[ 6_.5/6uslc SPLINE INTERPOLATION

* The name spline function is derived from a device known as mechanical spline
used by draftsmen for drawing smooth curves. It consists of a flexible steel strip
to which weights may be attached in such a way as to constrain it to pas
through a given set of points. Mathematically, a spline function is one whose
graph 1s a composite curve made up of a number of polynomial arcs o!
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iven degree fitted together in such a way that the junm
a gl

arcs are as smooth as they could be mac!e. without going tc}s‘a single Polyn,
over the entire range. Fiui_ng to an empuflce‘ﬂ data ll:y a spline ﬁlnCtion -y
numerical method for obtaining a curve smnlar. tot e_ one produceq by a e Ds a
curve. This technique has been used ef:fectlvely in the areas' of °°mputch
graphics, flow simulations and for smoothing of satellite data Which g rec &
at a tracking station with noise.

Definition 6.1 Suppose, we have (n + 1) data points (x
where x; may not be equally spaced and x, = a, x, = b

a cubic spline function S(x), such that it has the following Properties: i~

i’.vi): I = 0, 1, 2

(1) The cubic spline function has the form

S&) = alx - x)’ + bx - x} + ¢x - x) + q,
in each interval (xis Xi), i =0, 1, 2,.,(m-1,
@) Sx)=y,(=0,1,2, ... n).

(i) The cubics are so joined that the function S(x) and both its slope S1)
and curvature S"(x) are continuous in (xg, x,). It means that the splin
curve S(x) will not have sharp comers and the radius of curvature
defined at each point.

Thus, the cubic spline function will

(xis x:11). To get §(x), we have

Fig. 6.1. A detailed account 0

found in Ahlberg et al. (1967)

e
is
have the form Sx) =

to put together the cubic
f the basic properties of the

S;(x) in the interva]
S Si(x) as shown g
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‘\/ Fig. 6.1 Piecewise cubic spline interpolation.
6.8. onstruction of Cubic Spliné ‘

S : . e ; ials
Ot[.aat;l: (f};ig) *UBgested a cubic spline S(x) by the piecewise cubic polynomi?

Sx) = ai(x - x,)?

69)

: _ Thi(x - x) + ci(x - %) T, g

'n each interyy) (x,, Xi-1), i =0, LB, (n-1) ' 1/:
. : v
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and we wigh ¢, dete,.

cubic spline can be "
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Since condmop (ii) in Definition 6.1 implies that the cubic spline fits exactly
i the two end points x; and x

i+1 Of the i-th interval, we have
SO) = ¥i = aix - xP + b(x, - x) + ¢)(x, — x) + d; = d; (6.70)
S(xi+1) = Yinr = a;(xi) - x)? + bi(xisy — x)* + ci(xisy — x) +d;  (6.71)

Nows introducing the notation h, = Xisy - x; Eq. (6.71) becomes

Yist = ahi + bh? + chy + d (6.72)
To satisfy the third condition relating to the slope and curvature of the joining
cubics, We obtain from Eq. (6.69) that

S'(x) = y'(x) = 3ai(x A x,‘)z + 2b,’(x = x,') + C; (673)

§"(x) = y"(x) = 6ax — x,) + 2b, (6.74)

Using the notation S = y"(x;) = M,, we can determine a;, b; and ¢; in terms of
M, From Eq. (6.74), we have :

M; = 6a(x; - x;) + 2b; = 2b, ; (6.75)

| My, = 6afxiy — x;) + 2b; = 6ah; + 2b; (6.76)
which gives us '

b-=%-, a.=Mi+1_Mi
! 2 I Gh

Now, using the values of d;, b; and q; given by Egs. (6.70), (6,77) and (6.78), we
get from Eq. (6.71) that -

(6.77,6.78)

Yis1 =£'ﬂ__—M"‘h.3 + ML”? g cih +y;

which gives

ey
i . -y M 'M;‘+ - ) ‘
Cl' s yl+lhi Yi e Zhl ! -;h' E 'al (6.79)

