Central Differences

In some applications, central difference notation is found to be more convenient In some applications, central differences of a function. Here, we use the symbol to represent the successive difference operator and the subscript of δv to represent the successive difference operator and the subscript of δy for δy for any δ to represent central difference of the subscripts of the two members of the difference difference. Thus, we write

$$\delta y_{1/2} = y_1 - y_0, \qquad \delta y_{3/2} = y_2 - y_1, \text{ etc.}$$

In general

$$\delta y_i = y_{i+(1/2)} - y_{i-(1/2)} \tag{6.16}$$

Higher order differences are defined as follows:

$$\delta^2 y_i = \delta y_{i+(1/2)} - \delta y_{i-(1/2)}$$
 (6.17)

$$\delta^{n} y_{i} = \delta^{n-1} y_{i+(1/2)} - \delta^{n-1} y_{i-(1/2)}$$
 (6.18)

These central differences can be systematically arranged as indicated in Table 6.3:

Table 6.3 Central Difference Table

					2		
x	у	δγ	$\delta^2 y$	$\delta^3 y$	$\delta^4 y$	$\delta^5 y$	$\delta^6 y$
x_0	У0	2					1, 300
x_1	<i>y</i> ₁	$\delta y_{1/2}$	$\delta^2 y_1$	03			
x_2	<i>y</i> ₂	$\delta y_{3/2}$	$\delta^2 y_2$	$\delta^3 y_{3/2}$	c4		
<i>x</i> ₃	<i>y</i> ₃	$\delta y_{5/2}$	$\delta^2 y_3$	$\delta^3 y_{5/2}$	$\delta^4 y_2$	$\delta^5 y_{5/2}$	
X4	<i>y</i> ₄	$\delta y_{7/2}$	$\delta^2 y_4$	$\delta^3 y_{7/2}$	$\delta^4 y_3$	$\delta^5 y_{7/2}$	$\delta^6 y_3$
x5 .	<i>y</i> ₅	$\delta y_{9/2}$	$\delta^2 y_5$	$\delta^3 y_{9/2}$	$\delta^4 y_4$	~ <i>y</i> 1/2	
x6	y6 .	$\delta y_{11/2}$					

Thus, we observe that all the odd differences have a fractional suffix and all the even differences with the same subscript lie horizontally.

The following alternative notation may also be adopted to introduce finite difference operators. Let y = f(x) be a functional relation between x and y, which is also denoted by y_x . Suppose, we are given consecutive values of x differing by h say x, x + h, x + 2h, x + 3h, etc. The corresponding values of y are y_x, y_{x+h} y_{x+2h} , y_{x+3h} , etc. As before, we can form the differences of these values. Thus

$$\Delta y_x = y_{x+h} - y_x = f(x+h) - f(x) \tag{6.19}$$

 $\Delta^2 y_x = \Delta y_{x+h} - \Delta y_x$

Similarly

$$\nabla y_x = y_x - y_{x-h} = f(x) - f(x-h)$$
 (620)

and

$$\delta y_x = y_{x+(h/2)} - y_{x-(h/2)} = f\left(x + \frac{h}{2}\right) - f\left(x - \frac{h}{2}\right)$$
 (621)

Shift operator, E

Shift of y = f(x) be a function of x, and let x takes the consecutive values x, x + h, we then define an operator E having the property Let y = 1 We then define an operator E having the property x + 2h, etc. We then define an operator E having the property

$$E f(x) = f(x+h) \tag{6.22}$$

Thus, when E operates on f(x), the result is the next value of the function. Here, Thus, when E operator. If we apply the operator E twice on f(x), we get E is called the shift operator.

$$E^{2}f(x) = E[Ef(x)] = E[f(x+h)] = f(x+2h)$$

Thus, in general, if we apply the operator E n times on f(x), we arrive at

$$E^n f(x) = f(x + nh)$$

In terms of new notation, we can write

$$E^n y_x = y_{x+nh} \tag{6.23}$$

or

$$E^{n}f(x) = f(x + nh) \tag{6.23}$$

for all real values of n. Also, if y_0 , y_1 , y_2 , y_3 , ... are the consecutive values of the function y_x , then we can also write

function
$$y_x$$
, then we can also write $Ey_0 = y_1$, $E^2y_0 = y_2$, $E^4y_0 = y_4$, ..., $E^2y_2 = y_4$

and so on. The inverse operator E^{-1} is defined as

$$E^{-1}f(x) = f(x-h)$$

and similarly

$$E^{-n}f(x) = f(x - nh) \tag{6.24}$$

Average operator, μ

The average operator μ is defined as

$$\mu f(x) = \frac{1}{2} \left[f\left(x + \frac{h}{2}\right) + f\left(x - \frac{h}{2}\right) \right] = \frac{1}{2} \left[y_{x+(h/2)} + y_{x-(h/2)} \right]$$
 (6.25)

