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g
_AUSSIAN QUADRATURE FORMULAE
9
i erical integration technique associated with the natural coordinates
the MY 4 in finite element method for evaluating the element matrices is the
1AL Ui:gen dre quadrature. In Newton—Cotes formulae, the integral of a
Gauss ™. roximated by the sum of its functional values at a set of equally
fanction i is. multiplied by certain weighting coefficients. However, in Gaussian
spaccd PO;H w'c have the freedom to choose not only the weighting coefficients
q“adramrﬂ;e location of abscissas also called ‘sampling points’ at which the
| put 8lsO is to be evaluated. In fact, they are no longer equally-spaced and the
ﬁmctlorﬂ of functional evaluations are same in both the cases, while we can
::l:‘:::e petter accuracy. To illustrate, the Gaussian quadrature, let us consider

i integral for which the Gauss formulae is given as

b n
[ W fde= 3 W f(x) (7.57)
i=1
where W, are a set of weights and x; are sampling points. We classify various
Gauss formulae based on W(x).* P
Gauss—Chebyshev quadrature : W(x) = (1 - X%, -1<x<1
Gauss-Legendre quadrature : W(x)=1, -1<x< 1
Gauss-Leguerre quadrature : W(x) = x%™, 0<x <eo
Gauss-Hermite quadrature  : W(x) = exp(-x?), —eo <x <o
Thus, Gauss—Legendre quadrature formula can be expressed in the form

1 n
[ Fodx =Y W f(x) 7.58)
. i=1
It may be noted that in case, the limits of integration is from a to b, they can
be changed to from —1 to 1, using the transformation

x=%§(b-a)+-;—(b+a) (7.59)

Now, consider Gauss-Legendre n-point formula as
! n - |
LS ©dE=IWIE) =WMIE) +Wof G+ + WS &) (60
il

wh’;; W, are called weights and £, are the sampling points or Gauss points. From
\1:60), we can observe that there are n Gauss points and n weights, thus in

al :
0;3: arbitrary parameters. The formula (7.60) will be exact, if (&) is a polynomial
8ree (2n — 1) or less. Therefore, f(£) is of the form
SE) =ay+ a\& + a8 + ay83 + ... + age &) (7.61)
\

' s o
Is, the reader may refer to Stroud and Secrest, 1966.
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(7.61) into Eq. (7.60), its left

et —lgzn_l)df

Substituting Eq.
J_llf(.’,‘)dﬁ = J-_]] (ap + g + 0252

2 2
=Zao+—‘az+'—a4 o e LN e
3 3 (7,62a)

By choosing, ¢=¢&, Eq (7.61) changes to

f&)=ap+asi+ a8 + a8+ g il

Using this expression, the right-hand side of Eq. (7.60) becomes

1
I_lf(g)dg =W(a + a5 + &+ @&+t Ay )

+W,(ay +a,& +a2§§ "‘0353 + ”’+"2n-1§22"_1)+'--

W +al tal taly ot iy )

which on rewriting yields

[ F&dE=ag Wi + Wy + W 4+ W)
ra WE +Woly + W&y +--+ W8
b g NE + Wy + Wi+ + WE0)

EX L W,E + WErt 4+ W,

and hence by equating th¢
quations:

+oet oy W b e

Now, I:qu. (7.62a) and (7.62b) are one and the same
coefficients of g, in them, we immediately get the following 2ne

“’1+W2 +W:,+"'+W”=2
W& +W,6, +Wyé, +--+W,6, =0

!
|
|
| u’l512+w2¢3+w3§;+”'+Wn§3=§'
% . 7.62)
o st W e WETI =0
, . . pting
The solution of these equations gives us 2n unknows such as Wa the we'g,,haﬂd

Gauss points for § = = ;

coefficients and &, the sampling points or
f n equal to 1 through

they are presented in Table 7.1 for values 0
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able 7.1  Ah<-ice i
T ¢ and Weights fir Gance | eger -¢ Quadratii™®

