
Inversion of Cartesian coordinates—polar vector.

, then by Eq. (2.60)

(2.88)

which is an inversion or parity transformation. Note that this transformation changes our
initial right-handed coordinate system into a left-handed coordinate system.13 Our proto-
type vector r with components 1 2 3 transforms to

r 1 2 3 1 2 3

This new vector r has negative components, relative to the new transformed set of axes.
As shown in Fig. 2.9, reversing the directions of the coordinate axes and changing the
signs of the components gives r r. The vector (an arrow in space) stays exactly as it
was before the transformation was carried out. The position vector r and all other vectors
whose components behave this way (reversing sign with a reversal of the coordinate axes)
are called polar vectors and have odd parity.

uct of two polar vectors. Let C A B, where both A and B are polar vectors. From
Eq. (1.33), the components of C are given by

1 2 3 3 2 (2.89)

and so on. Now, when the coordinate axes are inverted, , , but from

; that is, our cross-product vector, vector C, does not behave like
a polar vector under inversion. To distinguish, we label it a pseudovector or axial vector
(see Fig. 2.10) that has even parity. The term axial vector is frequently used because these
cross products often arise from a description of rotation.

13



Inversion of Cartesian coordinates—axial vector.

Examples are

angular velocity, v r

orbital angular momentum, L r p

torque, force F N r F

B
B

E

In v r, the axial vector is the angular velocity , and r and v r are polar
vectors. Clearly, axial vectors occur frequently in physics, although this fact is usually
not pointed out. In a right-handed coordinate system an axial vector C has a sense of
rotation associated with it given by a right-hand rule (compare Section 1.4). In the inverted
left-handed system the sense of rotation is a left-handed rotation. This is indicated by the
curved arrows in Fig. 2.10.

of the vector. For a mirror in the -plane, . We have

P

P polar vector.

H or a magnetic moment ( current area

H and magnetic moment to be produced by an electric charge moving in a circular path



a

b

(a) Mirror in -plane; (b) mirror
in -plane.

The two current loops and the resulting magnetic moments are shown in Fig. 2.11b. We
have



If we agree that the universe does not care whether we use a right- or left-handed coor-
dinate system, then it does not make sense to add an axial vector to a polar vector. In the
vector equation A B, both A and B are either polar vectors or axial vectors.14 Similar
restrictions apply to scalars and pseudoscalars and, in general, to the tensors and pseudoten-
sors considered subsequently.
Usually, pseudoscalars, pseudovectors, and pseudotensors will transform as

(2.90)

where is the determinant15 , the Jacobian of the parity
transformation. In our inversion the Jacobian is

1 0 0
0 1 0
0 0 1

1 (2.91)

-axis,

1 0 0
0 1 0
0 0 1

1 (2.92)

and again the Jacobian 1 On the other hand, for all pure rotations, the Jacobian is
always 1. Rotation matrices discussed further in Section 3.3.
In Chapter 1 the triple scalar product A B C was shown to be a scalar (un-

der rotations). Now by considering the parity transformation given by Eq. (2.88), we see
that , proving that the triple scalar product is actually a pseudoscalar: This be-
havior was foreshadowed by the geometrical analogy of a volume. If all three parameters
of the volume— length, depth, and height—change from positive distances to negative
distances, the product of the three will be negative.

For future use it is convenient to introduce the three-dimensional Levi-Civita symbol ,

123 231 312 1

132 213 321 1 (2.93)

all other 0

Note that is antisymmetric with respect to all pairs of indices. Suppose now that we
have a third-rank pseudotensor , which in one particular coordinate system is equal to

. Then

(2.94)

14The big exception to this is in beta decay, weak interactions. Here the universe distinguishes between right- and left-handed
systems, and we add polar and axial vector interactions.
15Determinants are described in Section 3.1.



1 2 3 (2.95)

by direct expansion of the determinant, showing that 123
2 1 123. Considering

(2.96)

is a pseudotensor.16,17 Furthermore, it is seen to
be an isotropic pseudotensor with the same components in all rotated Cartesian coordinate
systems.

With any antisymmetric second-rank tensor C (in three-dimensional space) we may asso-
ciate a dual pseudovector

1

2
(2.97)

Here the antisymmetric C may be written

C
0 12 31

12 0 23

31 23 0
(2.98)

We know that must transform as a vector under rotations from the double contraction of
but that it is really a pseudovector from the pseudo

nature of C are given by

1 2 3
23 31 12 (2.99)

Notice the cyclic order of the indices that comes from the cyclic order of the components
of . Eq. (2.99) means that our three-dimensional vector product may literally be taken
to be either a pseudovector or an antisymmetric second-rank tensor, depending on how we
choose to write it out.
If we take three (polar) vectors A, B, and C

(2.100)

By an extension of the analysis of Section 2.6, is a tensor of third rank. The dual
quantity

1

3
(2.101)

16The usefulness of extends far beyond this section. For instance, the matrices of Exercise 3.2.16 are derived from
. Much of elementary vector analysis can be written in a very compact form by using and the identity of

Exercise 2.9.4 See A. A. Evett, Permutation symbol approach to elementary vector analysis. Am. J. Phys. 34: 503 (1966).
17The numerical value of is given by the triple scalar product of coordinate unit vectors:

x x x

From this point of view each element of is a pseudoscalar, but the collectively form a third-rank pseudotensor.



is clearly a pseudoscalar. By expansion it is seen that

1 1 1

2 2 2

3 3 3
(2.102)

is our familiar triple scalar product.
For use in writingMaxwell’s equations in covariant form, Section 4.6, we want to extend

this dual vector analysis to four-dimensional space and, in particular, to indicate that the
four-dimensional volume element 0 1 2 3 is a pseudoscalar.
We introduce the Levi-Civita symbol , the four-dimensional analog of . This

quantity is an even
permutation18 of 0 1 2 3 , then 1; if it is an odd permutation,
then is 1, and 0 if any two indices are equal. The Levi-Civita may be proved a
pseudotensor of rank 4 by analysis similar to that used for establishing the tensor nature of

. Introducing the direct product of four vectors as fourth-rank tensor with components

(2.103)

built from the polar vectors A, B, C, and D

1

4
(2.104)

a pseudoscalar due to the quadruple contraction with the pseudotensor Now we let
A, B, C, and D
space),

A 0 0 0 0

B 0 1 0 0 and so on,
(2.105)

and
0 1 2 3 (2.106)

result in Section 4.6. This result could have been expected from the results of the special
theory of relativity. The Lorentz–Fitzgerald contraction of 1 2 3 just balances the
time dilation of 0.
We slipped into this four-dimensional space as a simple mathematical extension of the

three-dimensional space and, indeed, we could just as easily have discussed 5-, 6-, or -
dimensional space. This is typical of the power of the component analysis. Physically, this
four-dimensional space may be taken as Minkowski space,

0 1 2 3 (2.107)

where is time. This is the merger of space and time achieved in special relativity. The
transformations that describe the rotations in four-dimensional space are the Lorentz trans-
formations of special relativity. We encounter these Lorentz transformations in Section 4.6.

18A permutation is odd if it involves an odd number of interchanges of adjacent indices, such as 0 1 2 3 0 2 1 3 . Even
permutations arise from an even number of transpositions of adjacent indices. (Actually the word adjacent is unnecessary.)
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