Differential operator, D

It is known that D represents a differential operator having a property

$$Df(x) = \frac{d}{dx}f(x) = f'(x)$$

$$D^{2}f(x) = \frac{d^{2}}{dx^{2}}f(x) = f''(x)$$
(6.26)

Having defined various difference operators Δ , ∇ , δ , E, μ and D, we can obtain the following the following relations easily:

From the definition of operators Δ and E, we have

$$\Delta y_x = y_{x+h} - y_x = Ey_x - y_x = (E-1)y_x$$

$$\Delta = E - 1$$

Following the definition of operators ∇ and E^{-1} , we have $\nabla y_x = y_x - y_{x-h} = y_x - E^{-1}y_x = (1 - E^{-1}) y_x$

$$\nabla y_x = y_x - y_{x-h} = y_x - E^{-1}y_x = (1 - E^{-1}) y_x$$

Therefore.

$$\nabla = 1 - E^{-1} = \frac{E - 1}{E} \tag{6.28}$$

(6.27)

(6.29)

The definition of operators δ and E gives

definition of operators
$$\delta$$
 and $E = \delta$

$$\delta y_x = y_{x+(h/2)} - y_{x-(h/2)} = E^{1/2}y_x - E^{-1/2}y_x = (E^{1/2} - E^{-1/2}) y_x$$

Hence,

$$\delta = E^{1/2} - E^{-1/2}$$

The definition of μ and E similarly yields

$$\mu y_x = \frac{1}{2} [y_{x+(h/2)} + y_{x-(h/2)}] = \frac{1}{2} (E^{1/2} + E^{-1/2}) y_x$$

Therefore,

$$\mu = \frac{1}{2} \left(E^{1/2} + E^{-1/2} \right) \tag{6.30}$$

It is known that

$$Ey_x = y_{x+h} = f(x+h)$$

using Taylor series expansion, we have

$$Ey_x = f(x) + hf'(x) + \frac{h^2}{2!}f'''(x) + \cdots$$

$$= f(x) + hDf(x) + \frac{h^2}{2!}D^2f(x) + \cdots$$

$$= \left(1 + \frac{hD}{1!} + \frac{h^2D^2}{2!} + \cdots\right)f(x) = e^{hD}y_x$$

Thus,

$$hD = \log E \tag{6.31}$$

Hence, all the operators are expressed in terms of E.

Example 6.5 Prove that

$$hD = \log (1 + \Delta) = -\log (1 - \nabla) = \sinh^{-1} (\mu \delta)$$

Using the standard relations (6.27)-(6.31), we have

$$hD = \log E = \log (1 + \Delta) = -\log E^{-1} = -\log (1 - \nabla)$$

Also.

$$\mu\delta = \frac{1}{2}(E^{V2} + E^{-V2})(E^{V2} - E^{-V2}) = \frac{1}{2}(E - E^{-1}) = \frac{1}{2}(e^{hD} - e^{-hD}) = \sinh^{(hD)}$$

(2)

Therefore,

$$hD = \sinh^{-1}(\mu\delta)$$

Equations (1) and (2) constitute the required result.

Example 6.6 If Δ , ∇ , δ denote forward, backward and central difference operators, E and μ are respectively the shift and average operators, in the analysis of data with equal spacing h, show that

(i)
$$1 + \delta^2 \mu^2 = \left(1 + \frac{\delta^2}{2}\right)^2$$
 (ii) $E^{1/2} = \mu + \frac{\delta}{2}$

(iii)
$$\Delta = \frac{\delta^2}{2} + \delta\sqrt{1 + (\delta^2/4)}$$
 (iv) $\mu\delta = \frac{\Delta E^{-1}}{2} + \frac{\Delta}{2}$

(v)
$$\mu \delta = \frac{\Delta + \nabla}{2}$$

Solutions (i) From the definition of operators, we have

$$\mu\delta = \frac{1}{2}(E^{1/2} + E^{-1/2})(E^{1/2} - E^{-1/2}) = \frac{1}{2}(E - E^{-1})$$