'
\

At this stage, we shall recall the third condition' that t.he sloises of the two cubics
meeting at (x;, ;) are equal from (i - Dth and ith intervals. Hence Eq. (6.73)
at x = x; the left end in the ith interval is ‘ :

Y (x) = Y= 3adxi - x) +2bfxi—-x) tci=g¢ (6.80)

while in the (i — 1)th interval (X1, %i)s fhe slopc‘a't the right end, that is at
X = x; given by '

Yx)=Yi = .30:;1 x; — X))+ 2y (6 = X)) + ¢y
. = 3a_h + 2biiheg F G (6.81)

Now, equating Egs. (6.80) and (6.81) and using Egs. (6.77)~6.79) for b, ,,

. : we get ; . . :
a8, and ¢;, respectively, ?1’ '1,-,,)’,-!- 2 b”’[rx, A1)+ C,_,

|
/
’ - 3a rd 2 Y [
\ ﬁt!l Uﬁa) & Hjal:, fonts X))+ ZA,,, (1 )(,o") + (,o_,

’
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Yinn — Xi _ :
/
= Yi — Yi-1 2R M +h M,
e il O | K = sy
. iy

On simplification, we obtain

. 5
Yr Yo Yo T Vi
h_ M, + (2h_, + 2h) M, + WMy 6( lhi hi_y IJ : ‘

fori=12, .., (n—1). From Eq. (6.83), it may be observec! that only M;’s ar,
unknowns, while all other terms can be computed from' the given data points, [, |
linear equations in (r + 1) unknowns M,

fact, it represents a system of (7 — 1) 1u _ ,
M,, ..., M,. Hence, two more additional conditions are required, relating to the |
end points of the complete spline curve, t0 generate two more additiona] °

equations. Many types of end conditions are specified and discussed in the
literature. However, we shall consider only two types of end conditions.

6.8.2 . End Conditions
s My=0,M,=0.In this case, the

Dype I: We specify Sp = S = 0, which mean:
ities. This is called natural spline.

end cubics linearly approach to their extremi
This form of specification of end conditions is very popular. In this case,

Eq. (6.83) readily gives us the system

g™ b o )
2(hy + )M, + 1& =6()_’L h N )’o)
Fat s s

F 4

M 2h- M M. = )’e+1—‘)’s__}’i")’i-1 '
h M, + (2hZ; +2h) M, 6( " > ] } s

wherei=2,3,...,(n—-2)

 hyaMa+ Ayt b M= 6 (}’n“yn—: _ Yo -&—_z]
h,1 ha-2 ¢

[2(ho+ 1y) hy :
. h 2(h+h) h, M,
y hy 2+h) b .

2 2tk )] \M A—J

h
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( =N W= W

h ho
ol o WY - Nt
h, h
=6 T D (6.85)
hy hy
Yn= Yn1 _ Yn1~ Yn-2
L hn—l h,._z y,

This being an (n — 1 X n— 1) tridiagonal system can be solved economically
ising Crout’s reduction method as explained in Section 3.4.

1I-.In this case, we specify the slopes at the end of entire spline curve; that

_73’1’:’6 are given y'(x) = 4 and y'(x,) = B. This is called clamped cubic spline.
g;om Eqd S6.80 , we have

= '%‘Mi = ﬁMm R (6.86)
wing the left-end condition for i = 0, we obtain
_hM o E_M + _Xl._—_yo- =A

L R ho

That is,

6 a—
2M, + M, = -—(————" — Yo _ A) (687)

o\ h

&
Simjlarly from Eq @ have

’ - Mi"i-;l M_i-l":—l /B /=
BRI TG Mt
the above equation becomes

Now, using the right-end condition fori =n,

B = _M_"h.t!- + _‘_‘l_n:lﬁtl + _)_’_B_jﬂ
: 3 6 ey
Puther simplification yields %
g e )’..—1] e ]
; M, , +2M, = i hoy
Ny 1, Bq((6.83) gives '

: Y= N _N—" o
hoMo+(2ho+2h])M1'."h1Mz'—‘6(—37lll o ) . (6.89)
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.89), we get
Eliminating M, from Eqﬂ)—ﬂ{fﬁil_mg___ SIS PR . S
-V N Yo 34

