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.1 INTRODUCTION

ConSid&. 2 function of single variable y = f(x). If the function is known and
mple, we can easily obtain its derivative(s) ort can ‘evaluaterits: definite integral.
;} owever, if we da.not know, the function &s such or the function is complicated
and is given in a tabular. formx at a.setrof points xg,hxy, 1, 1xy, 'weousel only:
qumerical methods for differentiation ori integration of the given, function. We:
shall discuss numerical approximation to derivatives of functions of two or more
cariables in subsequent chaptersto, follow under partial differential equations.
In the next couple of sectionspwe:shallderive and iljustrate various formulae for
umerical, differentiation; of :a functioniofva singleuvariables based on. finite
difference. operators.iand cinterpolation. o Subsequently; -we shalll develop
Newton-Cotes formulae: and related trapezoidal rule:rand Simpson’s rule fory
numerical integration of a function. Finally, we shall present Gaussian Quadratute
formulae for evaluating ‘both:simplefand multiple integrals.® 5auss an Quaditie
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7.2 DIFFERENTIATION USING DIFFERENCE OPERATORS

. DIFFERENTIATION USING DIFFERENCE OPERATODRS
We ‘assume that the function'y ™= f (axj is given for the values o the independent

variable x = xp -+ ph, forp:=0, 1,72,:).is andsoon. Toofind the derivatives of
such a tabular. function, we proceed’as folowsio 0. To find the der

Case I: ' Using forward difference ‘éipé‘fa%gf A"and combining Egs. (6.27) and

(6.31) we have d difference operator A and con |
have hD =log E = log (1 + A) (7.1)
where D is a differential operafor, £ a%shiff opérdtor. In'terms of A, Eq. (7.1) gives
y di ferential operator, £ a shift opergtor. in} terms of A, Eq
A0 Pl Sy gy 2
Therefol-e, h Z [ 5 J
BAbe A () | Af(xp)
Df (xg) = (%) =} & () = =752 1+ =57
DFLE Y2 () 2E AF (x) = — 4202 23 (Ko,
A fn) A fGs) o o
— o e Y AT il | 7,2 )
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- “Xtrapolation methods, the interested reader may consult Hildebrand (1982) ]
erestgiygreader may oo wlt Hildebrand (1682} 1
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[n other words, l Ao : 9_29- = 9:-)_;9_ B }
D)'o"')’()”(Ay - 3 4
Also, we can easily verify
11
4 1 2 ___A4 __As
K’ 2 4
Thus, , ,
A S 5
=AYy +) (3

d’y w_ L[ A2y, — 3y, +—AY
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Case II: Using backward difference operator V, we have seen in Example 6 5
that hD = —log (1 - V). '

On expansion, We have _
1 V2 N, V3 V4 s
- — e B —— + R %
(V+2+3+4 g 79

iy v A 1 (o 11 5

Al - S AEREL et 2 3t 4 2 os

h2(+2+3+4+] hz(V+V+12V+6V+)

Hence, Py ‘ ((N)]
-d l vz v3 .V4 v
Ly =Dy, =y,=~ v Yn Yn y

o éx ¥ h(' Vit e R '4" +] )

” 1
}'u-"Dz)’ =—(V2y +V’ +H 4 S s :
Th f n hz n yn 12V y”+gv y’.+i--) (7-9)
¢ formulae (7.3) and (7.5) are

derivati kel useful to calculate th
w‘;;’: ;;e;n !:t] :t;e l();gsmmng of the table of values in terms of ;oir::da;g- seconq
derivatives near th. g .(7'9) are used to compute the fi &
Similar form ule end points of the table, in terms of back irst aqd second
ae can also be derived for computing higher g:r ?llc:frg:trim::
ves.

