where T %Zi:m,r, is the total kinetic energy of the system.
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e can also rewrite the second term on the right side of Eq. 4.24 as

N d (31‘,‘) . [ o%r; 92 N s
miti - 7 | == =Zmii‘i' &l—-{»-__i'_ = g&
Z dt \dg; " 2 ogkog; ™ " 3 ”"] 2.: T g 8
_ 9 (1 oT i
=— |52 mliP) ==
aql 2 i aq,
with Eqs. 4.27 and 4.28, Eq. 4.24 becomes
§N: Pi - 8ri = 3 8g; (i ol (4.29)
" j dt ag; . aq;

From Eqs. 4.23 and 4.29, D’ Alembert’s principle gives

The &g, are all independent for a holonomic system, and each of the coefficients
must separately vanish. From which it follows that

d
] (ﬂ) LAY (4.30)
dt aq,- aC]j )

there being n such equations in all, j = 1,‘2, ..., 1, n being the number of degrees

of freedom of the system. .
Equation 4.30 can be simplified further if the external forces F; are conservative:

F; = =V.V. Then
. N al',' N . ar.-

= Fi-—=-> VV.—

Q=2 F- =2 W o

i=1

which is exactly the same expression for the partial derivative of a function —V (r,
Iz ..., In, t) with respect to g .

id (4.31)

and Eq. 4.30 becomes
4 "_T;) _MT=W g i=12.n
dt \ o4 aq;

Now if the potential V is a function of position only, then it is independent of the
generalized velocities 4. We can now include a term in V' in the first term on the

right side of the preceding equation:

ia(TTV)_a(T—V)=O’ j=1,2...,n
dt 94 a4,
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e a new function L défined by

We now introduc
(4.32)

L(% !71, t) = T(qb tht) - V(ql)

This function is called the Lagrangian function of the sysfem. In terms of this

function, the preceding equation becomes
i(QL->—3L--=0 (j=12...,m (4.33)
dt \ag;) 94 | |

m of the system. These 71 second-order

where 7 is the number of degrees of freedo
ervative, holon-

differential equations are called Lagrange’s equations for a cons
omic dynamical system. If some of the forces acting on the system are not con-

servative, the Lagrange’s equation can be written in the form

Q(LY_ Lo i, . |
dt aq] aq] - Q]l ‘ 1.=1,4,..., n (434)

where L contains the potential of the conservative forces as before, and Q; rep-
resents tl:le forcg not arising from a potential. Examples of typical nonconservative
forces Q' are frictional forces and time-varying force functions.
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