Differences i
6.2.3 Central e orce notation is found to be more cop,,

enicm

: .ations, central differe ion.
In some aPP':;:t::,cccssive differences of a ﬁ‘“g“&: };‘e;:c:t us}c the SYmbg,
to represent central difference operator an i Pt o 6y. for 4,
j f}o ngm:: !:l‘w average of the subscripts of the two members of the "'hffe"‘«fnccy
ifference :
Thus, we wrte s N & =Y2 = etc.
In general
Sy, = yira) ~ Yi-172) (6-16)
Higher order differences are defined as follows:
8% = Yuan) — &i-qn) (6.17)
1
8", = 6™ yuan) - 6" Y2 6.18)

These central differences can be systematically arranged as indicateq ;
Table 6.3: :

Table 6.3 Central Difference Table
4
x y oy 5% &3 5% 8% 55

X0 Yo

i

X Y1 &%y,
X3 ¥3 5)’ 32 52 ) 3}'3/2
X 5)’ 5/2 Zy2 5 3y5 12 54}’ 2 !

3 Y3 5 0%y, 3 54 8%ysn2 |
X4 Y4 Yir 52 o Y Y3 5 ) 6

4 Sy Ya 3 &4 Yir Y3

X - Ps 972 62 6 Yor2 Ya

Xg Ve 5)’11/2

Thus, we observe tl.uat all the odd differences have a fractional suffix and all the

even dnﬂ'erence§ with-the same subscript lie horizontally.

e The following alternative notation may also be adopted to introduce finite
crence operators. Let y = f(x) be a functional relation between x and y, which

;,s a’l'so denoted by y,. Suppose, we are given consecutive values of x differing
yhsayx,x+h,x+2h, x+3h, etc. The corTes

ponding values of y are y,, Yx
Yxt2h Yr+3n €tC. As before, we can form the differences of these values. Thus

A= Yern = Yo =f(x + h) - f(x) ¢

Similar} Azyx" Ay,ﬁ. & Ayx .
and V== yen = f0) - fx - B) e
5}'x=y,,(;,,2)-—_yx_(hm=f(x+ _'21) -f(x W) _g_) (6.2”



Inlrrpulan'(m

e

i 1 0]
nift operato” '

) be a function of x, and let x takes the consecutive va]
d"oh ‘e, We then define an operator £ having the property ues x, x + p,
+ &M% ;

Efx)=f(x+h) "
42)

when 0 erates on f (x), the result is the next value of the function. H
?1' :séalled the shift operaior: If we apply the operator £ twice on f(x) ;Necgr:;
l ’

EY)=EES@]=EV )] = f(x + 2h)
us, in gencra], if we apply the operator E n times on f(x), we arrive at

o E"f(x) =/ (x + nh)

Ip terms$ of new notation, we can write

E"yy = Vx+nh

E'f(x) =f(x + nh) (6.23)

for all real values of n. Also, if Yo, Y1, Y2 V3 are the consecutive values of
the function Vx then we can also write

or

2 o0
Ep=y, EVo=I» B R BB

und so on. The inverse operator E-! is defined as

Elf@=sx-5
and similarly

E7f(x) =S (x—nh) (6.24)

Average operator, /.

The average operator A'is defined as

1| . h h 1
pf(x)= 5[} (x + -2-) +f (x - 5)} = E[y”"'m + Ve (625)

Differential operator, D

It is kn :
own that D represents a differential operator having 2 property

Df(x) = % fx) =f'(x)

(6.26)
Df = L "
H‘Vingde A dx? f(x) =f"(x)
the £ fined various diff;
:"""‘“8 relations ea;ner'ence operators A, V, 8, E, it and D, we can obtain
Tom the def; y:

inition of operators A and E, we .have

Ay, =
yx yx+h-yx=nywyxz(E_ l)}’x




Therefor® l
finition of operators v and E', we have
in ,|

Jlowing de Ay ¢ i s £y
! vy, = ¥z~ Yx-h
fore. b
There L o : ’
(6'28)
The definition of operators 5 and E gives
c /’
o = Ey, - EVYy = (E'? - E172) W
Oy = Yxr(W2) Yx-(h12)
Hence, : s o ‘
o ! .
The definition of & and E similarly yields 6
: ' - Lgw -2
y'yX = -i[yx+(h/2) + yx-(h/Z)] = _i(E + E )yx
Therefore,