To compute the derivati
rivatives of .
table, we can proceed as follows: .a tabul.ar function at points not found in the

Recalling Eq. (6.34) in the form

¥(x, + ph) = y(x,) + pVy(x,) + 2P+ 1) o2
21 v y(xn) +

p(p+)(p+2)
* V3 y(x,)

p(p+1)
+ ( P4‘:' 2)( p+3) i -
Sl yx,)+.0 (1.99)

Letx = x, +
n Ph’ th =
fespect to x, we get MP= (- x)h N :
8 ow, differentiating Eq. (7.92) with
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, dy dy dp | 4y -
et w5 _ 2 L
S dp dx h Vy, 4 j’2 Viy, + / 4 -6/’ vl

In

4p’ 4+ 18p?
LAr” l’u e TPy (7.9b)

Differentiating this result once again with respect to x, we arrive at the second
derivative as

d’y d dp | 2
”-..——-——(y')__-._ v2 3 6p +18p+]l 4 o
S T 0k WL e s Tt A

(7.9¢c)

Eq\.xationl (7.9b) and (7.9c) are Newton's backward lntemolatlén formulae,
which can be used to compute the first and second derivatives of a tabular
function near the end of the table. Similar expressions of Newton’s forward

inte'rpo!ation formulae can be derived to compute the first- and higher-order
derivatives near the beginning of the table of values. g

Case III:  Using central difference operator 8 and following the definitions of

differential operator D, central difference operator & and the shift operator E, we
have

5'Em"E-m'e"m—e""m-2|inhh—f' A,
4 ¢
Therefore, we find }\:;;‘OUS('f e
hD inh'la 5,/*' D,lb"' St
But, | 1A 5"
3 f = é /‘)/, w
12> 1x3 1x3xS x’ ¢z
i N = L O I p—— ves P ',)
el TR DT R T ki ARE Ty
i . L,
Using this expansion into Eq. (7.10), we get Z 4
v .“;' L
Mo 3 B B r e diet
2 "2 6x8 40x32 Y
That is ‘ VJ‘ € L.
’ 1 3 ' ot
1 3 s
2l - —&8+—8 - )
Lots h(5 2% " 640

' Lggio A ,
—y=y =Dy= -};(6? ¥ ;53)"' %5’) % ) (7.1p
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\ | s .
Also : |
V)" : o . gt
{[)2 s i 52 __1_ 4 —1'-66 .
h? 12 90
Hence. :
Hence, , e e i , )
¢ =Dy = 1—, 0‘2‘\' - 1/ ?~4a + 1 ;6, ‘
”:Dz = 6 - .:_~6 __6 Sy
. hz( AT Sl g 1y
For calculating the second derivative at an
For calculating the csecond: derivative) at .an interior tabular Polen pee

Eq;:(712), while for computing the firstiderivative at-an interior tabylye Holng se
in general use.another convenient! formifor D, which is derived ag follows’ &
Multiplying the right-hand side of t}iq. (7.11) by '

A.J_‘WH 4 o = ,6-—
;’/ 2 plc e 1 J.
ity and nafine the A LE(G74) ( )
N { 1 1S uniy ang ot g, U1C BPINDInial ] , }ﬂ)l /
which is unity and noting the Binomial expansion il
i
14 8w =7 - g8l 4 a5 L 515" ,,%\V
(1 + _62) =1-'252 & l._54 AL _’.___-66 £ L l\h{;
: _ 4 8 128 48 x 64 my/,,
)
W et L. | . o lb’ L&Vﬂ
: H( ko2 7 13g 4 )( . P &30 < “u]
D=1 - 2§82 , 2854 _ .. d = =58, B0 i
AU 87 7128 24" 7 640 )
On simplification, we obtatr A
On simplification, we obtain | \bﬂ
: i P -HP 1 “h' g
4 i 5 Ay i v ‘ 1/
7 Lo 40gs J4b
D=>=1\8 -~ 2§ 4 L2Us5 _ .
i h( 6 . 12D 4 hG
Therefore, & : H
V.= r_f z 2 Jw - : ; K e L ;, \
7 M ' bea® 1 w
Yy =Dy="46y — =6y + —§y — ... ;
_ e h( At 308 3 ! (.13)
I t (7.12) and (7.13) are know : .

n as St

Equations (7.12) and. (7.13) are kfiown:
derivatives of a tabular fudctioh,;
higher order defivatives of a tabu
_in another useful form ag

irmg s torn

as’Stirling’s formulae for computing fhe
Sirilar formiilae-can be derived for compqnng
lar function. Equation (7.13) can also be written

9

PR . g (1°)1(22y .
i LR 1 o¥e TR ).
o’ H“ P I?.J ol o a’)f(zzj Q) - (12)(22)(32)

y S T 35 - Dol Todly 5 s ’ 7 g 14)
| th cnd ks 2p 0y = e db AW
““ 'd':l’-" e .“‘L!Str'”"‘"w the use of formu! lerive : ’ the
L:ﬁ "0 allustrate) they usecofyformulde lderived 80 far, for computing

vatives of 4 tabulated function, we shall consider the following examp/e
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D"’“ 71 ompute /™(()) and f°(0 2, from the following tabular data.
M\-_“
X 0.0 0.2