1 n
Lrnde=3wre)
i=1

Number of poi P L
‘Numb ( r of points » Location, ¢, Weights, Wi
1 00 20
2 +1/.f3 =+ 0.577350 10
i { 0.0 8/9 = 0.888889
+0.774597 5/9 = (,.555556
% { +0.33998] 0652145
+0.861136 0347855
: 0.0 0.568889
+0.538469 0478629
+0.906180 0236927
+0.238619 0467914
6 +0.661209 0360762
+0.932470 0.171325

ii may be voserved from the table that Gauss points are located symmetrically
about the origin or the mid-point oi the interval and that symmetrically-placed

points have the same weights.
To have a feel for the met
approximations in the following examples:

hod, let us consider one-point and two-point

Example 7.14 Evaluate
_[_llf(é’)d§= Wi f (&) 1

Solution This is one-point Gan~<™ v ~genc-e quadrature formula given by
(7'60). Since there are On]} two paranlc.c;:, Wl a.nd 5], the.fonn]Jla (l) will be exact
if f{&) is a polynomial of degree one- Thu., we may write f{&) = ao + a,&. Then
it is required that

Errorzj_il (@ +@bds—

That is,
2a, - W@ + 24)="0

Equivalently,
00(2““/1)"“/1‘II£I=O )

Thus, error is zero if and only if
W, = 2 and 51 =0 (3)
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general f(&), We have

[ f©ag=2/©@

Example 7.15 Evaluate

Illf(é) d§=W1f('5|)+sz(§2) (l
3 J

Solution This is a two-point Gauss-Legendre formula given by gq 08

e have four parameters W;, #3, & and &; to be computed, the fomy,

since W : :
lynomial. Thus, we may write

(1) will be exact if (&) is a cubic po
f&=a,+ad+ a8’ + a,&

Then, it is required that
1
Brror = [ (ag + af + € + @) dE-MFE) +Wof G1=0 g
That is, '
2
2ay + 302 -Wi(ay + a4 +a, & + a,&)
-W, (ay + a5y + az<§§ g 0353) =0
Equivalently,
ay(2— W, - Wy) - ay (W § + W)
2 "
"“'2(5"“’1512—W2§§)“03(M§13+W2§2’)=0 0

The error will be zero if and only if the following equations are satisfied:

W+ W, =2)
W& + W6, =0
2y @

W,éf +W,E2 = :

Wléla % Wzgg =0‘

Thesc are non-linear equations, whose solution is found to be
W]""‘IV-‘-"—'-[ and E - = 1 o=
= Sy = =0.577350
: A

Example 7.16 Evaluate the integrai

JLee+2)ae

using G
8 Gauss-Legendre four-point quadrature formula.

M A
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golution  Here, the given data 15 » = 4, Therefore,

1=j_',(3¢’ +§3)d§=iw,f(€,) (1)

na|

where
F&)=38" + & =£2(£ +3)

[aking abscissas and weights from Table 7.1, we have

1= [ 88"+ £)dE = 0347855 (-0.861136)* (3 - 0.861136) + 0652145

(-0.339981)* (3~ 0.339981) + 0.347855
(0.861136) (3 + 0.861136) + 0.652145
(0.339981)* (3 +0.339981)

=0.551728 + 0.200511 + 0.995994 + 0.251766
=1.999995

Integrals in two dimensions

One can easily extend the Gauss-L

egendre quadrature formula to two-
dimensional integrals of the form :

1= [ r&manae (7.63)

The above area integrals in the (&, M) coordinate system can be numerically
evaluated by first evaluating the inner integral, ass

uming § constant and then
tvaluating the outer integral. Thus, the inner integral gives

[ r&man= 2W,1En)=5®

(7.64)
Where Ty and W, are the Gauss-Legendre sampling points and weighting
flicients given in Table 7.1. Now the outer integral becomes
1 m
dag= ) W,
[Ls©dt =2 e (.65,
Mbstituting the value of g(#) from Eq. (7.64), we get
] l m n
Mdndé=2 > WW,f&n,)
J_J_if(é mdndg EJZ_; PR (7.66)
P': i'"P‘ementatjon of this equation is usually carried out ag g single Sum oyer
™ %ampling points with W,Wrtype products.