1
e EUZ +E—112
i 2( ) (630)
It is known that
ny = Yx+h =f(x W h)

using Taylor series expansion, we have

2
Ey,=f(x) + hf "(x) + %f”(x) PRy

p
=)+ DI) + D () + -

- hD  h*D?
—(h' 1! i 2! +m}f(x)=ewy"

Thus,
(631)

% hD = log E
ence, all the operators are expressed in terms of E.
Example 6.5 Prove that
hD =log (1 + A) = — log (1 — V) = sinh™ (19)
Solution  Using the standard relations (6.27)-(6.31), W€ have 0

aso "D E=log (1 +8)=—log E" = -log (1 - V)
L e_w) — sinh (hD)

k u8=i 2 -7
i Z(E +ETy(EV E') = %(E - B) = —};(e



Thcr(}fore. e
. : —_103
hD = sinh '(u5)
ns (1) and (2) constitu it
Equatlo itute the required result. (2)
6 IfA Y,
E“mph? 6[:6 o ) dcnqtc forward, ba:ivarg and
erators, £ an p are respectlye]y the shift and a central differep,
ma]ysis of data with equal spacing #, show that verage operators, iy z}ic
: e
2
> 5°
D 1+ =1+ — li = 6
@ liree (+2‘ @ E7-pe
52 N 2 -1
- 2 2
A+V
v) /.1(5 ST 2

Solutions (i) From the definition of operators, we have

16 = %(Evz + EV(EV - ETVY) = —;_—(E _EY

Therefore,
o 7 o V8 e )
l+ﬂ5—l+z(£ 2+E)—-Z(E+E, )
Also,
2
1+ _52— =1+ -21-55”7- 0 S i %(f_‘ +E™ 2)
From Egs. (1) and (2), the first result foliows
(1) Now
120 E-]./z) =E”?

o+ 525_ = %(E”2 +E 1T 4L

Thus, the second result is proved.
(111) We can write .

52 (EIIZ _E—1/2)2
— 6 2 %
5 14(6°/4) )
12 ! 12 ,-1/;—;
i el sl
1
e i*E—' +—;—(E“2 E—]/Z)(El/2+E 112)
_E-2+E" E-E
il e
=F -1



) and (6.28), we have

Now using Egs. (6.27
1 ‘
#5=—;—(1+A--1+V)= -2-(A+V)

Example 6.7 Show that the operators [t and £ commute,

Solution From the definition of operators i and E, we have b Q \
r‘\ ] )«r 14
) et

1 'E -
UEY, = Wy = 50’3/2 * Y12 'E: ,/,)-_"T_l')

While ( rf s *h)
1 1 \
Eyo= 5E O * yar) = 5 03n + yin) Q)
Equating (1) and (2), we have
KE = Ep

Therefore, the operators 1 and E commute.

Theorem 6.1 (].)iﬂ'erences of a polynomial). The nth differences of a polynomial
of degree n is constant, when the values of the independent variable are given
at equal intervals.

Proof Let us consider a polynomial of degree » in the form
Ve = apx" + alxn_l + Clz)f"n2 + . +a,xt a,

: of
w_here d # 0 and ay, a, ay, ..., a, are constants. Let 4 be the interval
differencing, Then

Yxen = ao(x + h)" + al(x + ’;)n—l i az(x o h)n—Z Rt an—l(x + h) + Oy
We now examine the differences of the polynomial:

-1

A= ook = e = aol(x + by - 3] + ayftx + WY -5

)
+ ap[ux + h)n-z 4 xn-Z] ot it t:l,,_l('r ’




—— lnhifk[.-.‘;/‘-",,,"

—

il vy R 105 \

Hmumml expansion yields o
ng~ om | n ‘&
ayx = aglx" + "C X" Th + "Cox™ 2 4 . 4 x")

+af! + ICKh 4 (el
e 4 -l -1
]+,

+ anﬁlh

= aghx" + [ay"Ch? + a\" DC a2 + ... 4 a,_1h

A}rx = aonh.l’”-] + b’x"z + C/xll—] e ot k/x 4 1:
it e | f l’.arc constants _involving h but not x. Thus, the first
gifference of a po]ynomlal of degree n is another polynomial of degree (n=1.
Similarly

Azyx o A(Ayx) - Ayx+h = Ayx ¢
= agnhl(x + B - XM ]H B(x BT - Y 4

+K(x+h-x

on simplification, it reduces to the form
Ay, = apn(n - 1) B2+ b+ e+ o+ g

Aly, is a polynomial of degree (n - 2) in x. Similarly, we can form the
higher order differences, and every time we observe that the degree of the
polynomial is reduced by one. After differencing n times, we are left with only
the first term in the form

A"y, = agn(n-1) (n-2) ... (2)(1) h" = ag (n!)h"” = Constant
This constant is independent of x. Since A"y, is a constant, A"y, = 0. Hence
the (n + 1)th and higher order differences of a polynomial of degree n are zero.