Therefore,

$$1 + \mu^2 \delta^2 = 1 + \frac{1}{4} (E^2 - 2 + E^{-2}) = \frac{1}{4} (E + E^{-1})^2$$
 (1)

Also,

$$1 + \frac{\delta^2}{2} = 1 + \frac{1}{2} (E^{1/2} - E^{-1/2})^2 = \frac{1}{2} (E + E^{-1})$$
 (2)

From Eqs. (1) and (2), the first result follows

(ii) Now

$$\mu + \frac{\delta}{2} = \frac{1}{2} (E^{1/2} + E^{-1/2} + E^{1/2} - E^{-1/2}) = E^{1/2}$$

Thus, the second result is proved.

(iii) We can write

$$\frac{\delta^{2}}{2} + \delta\sqrt{1 + (\delta^{2}/4)} = \frac{\left(E^{1/2} - E^{-1/2}\right)^{2}}{2}$$

$$+ \frac{\left(E^{1/2} - E^{-1/2}\right)\sqrt{1 + \frac{1}{4}\left(E^{1/2} - E^{-1/2}\right)^{2}}}{1}$$

$$= \frac{E - 2 + E^{-1}}{2} + \frac{1}{2}\left(E^{1/2} - E^{-1/2}\right)\left(E^{1/2} + E^{-1/2}\right)$$

$$= \frac{E - 2 + E^{-1}}{2} + \frac{E - E^{-1}}{2}$$

$$= E - 1$$

104

$$E-1=\Delta$$

(iv) We have
$$\mu \delta = \frac{1}{2} \left(E^{1/2} + E^{-1/2} \right) \left(E^{1/2} - E^{-1/2} \right) = \frac{1}{2} \left(E - E^{-1} \right)$$

Now, using Eq. (6.27), we get

sing Eq. (6.27), we get
$$= \frac{1}{2} (1 + \Delta - E^{-1}) = \frac{\Delta}{2} + \frac{1}{2} (1 - E^{-1})$$

$$= \frac{\Delta}{2} + \frac{1}{2} (\frac{E - 1}{E}) = \frac{\Delta}{2} + \frac{\Delta}{2E}$$

(v) We can write

$$\mu\delta = \frac{1}{2} \left(E^{1/2} + E^{-1/2} \right) \left(E^{1/2} - E^{-1/2} \right) = \frac{1}{2} \left(E - E^{-1} \right)$$

Now using Eqs. (6.27) and (6.28), we have

$$\mu\delta = \frac{1}{2}(1+\Delta-1+\nabla) = \frac{1}{2}(\Delta+\nabla)$$

Example 6.7 Show that the operators μ and E commute.

From the definition of operators μ and E, we have

$$\mu E y_0 = \mu y_1 = \frac{1}{2} (y_{3/2} + y_{1/2})$$

$$|E| = \frac{1}{2} (y_{3/2} + y_{1/2})$$

While

$$E\mu y_0 = \frac{1}{2}E\left(y_{1/2} + y_{-1/2}\right) = \frac{1}{2}(y_{3/2} + y_{1/2}) \qquad (2)$$

Equating (1) and (2), we have

$$\mu E = E\mu$$

Therefore, the operators μ and E commute.

Theorem 6.1 (Differences of a polynomial). The nth differences of a polynomial of degree n is constant, when the values of the independent variable are given at equal intervals.

Proof Let us consider a polynomial of degree n in the form

$$y_x = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1} x + a_n$$

where $a_0 \neq 0$ and $a_0, a_1, a_2, ..., a_n$ are constants. Let h be the interval of differencing. Then

$$y_{x+h} = a_0(x+h)^n + a_1(x+h)^{n-1} + a_2(x+h)^{n-2} + \dots + a_{n-1}(x+h)^{n-2} + \dots$$

We now examine the differences of the polynomial:

$$\Delta y_x = y_{x+h} - y_x = a_0[(x+h)^n - x^n] + a_1[(x+h)^{n-1} - x^{n-1}] + a_2[(x+h)^{n-2} - x^{n-2}] + \dots + a_{n-1}(x+h-x)$$