.
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a linear combination of term
and t are non-negative j, t:f "
Bargy

mial, containing

is a polyno
» - e that 7, §

where f (xa »
7y 7 We further assum
we assume that ;
fpn=xyz

Suppose,
limits of integration are constants and the integ,
ang

In view of the fact that the
is factorable, we write

I J'_'l j_lljl_llx' y* 7' dudydz

[ o] L]

Now, using Gaussian quadrature formula given b
write the above equation as ’ y Eq. (7.58) we shall be able1,

. '=[im’][2"‘.‘?w§}[iwﬂ;] ;

i=] j=1 k=1
or
>33 wa
I= WW.W. x vS
Z
g g T i 08)

We ' i 1
shall illustrate this technique through the following example

152 20
l= 2
IOIO I_1x3yz dxdydz

U’ing Gauﬂsian
Quadrature formula and a two-term formulas for x yadz

ed onf?

Solution; W, ow mapp
¢ We kn p
that any finite range a < y < b can be
¢ a)/z

1 us .
- _ ing the
» the given integral hﬂ“::ml::’a? transformation y = (b - a)x/2 + (b

-
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= rrLs 3 o du , dw
I_jzlj—lj_lzxg(“"l) (v+D)(w+1) —2—dv—é_

we have used
w ]

1 1
x=5(u—l), y=v+1] z=-2-'(W+l)

of
1

I=—
128

e also know from Section 7.9 that the two and three point Gaussian quadrature
formulae are

1 p1 pl
J-:L J_l(“ ~ 1’ + 1)(w +1)? du dv dw )

1
_[_1 F(xX)dx =[(1) £(~0.5774) + (1) £ (0.5774)] @

and
! 5 8 5
I_ J(Rdx=| 5 f(-07746) + 2 £(0) + 5 £ (0.7746) 3)

Thus, using two-term formula (2) for x, y and z or for u, v and w, the integral (1)
becomes

2.8 9

1=é5222w,.u;.wk @ - D’(v; + DW; +1)? @
i=1 j=1k=1

observe that W, = 1, W, = 1. Now writing down all the terms explicitly, we have

I= —;3[(1)(1)(1)(-0.5774 —1)3(=0.5774 +1)(—0.5774 + 1)°
1

+ (I(1)(1)¥-0.5774 - 1)’ (-0.5774 + 1(0.5774 + 1)

+ (IX()0.5774 - 1)’ (0.5774 + 1)(-0.5774 + 1)
+ (I(IX(IN-0.5774 -1 (0.5774 + 1X0.5774 + 1)

+ (1)1X1)0.5774 - 1)’(-0.5774 + 1 X=0.5774 + 1)?

+(A)1)X1)0.5774 - 105774+ 1X0.5774 + 1)

+ (IXIYIY0.5774 - X(0.5774 + 1X-05774+ 1)

+(1(1)(1)(0.5774 - 1)(0.5774 + 1X0.5774 + 1))

_ 1 (02963 - 4.1271-1.1057 - 15.4048
128

_0,005698 — 0.07939 — 0.02127 ~ 0.2963]

7

1 = -0.16669
— _—[-21.3366] s
L 128[ )
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ever, the exact sol

ution is

How
1¢200 3.2 gedyd
= xyz 'y az
=I5 L
12
Lo
4J070
tiahag et ianieey
270 6 6
Comparing the numerical solution with the e.xact éolutism given by Eqg }
that the numerical solution is four decimal accurate, - )and

(6) we observe

7.1

72

EXERCISES

Define shift operator E, average operator 4 and differential operat, ),

Hence, show that
p? = —lf(Az - A3 +-!-1—A4 _.5_A5 ER R
h 12 6

Derive the formula

D= 53....!_ Nss s
,u[ (12+6)6+ ]

Find the first derivative of /' (x) at x = 0.4 from the following table:

.73
x 01 '
J® 1.10517 1.2(;?40 1.3(:;86 1:9.‘:82
7.4 From the following table of values, estimate y'(1.10) and y"(1.10):
) 100 LT Lt e 08 atten. L
it mchine, ] 1.0724 1.0954 1.1180 1.1402
moves along a fixed straight rod. Its distance x ¢

7.6

M\“h_ o

along the rod is gi
; given below fi ;
th : or var i i
e velocity of the slider and its acc:’lusera‘t,iac::e:/l?:nu:ne :)(;»econds). i
=03s.

