12.2 GENERALIZED COORDINATES AND CONSTRAINTS

To locate the position of a particle, we need three coordinates. These co'ordinmcs could be Care.
sian coordinates x, y, and z, cylindrical coordinates r, f, and z, spherical coordinates r, 0, and
¢, or any other three suitable coordinates. If there are some restrictions or constraints on the me.
tion of the particle, we nced less than three coordinates. For example, il a particle is constraineg
to move on a _plane surface, only two coordinates are sufficient, while if the particle is cop-

— e,

strained to move in a straight line, only onc coordinate is sufficient to describe the motion of the
particle.

Let us consider a mechanical system consisting of N particles- To specily the position of
such a system at any given time, we need N vectors, while cach vector can be described by three
coordinates. Thus, in general, we need 3N coordinates to describe a givcn mechanical system.
Il there are constraints, the total number of coordinates needed to specily the system will be re-
duccd. As an example, suppose the system is a rigid body, and as we know, the distances be-
tween different particles are fixed. These fixed distances can be expressed in the form of equa-
tions. As we explained in Chapter 9, a'rigid body can be completely described by only six
coardinates; that is. only six coordinates are needed to specify the confi guration of a rigid body
system. Of these six, three coordinates give the position of some convenient reference point in
the body, usually the center of mass with respect to the origin of some chosen coordinate sys-
tem, and the remaining three coordinates describe the orientation of the body in space.

We are interested in finding the minimum number of coordinates needed (o describe a Sys-
tem of N particles. Usually, the constraints on any given system are described by means of equa-
tions. Suppose there are m number of such equations that describe the constraints. The mini-
mum number of coordinates, n, needed to completely describe the motion or the configuration
of such a system at any given time is given by

n=3N-—-—m ' S onil (12.1)

where n is the number of degrees of freedom of the system. It is not necessary that these n co-
ordinates should be rectangular, cylindrical, or-any-other curvilinear coordinates. As-a-matter of
fact, n could be any parameter, such as length, (length)? angle, energy, a dimensionless quan-
tity, or any other quantity, as long as it completely describes the confi guration of the system. The
name _&eneralr’zed coordinates is given to any set of quantities that completely describes the state
or configuration _gf a system. These n generalized coordinates are customarily written as »

q]’ q2y q3, “ ey C],, (12.23)
or G Where k=123, ....n (12.2b)

These n generalized coor dinates are not restricted by any constraints. If each coordinate can vary

‘.“‘1‘_3DM53nf10_ﬂﬂ:Mcr, the system is said 10 be holonomic. In a nonholonomic system, the
coordinates cannot vary independently. Henee in such systems the number of degrees of free-
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ystem : , hert Str : perfectly rough plane surface needs
only five coordinates to specify its configuration, two for the position of its center of mass and
three for its orientation. But these five coordinates cannot all vary independently. When the
sphere rolls, at least two coordinates must change. Hence this is a nonholonomic jsyslem. The
investigation and description of nonholonomic systems are involved and will not be considered
here. We shall limit ourselves to the discussion of holonomic systems for the time being.

A suitable set of generalized coordinates of a system is that which results in equations of
motion lcading to any easy interpretation of the motion. These g, generalized coordinates form
a cor_lﬁgumtion space, with each dimension represented by a coordinate g,. The path of the sys
tem 1s represented by a curve in this configuration space. The path in the configuration spdce
does not lend itsclf to the same interpretation as a path in ordinary three-dimensional space. In

analogy with Cartesian coordinates, we may define the derivatives of g, that is Gy G -5 O Ys
as generalized velocities.
w

Let us consider a single particle whose rectangular coordinates x, y, and z arc a function
of the generalized coordinates g, g,, and g,; that is

x = x(qy, 45, 43) = x(qy)
y =Ygy, 4, q3) = y(qy)
z = A4y, 4y G3) = Ady) (12.3)

Suppose the system changes from an initial configuration given by (g,. g». g3) 10 & neighbor-

hood configuration given by (¢, + 8¢y, g2 + 8¢,, g3 + 8¢3). We can express the corresponding
changes in the Cartesian coordinates by the following relations:

5 dx S0. 4 ax Sa. 4+ 0x 5 j ox 5 (12.4)
X = T 0¢y T _ 04, T 7 13 = ; q —
dg, | g oy S oge

with similar expression for 8y and 8z, where n is cqual to three and the partial derivatives
dx/dq,., . . . , are functions of ¢’s. The value of  depends on the degrees of freedom. For exam-
ple, if there were 1o constraints, m = 0, and from Eq. (12.1) for N = 1, n = 3, as we have used
above, n would be less than 3 if there were constraints on the system.

