6.6 DIVIDED DIFFERENCES

When the function values are given at non-equispaced points, we have
“developed the Lagrange’s interpolation formula for interpolation in Sect::%
Now, we shall introduce the concept of divided differences and theq i 6
Newton’s divided difference interpolation formula, whose accuracy js san:h
that of Lagrange’s formula, but has the advantage of being wmputanm.ﬂf
economical in the sense that it involves less number of arithmetic Operatiogs
Let us assume that the function y = f(x) is known for several values of,
(xi» ¥:), for i = 0 (1) n. The divided differences of orders 0, 1, 2, ..., n are defip
recursively as follows: :

¥ [xo]l =y (x0) =
1s the Oth order divided difference. The first order divided difference is define
as
YIIQ. xl]‘= yl "'YD ‘
X — X
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¢ n's Divided Ditference interpoistion Formuiy

L = 4

6.6.1 Newto

Lety = f(x) be &
X"xpl"-'oo 10 :
x=x, =01, ..

y=J(x)=ap? ay (x = xg) + aylx  xy) (x 2y

+ an (1 34 X‘J) (.‘ 5 X|) o (/‘ Ap )

function which takes valneq‘y,,, Vo 1 Vn e
n. We choose an interpolating pelynensinl ergen ™t §
. n in the following convement fetm "

/"&-
Here, the coefficients ay are so chosen as o sutisfy Kq. (6.45) by the (5 . ',y,,,’
(x;, y1). Thus, we have

Wxo) = f(xg) = yo = dg
Wxy) = f(x)) = yy = ag + aylxy = %)
Mxg) = f(x) = y3 = ag + ay(x3 = %0) * afxy ~ x) Uy~ xy) 7

- Yn=dp+ ai(x, = xg) *+ ay(x, ~ xbxxn - X)) ¥
+ ap(x, = xp) <+ (%4 = Xp-1)
The coefficients a,, a;, ..., a, can be easily oblamed from the sysion 4
Eqs. (6.49), as they form a lower triangular matrix. The first equation of (4
gives

J

ag =y (xg) = yo “y
The second equation of (6.49) and Eq. (6.50) gives
A= |
a = = y[ ) “:
S, X X
The third equation of (6.49) after using a, and a; as given in Eqs. (6.50) md 57,
yields
g, = B2~ (5 = X)yix, 4)
(% = x)xy = x7)

which can be rewritten as

[yi—}“ ; :_,_y (x *xo)l-(xz - %) ¥l5g. %)
a2=-

(7 = %) - x) %

g, = 2N Yo )y - ) - yy, p) - 54l
| (x; = x)(x; = x,) X =%
Thus, in terms of second order divided differences, we have

%

a. -ybo’ x]! sweg X,]
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gty OVEOn. § divided difference interpolation formula can be written as
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y B T ) Yoy T e xo) (x = x;)y [xo, X1 X¥2] + -
T -x)) (- x) L (= x )y (Ko Xp -ees Xnd (6.54)

wton’s divided differences can also be expressed in terms of forward,
backWa’d and. central differences. They can be easily derived as follows:
suming equispaced values of abscissa, we have

L As
X} — Xg h
M _ B,
Vg %1y %) = 2RV =YX x) _Th " Th _ Ao
X; = X, 2h 21h%

By induction, we can in general arrive at the result

WXy Xy, ey x,] = 220 (6.55)
n'h"

Similarly

- v
Ylxon ;] = N—Youl YH
it e T
ylx, %] - ylxo. %] _ _h ko VX
X, — X, 2h 2!h%

ylxg, x5 X2] =

In general, we have

Vn
Yxg %y 0 Xl = — :,’,‘ (6.56)

Also, in terms of central differences, we have
N —Yo _ M
X — Xy h
Hyz _ O

_ ylx, %] = yix:ml _ _h oy
4 iy X, ~ Xp 2h 21h%

In general, the following pattern is arrived:

y[x, %] =

5"y, B
y [X0» X15 -+ X2m] = T

- > 657)

52m+ly
i, m(1/2) .
¥ [x0, X15 <> Xom+1] @2m + 1)!h2m+1 ¥

We Present below few examples for illustration.