Binomial expansion yields

$$\Delta y_x = a_0(x^n + {}^{n}C_1x^{n-1}h + {}^{n}C_2x^{n-2}h^2 + \dots + h^n - x^n)$$

$$+ a_1[x^{n-1} + {}^{(n-1)}C_1x^{n-2}h + {}^{(n-1)}C_2x^{n-3}h^2 + \dots + h^{n-1} - x^{n-1}] + \dots$$

$$+ a_{n-1}h$$

$$= a_0nhx^{n-1} + [a_0{}^{n}C_2h^2 + a_1{}^{(n-1)}C_1h]x^{n-2} + \dots + a_{n-1}h$$

Therefore,

$$\Delta y_x = a_0 n h x^{n-1} + b' x^{n-2} + c' x^{n-3} + \dots + k' x + l'$$

where b', c', ..., k', l' are constants involving h but not x. Thus, the first difference of a polynomial of degree n is another polynomial of degree (n-1). Similarly

$$\Delta^{2}y_{x} = \Delta(\Delta y_{x}) = \Delta y_{x+h} - \Delta y_{x}$$

$$= a_{0}nh[(x+h)^{n-1} - x^{n-1}] + b'[(x+h)^{n-2} - x^{n-2}] + \cdots$$

$$+ k'(x+h-x)$$

On simplification, it reduces to the form

$$\Delta^2 y_x = a_0 n(n-1) h^2 x^{n-2} + b'' x^{n-3} + c'' x^{n-4} + \dots + q''$$

Therefore, $\Delta^2 y_x$ is a polynomial of degree (n-2) in x. Similarly, we can form the higher order differences, and every time we observe that the degree of the polynomial is reduced by one. After differencing n times, we are left with only the first term in the form

$$\Delta^n y_x = a_0 n(n-1) (n-2) \dots (2)(1) h^n = a_0 (n!) h^n = \text{Constant}$$

This constant is independent of x. Since $\Delta^n y_x$ is a constant, $\Delta^{n+1} y_x = 0$. Hence the (n+1)th and higher order differences of a polynomial of degree n are zero.

6.3 NEWTON'S FORWARD DIFFERENCE INTERPOLATION FORMULA

Let y = f(x) be a function which takes values $f(x_0)$, $f(x_0 + h)$, $f(x_0 + 2h)$, ..., corresponding to various equispaced values of x with spacing h, say x_0 , $x_0 + h$, $x_0 + 2h$, Suppose, we wish to evaluate the function f(x) for a value $x_0 + ph$, where p is any real number, then for any real number p, we have the operator E such that $E^p f(x) = f(x + ph)$. Therefore, using Eq. (6.27) we have

$$f(x_0 + ph) = E^p f(x_0) = (1 + \Delta)^p f(x_0)$$

$$= \left[1 + p\Delta + \frac{p(p-1)}{2!} \Delta^2 + \frac{p(p-1)(p-2)}{3!} \Delta^3 + \cdots \right] f(x_0)$$

That is,

$$f(x_0 + ph) = f(x_0) + p\Delta f(x_0) + \frac{p(p-1)}{2!} \Delta^2 f(x_0) + \frac{p(p-1)(p-2)}{3!} \Delta^3 f(x_0) + \cdots + \frac{p(p-1)\cdots(p-n+1)}{n!} \Delta^n f(x_0) + \text{Error}$$
(6.32)

This is known as Newton's forward difference formula for interpolation, which the is known as $(x_0 + ph)$ in terms of $f(x_0)$ and its leading differences which This is known as Newton's forward and forward differences. This gives the value of $f(x_0 + ph)$ in terms of $f(x_0)$ and its leading differences. This gives the value of $f(x_0 + ph)$ in terms of $f(x_0)$ and its leading difference interpolation (6.32) can also be useful. This is known of $f(x_0 + ph)$ in terms of forward difference interpolation formula is also known as Newton-Gregory forward difference interpolation formula is also known as Lucie $p = (x - x_0)/h$. Equation (6.32) can also be written in another the second of the sec gives the salso known as Newton (6.32) can also be written in another formula. Here, $p = (x - x_0)/h$. Equation (6.32) can also be written in another formula. alternate form as

the form as
$$y_x = y_0 + p\Delta y_0 + \frac{p(p-1)}{2!} \Delta^2 y_0 + \frac{p(p-1)(p-2)}{3!} \Delta^3 y_0 + \dots + \frac{p(p-1)(p-n+1)}{n!} \Delta^n y_0 + \text{Error}$$
(6.33)

If we retain (r+1) terms in Eq. (6.33), we obtain a polynomial of degree $r_{agree_{ing}}$ with y_x at $x_0, x_1, ..., x_r$.