0 o
x 3013 3.112 Ealicotoiak i S bl
3287 3364 13395 3381 334

Use both the fo
rward diffe
to fin ; crence form
d the velocity and compearefo th;11 :eal‘:;ltsthe central difference for™
S 1

Give,
n the table of values, estimate »"(1.3):

—

x 13

15
Y 29648 26599 bl ot v 2y 23
23333 19922 1.6442 12969
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follO_w‘f:g divided di.fference table is for y = 1/x. Use it to find
y 0.75) () omla quat}ratnc polynomial fit (ii) from a cubic polynomial fit.
what degree polynomial fit gives the most accurate value of y'(0.75)-
1st divid sy
PSR st ed 2nd divided 3rd divided 4th divided
L erence  difference  difference  difference

25 4.0000
0. .
—-8.0000
50 2.06000
?)75 13333 —2-6668 10.6664 40019
00 10000 13332 2.6672 fd 12,0875
l'25 o'soon ,—0.8000 1.0664 -0-7104 | 4240
11'50 0.6667 —0-3332 0.5336

14 Evaluate the integral
J‘l-s e +e*
w2
using Simpson’s 1/3 rule, by taking & = 0.2.
19 Evaluate the integral

dx

o 2
[ Lr@P ax
using Simpson’s 1/3 rule, given that
x 0 1 2 3 4 5 6
I) 1 0 1 4 g, o6 N 5

710 Using Simpson’s 1/3 rule, Evaluate the integral
x/2 dx

1
0 sin? x+ zoos2 x

111 Compute the integral,
> ds
1 -x
using Simpson’s 1/3 rule, and also obtain the error bounds by taking
h=0.25.
12 Evaluste the integral
Ji
by dividing the interval of integration into eight




: = » 0-2p iy
- o 01770 DI T T
04 0.5 10

0.2 4 212815 2386762.65797 29428 35,

= . ;
1.42007 1.8812
- on method to evaluate

7.14 Apply Romberg’s integratl

1.8

1.0

ith h = 2,0.1.
by applying tragezoidal rule with A = 0.8, O.fl, 0

7.15 Evaluate the integral

cosh dx

2dx
LR

using Romberg's method of integration starting with trapezoidal ny,
taking 4 = 1, 0.5, 0.25, 0.0125.

7.16 Evaluate the double integral
12 2xy
= dx

using Simpson’s 1/3 rule, with step length & = k = 0.25.
7.17 Compute numerically

-2

2 2
pX +)Y

Where D is the square with corners at (1, 1), (2, 1), (2, 2), (1,2
7.18 Evaluate

1 p2
4 o I=[ [ 4y ar gy
using Simpson’s 1/3 ryle, —

719 The velocity

. VI8 of a particle at a time ¢ seconds is given in the follow¥
Bl g s 8
¢ 0 - BT
Rt 2 . 6 8 0 2
Find the distance 4 60 94 136

8=y, travelleq by the Particle in 12 s and also the .ccelersﬁ"”

M‘\‘\ A =4
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ow at the point

//’—-
120 Find y' and y" of the function which is tabulated bel
= g O3 oo
T 196 198 200 202 2.04
473
y 07825 07739 07651 0.7563 0.7
n cm of

n, whose diameter di

721 A body is in the form of a solid of revolutio :
end is given 1n the table

its sections at varioug distances x cm from one
below. Compute the volume of the solid using Simpson’s 1/3 rule.

B 00 25 50 75 100 125 150
5 sopb  Ssp 600 678 65 MUSE N

722 Evaluate the following triple integral

100 ¢l
I=IJ yz e*dx
0J-1J4-1

Using Gaussian quadrature formula and taking a three-term formula for x
and two-term formula for y and z.