L
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' ; i ial by (i) Lagrange’s f
' interpolating polynomt ) .
I_J'nmple 6.’16dl_ Vf :’cg :ihj;'crcnce formula for the follqwmg data, and hencel S g
g)tbfz:;‘ﬂ;,cscm the sameé interpolating polynomxal. hoy,
a /‘____
0 1 2 4
W R e e i
Solution The divided difference table for the given data is constructeg
N
mllows: |
" 1st divided  2nd divided  3rd divided
x y difference difference difference
0 1 -
1 l (l) + -1/12
i § : 32 1/6

(i) Lagrange’s interpolation formula (6.37) gives

(x — 0)(x — 2)(x — 4) i
(1-0)(1-2)(1-4)

G- DE-2x =D
y=f(x) = D M+

(x-0(x - D(x - 2) ©
44 - 1X4 - 2)

(x - 0)(x - D(x — 4) @) +
Q2-D2-4

x3—6x2+8x 5 x3—5x2+4x

2 —(x3—7x2+l4x-8) =
8 3 2
. 5(x% = 3x% + 2x)

. 24
3 2
x 3x 2 ;

et JL g g o] 1)
T 3.:c+l (

(ii) Newton’s divided difference formula gives

; . 1
y=f(x)=1+(x-0)0) + (x -'0)(x - 1)(%) + (x — 0)(x - 1)(x - 2)("1’2)

x? 3x2
= e — e ol (2)
12 4 3x +1

by bo¥

From Egs. (1) and (2) mi
- we observe that the interpolating polyno al
lagnng ’ Ao a3 i sam &
Ncwton: 'fmd Nﬂ.m’n s divided difference formulae is one and the :h‘ ::Jof
ormula involves less number of arithmetic operations

Lagrange’s.
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grample 6.17  Using Newton’s diyided difference formula, find the quadratic
equ,ﬁoﬂ for the following data. Hence find y (2).

X 0 ] 4
2 1 4

Solution  The divided difference table for the given data is constructed as
follows:

x y 1st divided 2nd divided
difference difference

o :

1 1 , 12

4 1

Now, using Newton’s divided difference formula, we have

k) ¢

Y=2+ (-0 (-)+(-0)(x-1) (-;;) =@ -3+ 4)

Hence, y (2) = 1.

Example 6.18 A function y = f(x) is given at the sample points x = xo, x; and
x,. Show that the Newton’s divided difference interpolation formula and the
corresponding Lagrange’s interpolation formula are identical.

Solution For the function y =f(x), we have the data xi¥),i=0,1,2. The
interpolation polynomial using Newton’s divided difference formula is given as

y=f(x) = yo + (x — x0) Mxp ¥} + (x — ) (x — x1) y [x0, X1, x2] (1)

Using the definition of divided differences and Eq. (6.47), we can rewrite
Eq. (1) in the form

(yl - yo) by ( o3 )(x P [ Yo v
g S T i L %)
Y=yo +(x Jro)(x1 - Xp) sy (o — )% - x)

: N Y2 ]
+ 4 :
O - )H — %) (G~ X)x® - x)

i g 1t (x—xo)(x—xl)]yo
K - %) (0 = %) ~ %)

(x — x) (x — %)x — %) ]y + (x = xo)(x — x;)
% {(-\'1 - x3) g (n - X)X — x,;) ‘ (x, -XO)(x:!,‘xl) /]
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; ; ; "
On simplification, 1t reduces t0

‘ 1 S 1 L
- = %) _(_{__{Q)__._-———-—yl
s ot (7~ x0)(%y

= 5 - (X — X)
which is the Lagrange’s form of interpolation
are identical.

(& ~ %G }x ~ x)

- X3} (%, = X0)x; = x) " “

sy Wtad

I

“
il
polynomial. Hence Egs. (1) angq Q) 1

6.6.2 Newton’s Divided Ditference Formula with Error Term
) of divided differences, we have .for any x the
la for the interpolating polynomial that fi .

x, following Eq. (6.54) can be |

Following the basic definition (6.46
Newtor’s divided difference formu
divided difference table at x = X, X1, X2, -
rewritten with error term £(x) as

y(x) =y + (x — x0) y [x0, x1] + (x ~ Xp) Pr= x1) ¥ [xo, X1, X2+ -+

+(x=X) (x —x) - (x = Xp1) y[xo Xis -+ Fad T E(X) (658
where
e(x) = (x — xp) (x —x)) ++ (x — Xp) Y[x, X0, > Xn] (6.59)

It may be noted that for x = x4, X, ..., X, the error term £(x) vanishes.