04 06 0.8 10
fix) 1.00 1.16

_\M 4196 101.00

Solution _ Sioce x = 0 and 0.2 appear a1 and ncar beginning of the table,
4 is Bpproprate to use formylae based op, farward differences t@ find the
jerivauives. The difference table for the given data is dcpfc(cd below:

T—r

x Jx) A f(x}

- —— A'f(x) A’f(ri A‘}(x) A*f(x)
00 1.00 N
0.6 |
02 116 |
04 356 ;340 §$ b X
06 1396 V40 9.60

17 0.00
0  alpg W00 0 3w

U o4
10 lolop 3904

Osing forward difference formuls (7.5) for DY), 1.
D*f(x) = ;!,- [A’I(x) = A F(x) » %—;K‘f'm - -Z-A’f(.i)]
We obtain | ¥
f;(O) = -L-;[224 576+ Li(3.84) - Z(d)] =0.0
(0.2) 12 6
Ao, using the formula (7.3) we have

bf (x) = .!.[A',(,')‘ _ Ao bs Af(x) - A‘j_(x)]
h

. 2 3 4
* R 9 60 'Ry )
r > = Pl 800:9.60 ‘ 3.34)-3 2
4 = | 2. - = - Im3)
/' (0.32) 02[240 3 3 v

*mni n the tahle

Rel2 Findy(2.2)a
Plerf Find ¥'(2.2) and v*(2.2) from the table

—— e e ™ ? U -
x 14 16 A8 20 22

v pH | AR}
P() 40552 49530 60496 73891  9gsp

s);;lhnm. Since ¢ = 2 ) occurs at the end bie, i .
e oo 1o%, Since x = 2.2 occurs at;the end of the fable, it 5 APPropriatg o,
d\'cnd;i.u shown as follows:

R
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mpute the second derivative, we shall use formula (7 12) Thus,
¢0
i o (5: 84y & : 5" \
i = e ~ ¥ . CEE
oL T it~ )
g his example,
1 4029
02 = f oaen LI I
A\ 12

e IV: (Twe- and three-point formulae);
e V:

7 Y\ we can pe RC a yl [ s | n
E ( ‘*) ' 24 1 allOlhcr useful fon.n r I
q‘ wh)y

e first derivative a
«)L
’ e )

yi= =il a D TV YOy 4+ ) -y

) (7.15)
h h h
similarly, by retaining only the first term in Eq. (7.8), we obtain
tw YU AN | Y)Yk = R (7.16)
WA i h
Addmg Egs. (7.15) and (7.16), we have
2 YR -y -k (717
-"‘l = ’lh

Equations (7.15) -- (7.17) constitute two-point formulae for the
®aining onlv the first term in Eq. (1.5), we get

first derivauve. By

: - + h) + w(x,)
re N L g 2t 2 20 = 29 4 )+ yx)

(7.18)
Wilary, £q.(79) gives
&y _ yx) = 29(x - h) + ¥, - 2h)

y‘ B st S b

s 719y
¥ W
Whle Tetaining only the first term in Eq. (7.12), we ovtain

- -2y, + v,
e Oy _ Duam = M | Y T 0+ v

Y= . N N K
YO = h) = 2y(%) + yix; + h) (720)
W e ot h*

: ‘ -point formulae for computing the ge._
%m:: (7.18)-(7 20 consun;‘tel'{lhl::c":yo_ and three:point formulae beg
' k""‘? for‘ d\z::lhm-l sei::::;c:la:ion methods to numerical differentiation
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43 DIFFERENTIATION USING INTERPOLATION e
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If the given tabulur function y(x) 1s reasonably well appm__lmaled

polynomial P,(x) of degree n, it is hoped that the result of 4 - by

i s s (x) wil ¢
satisfactorily approximate the corresponding derivative of y(x). HOWEVer“ a,

if P,(x) and y(x) coincide at the tabular points, their‘ derivatives of SlOpe; Cvg
subs”tamially differ at these points as is illustrated in Fig. 7 1 g
Y 4 y(x) Pn(x)
iy | i
o X,

Fig. 7.1 Deviation of derivatives

For higher order derivatives, the deviations may be still worst. However, we can
estimate the error involved in such an approximation.