(_3_)10+2};])M,+MM2" h

&
Yo ¥y Vel & Yn-2
i hn—]Mn x 6 { h hn—z ]

Also, fori =n -
n—1

By oM, + 2Ry + 2h, )My
(6.91)

Eliminating M, from Egs. (6.88) and (6.91.),—w/eget//__,,\
Yn = In-1 _6}’n-—1 = Yn-2 s

(\ - = - 3B
w 5 (Zh"_z i -Z-hn—le"-l ’ by " h,_,

Hence, in type 11, we have to solve Egs. (6.83), (6.90) and (6_-92)- These equations
together constitute an (n — 1 X n — 1) tridiagonal s.ystem n unknowns M;, M,
...s M,,_;, which can be solved using Crout’s reduction tfschmque. In orQer to see
the sequence of steps involved to construct a cubic spline S(x) for a given data
set, using cubic spline interpolation, we shall consider below a couple of simple

examples.

xq ye "(l 7}
Example 6.20 Fit a cubic spline curve that passes through (0, 1), (1, 4),
(2, 0), (3, —2) with the natural end boundary conditions $"(0) = S$"(3) = 0.0.

1

i 1S‘olu3ion’ From the given data, we observe that there are three intervals, in
each of which we can construct a cubic spline function. These piecewise cubic
spline polynomials when put together determine the cubic spline curve S(x) in
the entire interval (0, 3). ' .

At the outset, we observe that hy = h, = h, = 1. For natural spline, we obtai _

Egs. (6.84) as ’ ‘
() -G r3)-
=6 45
1 4)\M, -2 +4 12 |
That is, :
WM, + My =-42

Its solution is M} = —12, M, = 6. Natural-e it : =0.0.
. : -end condi =M, =0
Let the natural cubic spline is given by nditions imply My = M3

&
,S(x.) =a;(x —x)* + b,(x - x)? + ¢;(x - x;) + d;
where the coefficients are given by the relations

1 6h, ) l b|=—5l—\
e Yisl = Vi _2thi + hM,,,
hl 6 ’ d.'=y'~

r_——'—?rﬁ—-—-—-——-———d
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T

fof i=0, 1, 2. Using the data and the values of M, and M,, we compute the
jents as
Cchﬁcm

ao = —20, al = 3’

a = -1
12
CO=3+?=5, C]"—l‘ cz__.4
dy = 1.0, d, = 4.0, d, =00
Hence the required piecewise cubic splines in each interval is given by

So(¥) = -2.00° + 5x + 1 for0<x<1
Sl(x)—3(x_l)3_6(x 1 -(x-1)+4 for1<x<2
S0 =-x-2) +3(x - 2)’ - 4(x - 2) for2<x<3

gxample 6.21  Fit a cubic spline curve that passes through points (0, 1), (1, 4),
2,0) and (3, -2) with the given derivative boundary conditions

S$'0)=2, S@B)=2

Solution In this example, we have three intervals, in each of which, we can
construct a cubic spline functions denoted by Sy, S; and S,. At the outset, we

observe that hy = h, = h, = 1. For derivative boundary conditions, we use
Egs. (6.90) and (6.92) and get s ld=5 (a) 2

-;—Ml+M2=6(—4)—-9(3)+3x2=—45

X l =3 /'n
M1+%M1=9(—2)—6(—4)—3X2=0 WL( v ~

B=5(3)= 2
Its solution is M; = —14, M, = 4. Now from Eq. (6.87), we obtain 2M, —
14 = 6, which gives My = 10. Also, Eq. (6.88) gives M, + 2M; = 6(2 + 2) = 24.
Using the value of M,, we get M; = 10. -9

Let the cubic spline in each interval is given by

SG) = afx — x)° + bfx — ) + cfx - x) + d;
The ‘coefficients are computed as

h=2 4

a°=—4' al=3, a2=l-
60-5, bl=—7’l b2=2

co=2, =0, - C2 = -5
dy=1, d, =4, dy,=0.0

ticnce the required piecewise cubic spline polynomials in each interval is given
y

Sox) = —4x> + 522 + 2x + 1, . for0sx<1

s,(x)-'a(x-l)’-v(x-l)’+4. - forlsxsg2

5,(x) = (x — 2)° +2(x—2)2_5gx—2), for2<x<3
/’ g
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.