This formula is mainly used for interpolating the values of y near the beginning of a set of tabular values and for extrapolating values of y, a short beginning of a set of the second distance backward from y_0 . We shall illustrate these formulae by considering the following simple examples.

Example 6.8 Evaluate f(15), given the following table of values:

x	10	20	30	40	50
y = f(x)	46	66	81	93	101

Solution We may note that x = 15 is very near to the beginning of the table. Hence, we use Newton's forward difference interpolation formula. Th forward differences are calculated and tabulated as given below:

x	y = f(x)	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$
10	46	20			
20	66	15	-5	2	
30	81		-3	_1	-3
40	93	12	-4	Alm To Har S	
50	101	8	estolie 5 di		for the second

We have Newton's forward difference interpolation formula as

$$y = y_0 + p\Delta y_0 + \frac{p(p-1)}{2!}\Delta^2 y_0 + \frac{p(p-1)(p-2)}{3!}\Delta^3 y_0 + \frac{p(p-1)(p-2)(p-3)}{4!}\Delta^4 y_0$$

In this example, from the above table, we have

$$x_0 = 10$$
, $y_0 = 46$, $\Delta y_0 = 20$, $\Delta^2 y_0 = -5$, $\Delta^3 y_0 = 2$, $\Delta^4 y_0 = -3$

Let y_{13} be the value of y when x = 15, then

$$p = \frac{x - x_0}{h} = \frac{15 - 10}{10} = 0.5$$

substituting these values in Eq. (1), we get

$$f(15) = y_{15} = 46 + (0.5)(20) + \frac{(0.5)(0.5 - 1)}{2} (-5)$$

$$p = \frac{x - x_0}{h} = \frac{15 - 10}{10} = 0.5$$
is in Eq. (1), we get
$$p = \frac{x - x_0}{h} = \frac{15 - 10}{10} = 0.5$$

$$p = \frac{x - x_0}{h} = \frac{15 - 10}{h} = 0.5$$

$$p = \frac{x - x_0}{h} = \frac{15 - x_0}{h} = 0.5$$

$$p' = \frac{x - x_0}{h} = 0.5$$

$$p' = \frac{x - x_0}{h} = 0.5$$

$$+\frac{(0.5)(0.5-1)(0.5-2)}{6}(2)+\frac{(0.5)(0.5-1)(0.5-2)(0.5-3)}{24}(-3)$$

$$= 46 + 10 + 0.625 + 0.125 + 0.1172$$

Therefore, f(15) = 56.8672 correct to four decimal places.

Example 6.9 Find Newton's forward difference interpolating polynomial for the following data:

<u>x</u>	0.1	0.2	0.3	0.4	0.5
y = f(x)	1.40	1.56	1.76	2.00	2.28

We shall first construct the forward difference table to the given data as indicated below:

x	y = f(x)	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$	19218
0.1 0.2 0.3 0.4 0.5	1.40 1.56 1.76 2.00 2.28	0.16 0.20 0.24 0.28	0.04 0.04 0.04	0.00 0.00	0.00	

Since, third and fourth leading differences are zero, we have Newton's forward difference interpolating formula as

$$y = y_0 + p\Delta y_0 + \frac{p(p-1)}{2}\Delta^2 y_0 \tag{1}$$

In this problem, $x_0 = 0.1$, $y_0 = 1.40$, $\Delta y_0 = 0.16$, $\Delta^2 y_0 = 0.04$, and

$$p = \frac{x - 0.1}{0.1} = 10x - 1$$

Substituting these values in Eq. (1), we obtain

$$y = f(x) = 140 + (10x - 1)(0.16) + \frac{(10x - 1)(10x - 2)}{2}$$
 (0.04)

That is, $y = 2x^2 + x + 1.28$. This is the required Newton's interpolation

Example 6.10 Estimate the missing figure in the following table:

5

y = f(x)

2

7

5 32

Solution Since we are given four entries in the table, the function y = f(x) Solution Since we are given of degree three. Using Theorem 6.1, we have

$$\Delta^3 f(x) = \text{Constant}$$
 and $\Delta^4 f(x) = 0$

for all x. In particular, $\Delta^4 f(x_0) = 0$. Equivalently, $(E-1)^4 f(x_0) = 0$. Expanding, $\mathbb{R}_{\mathbb{R}_0}$ have $(E^4 - 4E^3 + 6E^2 - 4E + 1) f(x_0) = 0$

That is,

$$f(x_4) - 4f(x_3) + 6f(x_2) - 4f(x_1) + f(x_0) = 0$$

Using the values given in the table, we obtain

$$32 - 4f(x_3) + 6 \times 7 - 4 \times 5 + 2 = 0$$

which gives $f(x_3)$, the missing value equal to 14.