For non-equidistant tabular pairs (x;, y,), i = 0, ... , n we can fit the data by
using either Lagrange’s interpolating polynomial or by using Newton’s divided
difference interpolating polynomial. In view of economy of computation, We
prefer the use of the latter polynomial. Thus, recalling the Newton’s divided
difference interpolating polynomial for fitting this data as

£, (x) = ylxol + (x = xg)ylxo, x1] *+ (x = x0)(x = x7)y[xo. ¥1, %] +

n=-1
L H ()C = x;))’[xo, Xiy e xn] (7_2])
i=0

. il
Assuming that P(x) is a good approximation to y(x), the POIWZI:W:
approximatrén to y'(x) can be obtained by differentiating P,(x). Using P!

?nuco of differentiation, the derivative of the products in P,(¥) can be seer
oliows:

n—1

“:‘;H (x-x)= § (x = xp)(x = x;) -+ (x = X))

) i=0 X =X
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(huS: y(x) is approximated by P!(x) which is given by
Pp(x) = y[xo,

n-]

¢ 2 (X =) x = x) - (x ~ % 1)

]+ [(x = X1) + (x - xp)] ylxg, X1, 2] T

MXg X1+ *al (7.22)

The error estimate in this approximation can be seen from the following.

In Section 6.6.3, we have seep that if i P.(x), the error
imate is shown to be y(x) is approximated by Pr(x)

E.(x) = y(x) = P(x) = X _(ne1) 7.23
) n+01’ © ol

jts derivative with respect to x can be written as

E,’,(x) = y'(x) - Pn'(x) = ?ng.%y(m-l)(g) + arlif:_); _f:_;y(nﬂ)(g) (724)

Since §(x) depends on x in an unknown wzy the derivative

4w
4w

cannot be evaluated. However, for any of the tabular points x = x;, [1(x) vanishes

and the difficult term drops out. Thus, the error term in Eq. (7.24) at the tabular
point x = x; simplifies to

(n+1) £y
Tl U B i ()
E,(x;) = Error = I1 (x,-)———~(n T ) (725)

for some £ in the interval / defined by the smallest and largest of x, xo, xy, ...,

xand
M(x;) = (x "xo)“'(xi"x,.)= (x; = x.)
i H g (726)

jei
The error in the rth derivative at the tabular points can indeed be expressed
analogously. - : ‘ ;
To understand this method better, we consider the following example.
Example 7.4  Find y(0.25) and f"(0.25) from the following data using the methogd
on divided differences:

x 0.15 021 023 027 032 035
y=f(x) 0.761 03222 03617 04314 05051 (0544)

k N
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Solution We first
follows:

construct divided difference table for the gve, day
&

et s ivided 3rd divided 4th divided .
pe y lc?itﬁ?r::)dcid 233}_3;::; _ciﬁmnce difference S;?ffilr:,td

- 015 01761 2.4350 3

sy D0 g R i

=023 03617 - -3.8750 S s Wi 8

=021 04314 0 ~2.9833 i

x,= 032 0.505] 13000 --2.1750

xg= 035 0.5441

Using Newton’s divided difference formula (7.21), we have
Wx) = ps(x) = ylxg) + (x = Xo) ¥[xgs X1] + (X = X0)(x - x1) y[x,, X1, x,)
+ (x = x0)(x — X1 )(x — x2) ¥[x0, X1, X3, x3]
+ (x - xo)(x — x1)(x = x2)(x — x3)y[x0, X), X3, xy, x,)
Now, using values from the above table of divided differences, we obtajy

¥y =0.1761 + (x - 0.15) 2.4350 + (x - 0.15) (x - 0.21) (~5.75)
+ (x—0.15) (x - 0.21) (x — 0.23)15.625
+ (x = 0.15) (x - 0.21) (x — 0.23) (x — 0.27) (—44.23)
+ (- 0.15) (r-021) (x— 023) (x~ 027) (x - 0.32) 1722

Differentiating Eq. (1) with respect to x, we get
¥ (x)=2.4350 - (2x - 0.36)5.75 + 15.625(3x2 — 1.18x + 0.1 143)

—44.23(4x’ - 2.58x + 0.5472x - 38.105 x 107?)
+172.25x" - 4720 + 1.6464x% - 0.2515x + 14.15x 10%)