In this Canlple, P =Xy xo)/h = (x 3t 3)’ A.J’o i 0035’ Azyo — -00]6»
=0 Alyy=~ 0.001. Recalling Newton’s forward difference formula given by
(6.33) and redining up to third differences only, we have

£
L 1 oA e
y= Yo + phyy + m;__) a2y, + PP 13)'(1) 2) Ay,
qubstituting the values of p and the differences, the above equation becomes
\ 3
i y =0.205 +(x_3)(0'035) i (x—3)(x—4)(— 0.016)
That is, ~ e (1

\ L
K 4

y=-0.008x? + 0.091x + 0.004 ‘ M
For maxima Or minima, we require

)

dy

which gives = 5.6875. Thus, the minimumvalue of § 4f’x ='5.6875 is folnd from
Eq'(T)as y=-0.008 (33.414) + 0.091(5'6875) + 0.004 < §.25425. ‘Hence the
minimum value at x = 5.6875 of the given tabulated function is =0.25425.

Eu‘?ple 6.23 - Find, for what value of x, y is maximum, from the following data:

x B bt o Salnithe SRR
y 21 LT B

Solution-" From the given data; it carf be séen that the” argafiénts ‘4re not
*qually-spaced, and therefore, we can use either Lagrange’s interpoldtion or
Newton’s' divided ‘difference interpolation  formula® We ¢hoose the former and
hence the Lagrange’s interpolation formula for the given data given ag

S D=3 ) GHEDE-2)c-3) 1s)
SDE-2-1-3) ) A+D=2)053)

EHD=DE=3) o EHDE-DE-2) !
"erhe-ne-3) 2 G+dE-DE-2)

)

)} + L X + O)

=§(x3 - 6x? +11x-6)+35-(x3 —-4x* + x +6)

e (= 3kt - X 3) S S 2X gk &)
3 3
“%2‘(9-—3;:2—x+3)+§(x3—2x2—x+2)
Mplifies to 5 S O

b
O

“hich ¢

y=x-9x*+17x +6

M

5 b Lol VU
o 0.016.x+0..091 g s ’f“”-‘l!ff
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For maxima or minima, It is required that
D 32} =185 +17 =0
dx

which is a quadratic equation, whose solution is given by

184187 =12 x17
X =
6
Here, we note that x = 4,8257 is outside the considered range. Hoy,e,

=4.8257 or 1.1743

t[’

d’y
2
x=1,1743

= (6x-18) = Negative

xz=1.1743

Hence, the maximum value of yatx=1.1743 is given ag
y= (117437 - 9(1.1743)* + 17(1.1743) + 6 = 15.1716

Example 6.24 Given £1°ix) = 500426, T1°1x) = 329240, £ fix) = 175,
J(10) = 40365, find f(2).

Solution In this example, we are given the cumulative vajye, of &
function and therefore, we adopt the following notation:

10
F)=7Y f(x)=500426
e
10
F4)=3 f(x)=329240
; 4
10 \© M
FN=Y f(x)=175212 50,
7 ?{}J ;ib"
F(10) = £(10) = 40365 .

andconsu-uctﬂnforw-ddiffemmetablcu

x- Ry AV ARy A’Fx) AR

1 500426§ K0T Vi) sol)

¢ amep  -Tise K K
17158

7 175212 154028 e b

10 40365 - -134847

e

- N.w’bﬁ"“"(l')‘ I’/ ), we may recall Newton's forward differeoct
8iven by Eq. (6.33) as

e
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40, rom (he table we note that | \ S
4020 Subatituting thee vitluen, the abhove eguation gives \ k‘\,‘ ( x

R LA IR ELEA BTTPTERTRY: ‘
\ ‘ v “ | “\.“‘_-‘Q‘_ "Q\

refure, we finally have - o Fow)
fU0) = FU1) - ML) = 00426 AT ALY = SRR Rty

. \
\ “\\ \'
R R R
A \
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Fi(2) = 500420