Example 6.11 Find a cubic polynomial in x which takes on the values -3, 3, 1127, 57 and 107, when x = 0, 1, 2, 3, 4 and 5 respectively.

Solution Here, the observations are given at equal intervals of unit width To determine the required polynomial, we first construct the difference table as follows:

x	f(x)	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$
0	-3	F-12		A CONTRACT
1	3	6		
2	11	8	2	6
3	27	16	8	6
4	57	30	14	6
•		50	20	
3	107			

Since the fourth and higher order differences are zero, we have the required Newton's interpolation formula in the form

$$f(x_0 + ph) = f(x_0) + p\Delta f(x_0) + \frac{p(p-1)}{2}\Delta^2 f(x_0) + \frac{p(p-1)(p-2)}{6}\Delta^3 f(x_0)$$

Here.

$$p = \frac{x - x_0}{h} = \frac{x - 0}{1} = x, \quad \Delta f(x_0) = 6, \quad \Delta^2 f(x_0) = 2. \quad \Delta^3 f(x_0) = 6$$

Substituting these values into Eq. (1), we have

$$f(x) = -3 + 6x + \frac{x(x-1)}{2}(2) + \frac{x(x-1)(x-2)}{6}$$
That is, $f(x) = x^3 - 2x^2 + 7x - 3$, is the required cubic polynomial.

6.4 NEWTON'S BACKWARD DIFFERENCE INTERPOLATION

If one wishes to interpolate the value of the function y = f(x) near the end of table of values, and to extrapolate value of the function a short distance forward from y_n , Newton's backward interpolation formula is used, which can be derived as follows:

Let y = f(x) be a function which takes on values $f(x_n)$, $f(x_n - h)$, $f(x_n - 2h)$, ..., $f(x_0)$ corresponding to equispaced values x_n , $x_n - h$, $x_n - 2h$, ..., x_0 . Suppose, we wish to evaluate the function f(x) at $(x_n + ph)$. where p is any real number, then we have the shift operator E, such that

$$f(x_n + ph) = E^p f(x_n) = (E^{-1})^{-p} f(x_n) = (1 - \nabla)^{-p} f(x_n)$$

Binomial expansion yields,

$$f(x_n + ph) = \left[1 + p\nabla + \frac{p(p+1)}{2!} \nabla^2 + \frac{p(p+1)(p+2)}{3!} \nabla^3 + \cdots + \frac{p(p+1)(p+2) \cdots (p+n-1)}{n!} \nabla^n + \text{Error} \right] f(x_n)$$

That is,

$$f(x_n + ph) = f(x_n) + p\nabla f(x_n) + \frac{p(p+1)}{2!}\nabla^2 f(x_n) + \frac{p(p+1)(p+2)}{3!}\nabla^3 f(x_n) + \cdots + \frac{p(p+1)(p+2)\cdots(p+n-1)}{n!}\nabla^n f(x_n) + \text{Error}$$
(6.34)

This formula is known as Newton's backward interpolation formula. This formula is also known as Newton-Gregory backward difference interpolation formula. If we retain (r+1) terms in Eq. (6.34), we obtain a polynomial of degree formula. If we retain (r+1) terms in Eq. (6.34), we obtain a polynomial of degree r agreeing with f(x) at x_n , x_{n-1} , ..., x_{n-r} . Alternatively, this formula can also be written as

$$y_{x} = y_{n} + p\nabla y_{n} + \frac{p(p+1)}{2!}\nabla^{2}y_{n} + \frac{p(p+1)(p+2)}{3!}\nabla^{3}y_{n} + \cdots + \frac{p(p+1)(p+2)\cdots(p+n-1)}{n!}\nabla^{n}y_{n} + \text{Error}$$
(6.35)

where

$$p=\frac{x-x_n}{h}$$

Here follows a couple of examples for illustration.