Which immediately gives
Y(0.25)=2.4350--0.805 + 0,10625 + 2.432 x 10~ — 7.5338 x 1073 = 1.7312
Now, differentiating Eq. (2) once again with respect to x, we obtain

Y (%)= 3444x" — 296911222 + 888.99696 - 91.70¢456
which gives at once

’

Y'(0:25)~ 538125 - 185.5695v+ 222.24924 - 91 700456 = 1208216

74 RICHARDSON'S EXTRAPOLATION METHOD

To improve the accuracy of the derjvat

Starting with an arbitrarily selected valu

1S often €rployed in practice, as expl
§uppme We use two-po
ton, then we have

ive of a function, which is computed by
e of A, Richardson's extrapolation methe
: ained below: s
point formula (7.17) to compute the derivative o
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; Y(X +h) - y(x -
() = &= F Y(x - h)
# h—— +Ey = Fih) + E,

L] truncatio i L ) :
where B 18 the n error. Using Taylor’s series expansion, we can see that
ET T Clh2 5 Cgh4 o c3h6 A

[he idea of Richardson’s extrapolation is 1o combine two computed values of

() using the same method but with two differe T
h,"(lw yield a higher order method. Thus, we haven Al st i

Y'(x) = F(h) + c\h? + ht + ...

and

h hl 4
.y'(x)=F(")+c g h_.,-
o B E  ET

Here, ¢i are constants, independent of A, and F(k) and F(h/2) represent
approximate values of derivatives. Eliminating ¢, from the above pair of

equations, we get
h
4F| =1 - F(h
( 2) (h)

- +dh* + O )

y'(x) =
Now, assuming
h 4F (-’21) - F(h)
F ( __J w 3 (7.28)

Equation (7.27) reduces to

Y-
o) = Fy (g "+ dih + O(h)
!

Thus, we have obtained a fourth-order accurate differentiation formula by
Combining two results which are of second-order accurate. Now, repeating the

above argument, we have

h 6
y'(x) = F (5) + dih* + O(K")

h _dl_hi i 0(;,6)
Yy =Fl7]* 16

Eliminating d, from the above pair of equations, we get 8 Hotier approimin
s

h ¥
) = Fz(Z) AR
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|

. usIng Eq. {7 315 we obtan
2.1 h
AL

h ~
"«!".:': e
‘.‘)‘-l At o

I

|

[\ RIS o

= 400 00195 (5)

e above ompuiation <ain De summanzed in the followmng table:

e Bies il F; F,

0.012%8 428 0529

e o 399.5327

MU nioi bl 400.
399.9726 ik

20032 401.6452

e

Thus, after two steps, it is found that 3'(0.05) = 400.00195 while the exact
value i8

’ e
¥ (0.05) = (—ZJ SR
x%),o00s 0.0025
75 NUMERICAL INTEGRATION
Consider the definite integral
b
1= [ fwdx (731)

x=a

where f(x) is known either explicitly or is given as a table of values
corresponding to some values of x, whether equispaced or not. Integration of
such functions can be carried out using numerical techniques. Of course, we
assume that the function to be integrated is smooth and Riemann integrable in
the interval of integration. In the following section, we shall develop Newton—
Cotes formulae based on interpolation which form the basis for trapezoidal rule
and Simpson’s rule of numerical integration.

76 NEWTON-COTES INTEGRATION FORMULAE

In this method, as in the case of numerical differentiation, we shall approximate
the given tabulated function, by a polynomial P,(x) and then integrate this
polynomial. - Suppose, we are given the data (xp yi)y i =0() m, at equispaced
points with spacing h = Xj1 — X» We Can represent the polynomial by any
standard interpolation polynomial. Suppose, we use Lagrangian approximation
given by Eq. (6.45), then we have

fx)=Z L (x)y (<o) (7.32)
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with associated error given by

M) 0 gy
i e
E(x) (n+ 1) (7.]3)
where | 7'1_1_(_{__)_____
fq‘(!,‘ = -’::r- Ry )n’(xk) (734J
and L
M(x) = (x — %) (& = x1) -~ ; (03