“Let us consider a more general case in which a mechanical system consists of a large num-
ber of particles having WT.’hc configuration of the system is specificd by the
generalized coordinates g, g, . - - , g, Suppose the configuration of the system changes from
41+ G2 . . ., q,) to a new configuration (g, + 89, g, + 0qy, . . ., g, + 8q,). The Cartesian co-
ordinates of a particle i change from (x;, v, z) t0 {(x; + dx;, ¥; + 8y;, 7 t 8z). This displaccments
&x,, 8y;, and 6z can be expressed in terms of the generalized coordinates ¢, as

. ox; ax; < 9x; 1 dx,
LOx = ' 8g 4 VOq, + -t 1 8q, = - 8¢, 12.5
! dg, 1 oq, ’ p : ?:'1 oy i, (123

with Slmllar expression for dy; and 6z Once again the partial derivatives are functions of the
generalized coordinates g,.
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[t 1s essential at this point to distinguish between two types of displacements: an

displacement dr, and a virtual (not in actual fact or name) displncvm}-nt Sr,. Supl’”""‘ - ”""‘;:"'::f
is acted on by an external force F; and causes the mass m, to move fromr, 1o r 4 :{l, nj i Bl
interval dr. This displacement must be consistent with both the equations ot motiot -‘lm-mul
equations of constraints that describe this mass system; hence §uch dlﬁ.]\]ilL‘L‘lllL‘lll.\ .:uu\‘r:«)“hc
displacements. On the other hand, virtual disptucements are Consisient with the (-(lllilll(lll:' ‘”.
constraints but do not satisty the equations of motion or time. For cx:unplf‘,. lh'c boh ot l {K ‘
dulum of length 7 may be moved from (1, 0) to (I, 0 + 50) in any arbitrary time interval a8 ong
as the bob remains on the arc of a circle of radius /. Thus t; and 8¢, arc the virtual dlsl’l“‘}:“
ments. We shall make use of the principle of virtual work in the following. We shall cause :lA\'l"

tual displacement Sr, resulting in virtual work SW. Basically, in such displacements, the rela-
tive oricntations and distances between the particles remain unchanged.

2.3 GENERALIZED FORCES

Single Particle
Consider a force F thal is acting on a single particle of mass mm and produces a virtual displace-
ment or of the particle. The work done 8W by this force is given by

SW=F-6r=F, & | F 6y + F, oz i (12.6)

where /I, I\, and F, are the rectangular components of F. We can express the displacements o,
dy. and 6z in terms of the generalized coordinates ¢,. Making use of Egs. (12.4) and (12.6), we
may write

o ax ay 0z C
SW = (r —+F ——+ Fz——)aq: >0, 8g, 12.7
L dq, g Cag )t S .
ox ay 0z
where , o e o P e o JT ==

Oy is called the generalized foree associated wih the generalized coordinate 4 The dimensions
of Qy depend on the dimensions of ;. The dimensions of Q, 8¢ are that of work. If the Incre-
ment og; has the dimensions of distance, Qy will have the dimensions of force: if dq, has the di-
mensions of angle f, O, will have dmensions of torque 7. It may be pointed out that the quan-
Fit:y dqy and the quantities 8x, 8y, and 8z are called virtual displacements of the system because
113 not necessary that such displacements represcnt any actual displacements. ‘

A System of Particles

lI).etrus app}iy the preceding ideas to a general case of a system consisting of N particles acted on
ylorces Ky (i =1,2,..., N). The total work done 8W for a virtuu] dicolacerme ‘
(o s ne oW for a virtual displacement or; of the SYs-

N

N
oW = ZFJ *or; = EF\ 8x; -+ F»-, Sy, + Fz, 6z, (12.9)

i-1 (=1
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ol 2[2(1‘1 E g Fy(_Ly—‘ + F, f"/j‘)ﬁqk\ (12.10a)
i—1Lk=1 ' dq, oq, L dq,

Interchanging the order of summation, we get

n N . . .

Ix, )z,

SW = Z{ > (F( -;1' +F S04, —(,Z')qu] L2100
' dq, '

A=1lic " gy gy
o1 sw= 0,54 (12.11)
o k=1
A dy: Z.
where Q, = E (FA .f.){" +F, (,))' + F, ?4) (12.12)
i=1 \ " dqy *dq, " dq, '

0, is called the generalized force associated with the generalized coordinate g;. Once again, the

dimensions of the gencralized force Q, depend on the dimensions of g, but the product Qg 1s
always work.

Conservative Systems

Let us‘write an expression for the generalized forces that are conservative. Suppose a conserv-

ative force field is represented by a potential function V = V(x, y, 2). The recltangular compo-
Lenis of a force acting on a pariicle are givea by

. A% } A% aV
F o= - F, T (12.13)
ax dy 0z ’

; B o aois
Expression Q; for a generalized force given by Eq. (12.8) becomes

0x dy d
0 =F——~+F " +F=
- " dq, g, 44,
(E)V dx  aV ay oV az)
= |- =+ — L4 LA

dx aqk ()_y qu 0z aqk (12.8)

The expression in the parentheses is the partial derivati ' i
ve of the function V v espec
That is, V with respect to g,.

aq, (12.14)

,]_fhls expresses the relation between a generalized force and th
servative system.

€ potential representing a con-
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