Therefore,

63 NEWTON'S FORWARD DIFFERENCE INTERPOLATION ﬂ
FORMULA

Lety = f (Jf) be a function which takes values f(x), f(xo + ), f(xo + 2h), ...,
zomsp"“dmg to various equispaced values of x with sgacing h, say x, xo +
+';: +wit' _Suppose, we wish to evaluate the function f(x) for a value x
°Per;t0r Ere P 1s any real number, then for any real number p, we have the

such that £°f (x) = f (x + ph). Therefore, using Eq. (6.27) we have

TGa+ ph) = Bf (xg) = (1+ A)?f (x)

=|1 p(p-1) (p=1)(p=-2
%, [H’M S 3).(p )A3+"'}f(xO)
1§, :

"0+ iy

=f(x0) + paAy ( P(p - 1) D o=
Vx4 21 A f(xy) + p(p 3)!(}’ 2 Afxg) +
n! A"f (xy) + Error (6.32)
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ﬂ . B s and Engincer
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106 n s jorward dyjerence Jormula for interpolay,
in terms of f(xo) and its leading differcnc,
¢s

\. hl !
ch
Grc’gﬂl}‘ f()i ward d!f_}(’ren(\e ”‘ller 3 hll
8
)

as Newlo
of flxo + Ph

This is kno®™
wn as ‘N'{’M'fon"'

e value

formula l}j i':c’pkﬁo(x _ xp)/h. Equation (6.32) can also be writtey, g,
mula. HETS Noy
;zl,t::matc form as hey

= ~ P~ 2
plp =V, . PLP )3
el il g T
plp=1(p " + 1) A"y, + Error
n! (
*6'33,

If we retain (r + 1) terms in Eq. (6.33), we obtain a polynomial of degree , s
elng

with y, at xo. X1, coos X : :
This formula is mainly used for interpolating the values of Dt
I lhe

beginning of a set of tabular values and for extrapolating values of y, ,
distance backward from yp. We shall illustrate these formulae by cons; d’erinsgh&
¢

following simple examples.

Example 6.8 Evaluate £(15), given the following table of values:

10 20 30 40 50
46 66 81 93 101

X

y=f(x)

Solution We may note that x = 15 is very near to the beginning of t
table. Hence, we use Newton’s forward difference interpolation formula. Th

forward differences are calculated and tabulated as given below:

x y=/(x Ay A%y A’y A%y
10 46 E

20 66 . -5
30 8l g 5 2 i
40 93 2 oy 5
50 101 "

We have Newton’s forward difference interpolation formula as

= Fii(p =2
e R p(PZ' s LA 13)fp ) 55,

N p(p — 1)(P47 2)p -3 A4_v0

In this example, from the above table, we have
3

— 4, = -
xo=10, y,=46, Ay, =20, A%y=-5, Al = 2, Ao



Inter volan

e v “_Q

—

11y b8 the value of v when v = 15, (hen
T R
L4

o« XoN _13-10
i T o)

ituting these values in Eq. (1), we get
wbs

0505 -1
= 46 + (09Q20) + ———

-5
“l.ﬂ = Vs - el

(0508 = DOS - 2) Q) + (0.5)0S ~ 1)(05 - 205 -3)
o o >

6 ; 24 ey | )
e 46 + 10 + 0.625 + 0.125 + 0.1172

fore, f(15) = §6.8672 correct to four decimal places.
TRISURS: ¢ 327

6.9 Find Newton's forward difference interpolating polynomial for

fxample . ‘
e following data:
"—_x 0.1 0.2 03 o —

Solution We shall first construct the forward difference table to the given
data as indicated below:

4
F  ymfod . By AT Al Ay
0.1 1.40

0.16

02 1.56 0.04
03 176 gjg 0.04 8'88 0.00
04 200 % 0.04 :
05 228 :