Then, we obtain an cquivalent integration formula to the definite integr, 0y,

in the foum

n
J: f('x) dx 7 é Ck y(xlc/‘i (736)
where ¢, are the weighting coefficients given by
Gk = J: L, (x) dx a3
which are also called Cotes numbers. Let the equispaced nodes are defineg by

so that x; - x; = (k - 1) 4 etc. Now, we shall change the variable x to P such
that, x = x, + ph, then we can rewrite Egs. {7.35) and (7.34) respectively as

N@x)="'plp - 1) ... (p - n) (03%)
and
) = —E T XHE =) (X =X ) (X = Xy ) e (x = )
e m (e —xy) e (xy - X)X = Xpg) -+ (= x,)
- POe -Dh(p-k+Dh(p — k - Dh---(p — nh
(kh)(k - 1)h (M h(=Dh - (k — n)h
or

Li(x) = ()R B2 @~k + Ip ~ k ~1)...(p -~ n)
k¥n - k)!

(1%

Also, noting that dx = h 4p. The lim 15 of the integrai a i.q. (7.37) change from
0 to n and Eq. (7.37) reduces to ‘ y

(_l)n—"h n
C = ;—!-(-n-.-k)! J-O P(I)-—l) i (p_k+1)(p—k._1) = (}’_n)dp (740)

The error in approximating the integral (7.36) can be obtained by substitutifé

(7.38) into Eq. (7.33) in the form

T —
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n+2 o
guTTTy Joptp =D @ = iy &) gp (7.41)

here Xo < & < x,,. For illustration, let us consider the cases for n = 1, 2. From
£y (1.40) we &

e h 1 h
ws-the-va=d et

and Eq. (7:41) gives

LR e :
B =57 [pp - Ddp=-Ly®

Thus, the integration formula corresponding to integral (7.36) is found to be

3

% h h
LO f(x) dx =cyyy + ¢y, +Error = -i(yo +y) - T Y& (142

This equation represents the Trapezoidal rule in the interval [xo, x;] with error
term. Geometrically, it represents an area between the curve y = f(x), the x-axis
and the ordinates erected at x = x; (=a) and x = x, as shown in Fig. 7.2. This
area is approximated by the trapezium formed by replacing the curve with its
secant line drawn between the end points (xg, yo) and (x;, ).

Y
!

_— y=f(x) _

rd

(xn 1) (X2 ¥2)
Q

T

Yo A Y2 y: Ya-i Ya

X,=q X X, Xy oo Xy x,=b

Fi~. 7.2 Trapezoidal rule.

Forn =3, Eq. (7.40) gives

w3

%=%ﬁ@—n@-m@=
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= -'hJ-n.U([’ 2) 4 3

h

h 2 = Ndp= <
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(‘1

and the error term i g€ by

}

Eg =

) lakes e furm

[hus. for n = 2, the mtegration {1

rz Flodx=coYo + G T 202 1 b
X0 ' B3
h L
( Yo+ 4n+ )’2) 90 (9 (74

3

This is known as Simpson s 1/3 yule. Geometrically, this Fquation represent
he x-axis and the ordinates at x = x; 4y g

area between the curve y = f(x), t
between (to o) and (x2, ¥2) by an arc o,

after replacing the arc of the curve ; : .
quadratic polynomial as shown in Fig. 7.3. Thus Simpson's 1/3 rule is baseq

fitting three points with a quadratic.

Y
{l
/ y=f&)
; uﬂ.ﬁ/
39 /
%
k:—."’]'ﬁ
Yo b Y:
AN
0 X,=a X, X,y X, 2 S 2 x.= b

Fig. 7.3 Simpson’s rule.

Similarly, for » = 3, the integration (7.36) is found to be

X3 L 3 3 iv 4
J f) dx=Zhiye +3y +3y, +3,) - S @ ¢

020 g B 3 . b,'
This is known as Simpsons 3/8 rule, which is based on fitting four P‘,’mts o

a cubic. Still higher order Newton—Cotes integration formulae can be fjenved fm
large values of n. But for all practical purposes, Simpson’s 1/3 rule ,y

be sufficiently accurate.
by devie Fehm™’
MA-Fnt Kalo




y The Trapezoidal Ruie (Composite Form)
.