6.6.3 Error Term in Interpolation Formulae

We have seen in Section 6.6.2 that if y(x) is approximated by a polynomial
P, (x) of degree n then the error is given by :

£(x) = y(x) - P,(x), (6.60) §
wiicre, '
E(X) = (x-x0) (x —x1) ... (x=x)p [x, xp, ..., x,]

Alternatively it is also expressed as

€(x) =TI(x) y [x, xq, ..., x,] = KTI(x) (6.61)

Now, consider a function F(x), such that
F(x) = y(x) - P,(x) - KTI(x) (6.62)
and determine the constant X in such a way that F(x) vanishes for x = Xo X1’

--+» X, and also for an arbitrarily chos

; en point ¥, which is di jven
(n + 1) points. Let / denotes the cl e Which is diffrcat fropt the £

s y osed interval spanned by the values Xp ' ;
:!':n:s-h:il: lF(X) ey t 2.) times in the interval /. By R)(,Jlle‘s theorem F'(*)
and so on E:ast (n + 1) times in the interval J, F "(x) vanishes at least n im¢> &
ik - Eventually, we can show that F(r + DY it e at Lokt st B e B
1, say atx = & Thus, we obtain es a

0 =y(n+1)(§) - f:('".'”(é) i Kﬂ“"‘”(g) 669 &

O ————] {
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0 e P

¢ P,(x) is @ polynomial of degree n, its (n + 1)th derivative is zero. Also, from

Sin e ke :
dllC Jefinition of [(x), T "Y(x) = (n + 1)!. Therefore, Eq. (6.63) giVes
K = y™(&)
(n+ 1!

Substituting the value of constant X into Eq. (6.6P) gives

(n+1)
E(x) = y(x) = B(x) = L—@H(x) (6.64)
(n+ 1!

or some & = §(x) in the interval . Incidentally, by equating Egs. (6.61) and _,,1;}

(6.64), We observe that 'y ¥
/"’A |(n+l)(€) . K: ‘3,
et o (e SR 1€ (6.65)
S0 AN el R T

Thus, the error committed in replacing y(x) by either Newton’s divided
gifference formula or by an identical Lagrange’s formula is given by

y(n+1) (é)

0 Thert i
£(x) ()ylx, xp, +, x,] = II(x) (n+1!

(6.66)

67 INTERPOLATION IN TWO DIMENSIONS

Let u be a polynomial function in two variables, say x and y, in particular
quadratic in x and cubic in y, which in general can be :writt;n as

[

y 2 b/ 3
u=f(x,y) =agtax+aytax +axy+ sy + agy
o
+ aoyPx + agh + agyx + ayyR + ay (6.67)

This relation involves many terms. If we have to write a relation involving three
or more variables, even low degree polynomials give rise to prohibitatively
long expressions. If necessary, we can certainly write, but such complications
can be avoided by handling each variable separately.

If we let x, a constant, say x = ¢, Eq. (6.67) immediately simplifies to the form

U| oo = by + by + b’ + b3y (6.68)

Now, we adopt the following procedure to interpolate at a point (I, m) in
2 table of two variables, by treating one variable a constant say x = x;. The
problem reduces to that of a single variable interpolation. Any one of the
methods discussed in preceding sections can then be applied to get f(x,, m).
Then we repeat this procedure for various values .of X 52y X =X, X3, ..., x,
keeping y constant. Thus, we get a new table with y constant at the valye
Y = m and with x varying. We can then interpolate at x = 1. We shall illustrate
this procedure by considering the following example.
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bulate the values of the function
=R+
' is tab
=0,1,2 3, 4. Using this table of values, o
double interpolation. ;

the function for the given values of x andy
J

Example 6.19 Ta

forx=0,1,234 ax}dy
125, 33) by numerical

Solution The values of
given in the following table: \.

¥

: 0 1 2 4

0 2 6 12
0 0 TR ]
: : 1 | 3 7 13l
2 4 4 ' 6 10 1 6'
A L S
4 16 16 18 ”» o8

Using quadratic interpolation in both x and y directions we need to consider
three points in x and y directions. To start with, we have to treat one variable
constant, say x. Keeping x = 2.5, y = 3.5 as the near centre of the set, we choosc §
the table of values corresponding to x = 1, 2, 3 and y = 2, 3, 4. The region of
fit for the construction of our interpolation polynomial is shown with dots in tie |
above table. .

Thus, using Newton’s forward difference formula, we have

Atx =]
.f Af A%f

huN"g
W

Atx =2
J
7 / Af A“:f
6 —
¢ 6 I R,
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with AT e

We obtain,

£01,3.5) = f0+pAf0+£—(L;D-

Ay =3+ (1.5)4) + 13)0.5) '5)2(0’5 ) (2) = 9.75
- 1.5)(0. |
f(2,3.5)=6+ (1.5)(4) + (—lz((.)ﬂ (2)=12.75

£3,3.5)= 11 + (1.5)4) + Mﬂ(z)-l

Therefore, we arrive at the following result

At y=35
X S Af Af
1 9.75 S
2 e . T
3 17.75
NOW’ &ﬁning i
25-1 «
p= =15
and yg; B
= using Newton’s formula, we obtain
- 1.5
£(25,35)=975+(1.5() + (__)QS). @) =15

From the flmctlonal relation, we also find that
£(2.5,3.5)=25°+(3.5°-35=15

" hence ng error in interpolation.
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