Since, third and fourth leading differences are zero, we have Newton’s forward
{iference interpolating formula as

il
Y = Yo + ply, + _______p(p2 ) Aty, )

" it problem, x, = 0,1, yp = 1.40, Ayo = 0.16, A%y, = 0,04, and

x =01
: 01
uting thege values in Eq. (1),

p= =10x -1

we obtain

P =100 = 140 4 (10x - 1016y 4 (0% = ”2“0“‘ =3 (004)
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Rl lay
That 15 > i‘lq‘

polynomial- et B2 missing figure in the following tap)e.
s
ple 6.1

e R g

X 7 2 S
y= @ 2 R
[ Il

A : tries in the table lh :
.+ Since we are given four en 0 ¢ e funei, -
S eented by a polynomial of degree three. Using Theorem, '~/
cal >
; Wy

A (x) = Constant and A4f(x) =0

: 4
corall £ In particular, A% (xo) = 0. Equivalently, (E — 1) f (x;) = , Expandin&

have W

(E* - 4E° + 6E* —4E + 1) f(x0) = 0

That is,
£0) - 43) + 6/ 0x2) = 4 (1) + £ (x6) = 0

'Using the values given in the table, we obtain
32-4f(x3) +6X7-4%x5+2=0

which gives f(x3), the missing value equal to 14.

Example 6.11 Find a cubic polynomial in x which takes on the valueg

; =4
27,57 and 107, whenx =0, 1, 2, 3, 4 and 5 respectively. ML

Solution Here, the observations are given at equal intervals of unt width

To determine the required polynomial, we first construct the difference table a
follows:

A 4@ AR AR
0 3 h

1 3

2 11 8 ‘; 6
3 v4) 16 ¥ 6

. o = 20

5 107 0

Since tlte .fourth and higher order differences are zero, we have the required
Newton's interpolation formula in the form

f(xg + ph) = f(x0) + pA f(x,) + —p-(—pz——l—)Azf(xo)

& p(p-1(p-2
6

) g2 f (%)
Here,

X - x .
pw 09 £-0
AT T =% Af(g) =6, Afle) =1

Substituting these values into Eq. (1), we have

At



— \\ﬁrplanon\ 109
J(x) = =3 4 gy 4 Xx -1 x(x ~ })
g . Fy—1Nx-2
s e D2

6

cubic polynomial.

T P .
That 18, S (X) = x° — 252 + 9, _ 3, is the required

NEWTON'S BA ;
6.4 il CWARD\PIFFERENCE INTERPOLATION

If one wishes to interpolate the value of the function y = f(x) near the end of
table of values, and to extrapolate value of the function a short distance forward

from y», Newton’s backward interpolation formula is used, which can be derived
as follows:

Let y =/ (x) be a function which takes on values f (x,), f (xn — ), S (tn = 2H):
...,.f (xo) corresponding to equispaced values x,, x, - A, X, — 2k, .., Xo. SUPPOSE,

we wish to evaluate the function f(x) at (x, + ph).-where p is any real number,
then we have the shift operator E, such that

f(x, + ph) = Epf(x") = (E_l)‘p_f(xn) = (1= V)7Pf(x,)
Binomial expansion yields,

2
f(x, +ph) = [I+PV+ -E%Vz..‘. P_(l’_f__l;_'(’i_"'__) v R

+ pe+1p+2) - (+n—D V"+Error] f(x,)

n!
That is,

+1)
f(x, + ph) = F(x,) +pYf(x,) + ﬂ(—";——vzf(x,.)

RO EDPED ) ¢ -

. piij oo DpirA) (p+n-Dgnex )+ Emor  (634)
n!
g ] 1 This
: ] s Newtons backward interpolation formula. :
g;uggr;:uirs; slmk:;nwnasaNewton—Gregory backward‘ difference tfzterpolanon
formula. If we retain (r + 1) terms in Eq. (6.34), we obtain a polynomial of degree

r agreeing with £ (x) t Xn Xa-1s - x,_,. Alternatively, this formula can also be
ny “'n—13
wri
e plpt D, , BV DG
yl‘=y!l +pvy" + 2! yﬂ 3! n
p(p + D(p+ 2)' (p+n-Dgny 4 Error (635)
n.
Where
_x-Xx,
h

Here follows a couple of examples for illustration.



