
2.5.24 The magnetic vector potential for a uniformly charged rotating spherical shell is
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( radius of spherical shell, surface charge density, and angular velocity.)
Find the magnetic induction B A.

ANS
2 0

4

3

cos
3

0
4

3

sin
3

B z
2 0

3

2.5.25 (a) Explain why 2 in plane polar coordinates follows from 2 in circular cylindrical
coordinates with constant.

(b) Explain why taking 2 in spherical polar coordinates and restricting to 2 does
not lead to the plane polar form of .
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Tensors are important in many areas of physics, including general relativity and electrody-
namics. Scalars and vectors are special cases of tensors. In Chapter 1, a quantity that did not
change under rotations of the coordinate system in three-dimensional space, an invariant,
was labeled a scalar. A scalar tensor of rank 0.
A quantity whose components transformed under rotations like those of the distance of a
point from a chosen origin (Eq. (1.9), Section 1.2) was called a vector. The transformation
of the components of the vector under a rotation of the coordinates preserves the vector as
a geometric entity (such as an arrow in space), independent of the orientation of the refer-
ence frame. In three-dimensional space, a vector 31 real numbers, for
example, its Cartesian components, and is a tensor of rank 1. A tensor of rank has 3

5 This transformation philosophy is of central
importance for tensor analysis and conforms with the mathematician’s concept of vector
and vector (or linear) space and the physicist’s notion that physical observables must not
depend on the choice of coordinate frames. There is a physical basis for such a philosophy:
We describe the physical world by mathematics, but any physical predictions we make

5In -dimensional space a tensor of rank has components.



must be independent of our mathematical conventions, such as a coordinate system with
its arbitrary origin and orientation of its axes.
There is a possible ambiguity in the transformation law of a vector

(2.59)

in which is the cosine of the angle between the -axis and the -axis.
If we start with a differential distance vector r, then, taking to be a function of the

unprimed variables,

(2.60)

by partial differentiation. If we set

(2.61)

Eqs. (2.59) and (2.60) are consistent. Any set of quantities transforming according to

(2.62a)

contravariant vector, whose indices we write as superscript; this includes
the Cartesian coordinate vector from now on.
However, we have already encountered a slightly different type of vector transformation.

The gradient of a scalar
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(2.63)

(using 1, 2, 3 for , , ), transforms as

(2.64)

using ,
differs from Eq. (2.62) in that we have instead of . Equation (2.64)

covariant vector, with the gradient as the prototype. The
covariant analog of Eq. (2.62a) is

(2.62b)

Only in Cartesian coordinates is

(2.65)



so that there no difference between contravariant and covariant transformations. In other
systems, Eq. (2.65) in general does not apply, and the distinction between contravariant
and covariant is real and must be observed. This is of prime importance in the curved
Riemannian space of general relativity.
In the remainder of this section the components of any contravariant vector are denoted

by a superscript, , whereas a subscript is used for the components of a covariant
vector .6

contravariant, mixed, and covariant tensors of rank 2 by the
following equations for their components under coordinate transformations:

(2.66)

Clearly, the rank goes as the number of partial derivatives (or direction cosines) in the de-

(subscript or superscript) ranges over the number of dimensions of the space. The number
of indices (equal to the rank of tensor) is independent of the dimensions of the space. We
see that is contravariant with respect to both indices, is covariant with respect to
both indices, and but covari-
antly with respect to the second index . Once again, if we are using Cartesian coordinates,
all three forms of the tensors of second rank contravariant, mixed, and covariant are— the
same.
As with the components of a vector, the transformation laws for the components of a

tensor, Eq. (2.66), yield entities (and properties) that are independent of the choice of ref-
erence frame. This is what makes tensor analysis important in physics. The independence
of reference frame (invariance) is ideal for expressing and investigating universal physical
laws.
The second-rank tensorA (components ) may be conveniently represented by writing

out its components in a square array (3 3 if we are in three-dimensional space):

A

11 12 13

21 22 23

31 32 33
(2.67)

This does not mean that any square array of numbers or functions forms a tensor. The
essential condition is that the components transform according to Eq. (2.66).

6This means that the coordinates are written 1 2 3 since r transforms as a contravariant vector. The ambiguity of
2 representing both squared and is the price we pay.



In the context of matrix analysis the preceding transformation equations become (for
Cartesian coordinates) an orthogonal similarity transformation; see Section 3.3. A geomet-
rical interpretation of a second-rank tensor (the inertia tensor) is developed in Section 3.5.

In summary, tensors are systems of components organized by one or more indices that

dices is called the rank of the tensor. If the transformations are coordinate rotations in
three-dimensional space, then tensor analysis amounts to what we did in the sections on
curvilinear coordinates and in Cartesian coordinates in Chapter 1. In four dimensions of
Minkowski space–time, the transformations are Lorentz transformations, and tensors of
rank 1 are called four-vectors.

as for vectors. If

A B C (2.68)

then

Of course, A and B must be tensors of the same rank and both expressed in a space of the
same number of dimensions.

In tensor analysis it is customary to adopt a summation convention to put Eq. (2.66) and
subsequent tensor equations in a more compact form. As long as we are distinguishing
between contravariance and covariance, let us agree that when an index appears on one side
of an equation, once as a superscript and once as a subscript (except for the coordinates
where both are subscripts), we automatically sum over that index. Then we may write the
second expression in Eq. (2.66) as

(2.69)

with the summation of the right-hand side over and implied. This is Einstein’s summa-
tion convention.7 The index is superscript because it is associated with the contravariant

; likewise is subscript because it is related to the covariant gradient.
To illustrate the use of the summation convention and some of the techniques of tensor

analysis, let us show that the now-familiar Kronecker delta, , is really a mixed tensor

7In this context might better be written as and as .



of rank 2, .8 The question is: Does transform according to Eq. (2.66)? This is our
criterion for calling it a tensor. We have, using the summation convention,

(2.70)

(2.71)

by direct partial differentiation of the right-hand side (chain rule). However, and
are independent coordinates, and therefore the variation of one with respect to the other
must be zero if they are different, unity if they coincide; that is,

(2.72)

Hence

showing that the are indeed the components of a mixed second-rank tensor. Notice that
this result is independent of the number of dimensions of our space. The reason for the
upper index and lower index is the same as in Eq. (2.69).
The Kronecker delta has one further interesting property. It has the same components in

all of our rotated coordinate systems and is therefore called isotropic. In Section 2.9 we
shall meet a third-rank isotropic tensor and three fourth-rank isotropic tensors. No isotropic

The order in which the indices appear in our description of a tensor is important. In general,
is independent of , but there are some cases of special interest. If, for all and ,

(2.73)

we call the tensor symmetric. If, on the other hand,

(2.74)

the tensor is antisymmetric. Clearly, every (second-rank) tensor can be resolved into sym-
metric and antisymmetric parts by the identity
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2 (2.75)

A similar resolution of functions into symmetric and antisymmetric parts is of extreme
importance to quantum mechanics.

8It is common practice to refer to a tensor A by specifying a typical component, . As long as the reader refrains from writing
nonsense such as A , no harm is done.