_ vewton—Cotes formula (7 42) is based on approximating y = f{(r) between
"“ , and (x;, »1) by a straight line, thus formiru
iie- 0

' a trapezium, is called
" .oidal rule. In order to evaluate the definite integral
fya‘,”-'

e j:f(x)dx

we divide the interval [a, b] into n sub-intervals, each of size h = (b — a)'n and
jenote the sub-intervals by [xo, x,], [x, x5], ..., [x,_y, X,], such that Xo = a and

(=bandx;y=Xo+ kh,k=1,2,...,n-1. Thus, we can write the above definite
n:[cgnj as a sum. Therefore,

1=j:f(x)dx= j:f(x)dx+_[:f(r) dx + - + I::_If(x) dx  (7.45)

As shown in Fig. 7.2, the area under the curve in each sub-interval is

appmximated by a trapezium. The integral I, which represents an area between
the curve y = f(x), the x-axis and the ordinates at x = x; and x = x,, is obtained
by adding all the trapezoidal areas in each sub-interval.

Now, using the trapezoidal rule as expressed in Eq. (7.42) into Eq. (7.45), we
get

3

h h ” h 4
Jo 1@ dx=2 00+ 1) =5y E) +2 0

i
+y,)—- '1_2}’ (&2)

+...+.’£( + )_.}3_3.. “(&,) (7.46)
2 Yr1 Yn 12}’ n i
wherex ) < & <xp, fork=1,2,..,n-1.

Thus, we arrive at the result

I: f(x) dx = %()’o +2y 42y, + o+ 2y, Y +E, (147)
Where the error term E,, is given by

3
E, = —%ly”(él) +¥"(&y) + - +¥"(E)) (748)

Equation (7.47) represents the trapezoidal rule over [xg, x,], which is also called
e composite Jorm of the trapezoidal rule.

error term given by Eq. (7.48) is called the global error. However, if we

iSume that y“(x) is continuous over [x,, x,] then there exists some & in
%) such that x, = x, + nh and

4 ha ”” b Xp = X0 2.7
By = - 5t ) = T R (3] (7.49)

Then the global error can be conveniently written as O(#%):
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(Composite Forms)
rule, we have used tw Witk

impson’s 1/3 .
he Simp formula, we shall diviq, h Mory
“ Iny,

composite i I o

i i - r of sub-intervals say 2N ¢, . "o,
e i e L chinbiting g x,v = b and x, = x, 4 k:,}l o g
(b - a)/2N, thereby we have xo = @, *1» I ;Nbe iy b 0 T
..., (2N = 1). Thus, the definite integral / ca ‘ /

X, N
i Lbf(x) dx = J;z f(x) gy J.xz‘ f(X) s gh o Lw-zf(x) d (7'/;

7.6.2 Simpson's Rules

In deriving Eq. (7.43), t
of equal width. In order to get 2

Applying Simpson’s 1/3 rule as in Eq. (7.43) to each of the integrals ¢, the i
hand side of Eq. (7.50), we obtain y

"’31[()'0 + 4yl + yz) + (yz + 4y3 + )’4) 4 e

" N,s v
+ (Va2 + 4yan-1 ¥ Yan)l — 56" Y HS)

That is,
x h ‘
[27 £ dx= o + 401 95 + -+ yawa1)

+2(y, + Y4 + -0 + Yan2) + Yoyl + Emorterm (75

This formula is called composite Simpson's 1/3 rule. The error term E, which i
also called global error, is given by

N s - i
E=— —p5ygy = - Xan ~ %o p4 v
50" © T Dl (03

for some &in [xo, X,n]- Thus, in Simpson’s 1/3 rule, the global error is of O
. Sm_ularl-y in deriving composite Simpson’s 3/8 rule, we divide the interval o
fntegranon into n sub-intervals, where n is divisible by 3, and applying t
mtegration formula (7.44) to each of the integral given belo;v

fx"f(x)dx= I:f(x)dx+_[::f(x)dx+ +J"" f(x) dx
Xn-3

%
we obtain the composite form of Simpson’s 3/8 rule as

b 3
dx= =
J £ dx= Zhiy(a) + 3y, + 3y, 4 2y, . 3y +3ys + 2y +

D3+ 33 + 3y, 4y
with the global error £ given by

o o =0 ;
PR el
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he global error in Simpson’s
if we consider the magnitudes
is superior to Simpson’s

d from Egs. (7.52) and (7.54), t
of the same order. However,
tice that Simpson’s 1/3 rule
consider few examples,

note
ru]cs are

i“ﬂcn— r terms; we no
¢ For {llustration, we

: je 7.6 Find the approximate value of
e/

E"mp
n
y= Jo sin x dx

viding the range of

rule, (ii) Simpson’s 1/3 rule by di
or from its true value

: t,-apczoidal
] parts. Calculate the percentage €IT

. 1 g
wite rion into S1X equa

bgar[ah the cases.
at first divide the range of integration (0, 7) into

m
Solution We shall j ; :
_ oqual parts so that each part 1s of width 7z/6 and write down the table of
P :
values-
/ s
X 0 /6 7/3 n/2 2r/3  5ml6 (1
y=sinx 00 05 0.8660 10 0.8660 05 0.0
v P s
Applying trapezoidal rule, we have

o h :
josm J\:d:c=—2-[y0 +ys +20n +y2 Y3 s +ys)]

Here, b, the width of the interval is 7/6. Therefore,

5 j: sin xdx = -152- [0+0+2(3732)]= 3'1215 % 3732 =19540

Applying Simpson’s 1/3 rule (7.41), we have

5 h ;
Josm e, s -3-[y0 +ys + 4G 3 +Y5)+ 200 +y4)l

3 '1%[0 +0+ 4 x2)+)(L732)] = 3.114815 x 11464 = 2.0008

But the actual value of the integral is

.l v
Jo sin x dx = [—cos x]g =2

H
“%e. n the case of trapezoidal rule

3 .nk %
‘ Percentage of error = 2—-—-;-'2—51 x 100 = 2.3
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. ‘e le the
While in the case of Simpson'$ o

2 - 20008 100 =004
2

(s1gN ignored)

e following data, estimate the vaiic of

J': log x dx

value of A, so that the vajye of 4,

Example 7.7 From th

o, obtain the

: ; 's 1/3 rule. Als
using Simpson's five decimal places.

integral will be accurate up to

Ly
T T A A 35, 40 TR T

X
‘ 3863 1.
y = logx 0.0000 04055 0.6931 09163 10986 12528 1 lsw

sy, 8, and h = 0.5. Now ugmg

Solution We have from the data, 7 = 01,.
Simpson’s 1/3 rule,

Jslog x dx= "31[}’0 +yg + 40y +y3 +Ys Y1)+ 2032 +Y4 +30)]
1

%3 [0 + 1.6094) + 4(4.0787) + 2(3178))

= 9'3-5-(1.6094 + 163148 + 6.356)

= 4.0467
The error in Simpson’s rule is given by

E=2M"20 K'y™ ()  (ignoring the sign)

180
Since
) g L i 00 ok =
y—]Og X, y . Yy xz: Yy x39 ¥ X‘
iv) e < : iv) =
Max, Y (x) = 6, 12&125 ¥ (x) = 0.0096

Therefore, the error bounds are given by

(0.0096)(4)h* b (6)(@)n*
180 180

If the result is 0 be accurate up to five decimal places, then

4

180

<107
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B ipdons il

n 000C75 or h < 0.09. It may be noted that the actual value of
Islogxdx=[x log x — x; =Slog 5 — 4

mple 7.8 Evaluate the integral
gs8
1 dx

0] +x2

o trapezoidal rule, (ii) Simpson’s 1/3 rule by taking k = 1/4. Hence, compute
s

the approximate value of 7.

Solution At first, we shall tabulate the function as
e i
x 0 1/4 122 3/4 1
iy b 05412 08000 06400 05000
1+x

- using trapezoidal rule, and taking h = 1/4
R

[= g.[yo +y,+2(n+ 0t )] = —;—[1.5 +2(2.312)] = 0.7828 Q)]
using Simpson’s 1/3 rule, and taking h = 1/4, we have

/= %[yo 4.+ 40y + ) + 200 = Tli—[ls + 4(1512) + 1.6] = 0.7854 (2)
But the zlosed form solution to the given integral is

Il dx

01 +x
Equating (2) and (3), we get 7 = 3.1416.

¢ T
+[tan ‘x]},=z- 3)

2

Example 7.9 - Compute the integral

I= J:Z:J-le‘lez dx
0
using Simpson’s 1/3 rule, taking & = 0.125.

‘_W“ﬁon At the outset, we shall construct the table of the function as
Tequired. |
\

. 0 0125 0250 0375 05 0625 0.750 0.875 1.0

2

B ..xin

J,e 0.7979 0.7917 0.7733 0.7437 0.7041 0.6563 0.6023 0.5441 0.4839
\




