using $x_4 = ict$. This is the four-dimensional Laplacian, sometimes called the d'Alembertian and denoted by \Box^2 . Show that it is a **scalar** operator, that is, is invariant under Lorentz transformations.

2.8 QUOTIENT RULE

If A_i and B_j are vectors, as seen in Section 2.7, we can easily show that $A_i B_j$ is a second-rank tensor. Here we are concerned with a variety of inverse relations. Consider such equations as

$$K_i A_i = B \tag{2.82a}$$

$$K_{ij}A_j = B_i \tag{2.82b}$$

$$K_{ij}A_{jk} = B_{ik} \tag{2.82c}$$

$$K_{ijkl}A_{ij} = B_{kl} \tag{2.82d}$$

$$K_{ij}A_k = B_{ijk}. (2.82e)$$

Inline with our restriction to Cartesian systems, we write all indices as subscripts and, unless specified otherwise, sum repeated indices.

In each of these expressions **A** and **B** are known tensors of rank indicated by the number of indices and **A** is arbitrary. In each case K is an unknown quantity. We wish to establish the transformation properties of K. The quotient rule asserts that if the equation of interest holds in all (rotated) Cartesian coordinate systems, K is a tensor of the indicated rank. The importance in physical theory is that the quotient rule can establish the tensor nature of quantities. Exercise 2.8.1 is a simple illustration of this. The quotient rule (Eq. (2.82b)) shows that the inertia matrix appearing in the angular momentum equation $\mathbf{L} = I\omega$, Section 3.5, is a tensor.

In proving the quotient rule, we consider Eq. (2.82b) as a typical case. In our primed coordinate system

$$K'_{ij}A'_{j} = B'_{i} = a_{ik}B_{k}, (2.83)$$

using the vector transformation properties of \mathbf{B} . Since the equation holds in all rotated Cartesian coordinate systems,

$$a_{ik}B_k = a_{ik}(K_{kl}A_l). (2.84)$$

Now, transforming A back into the primed coordinate system¹¹ (compare Eq. (2.62)), we have

$$K'_{ij}A'_{j} = a_{ik}K_{kl}a_{jl}A'_{j}.$$
(2.85)

Rearranging, we obtain

$$(K'_{ij} - a_{ik}a_{jl}K_{kl})A'_{j} = 0. (2.86)$$

$$A_l = \sum_j \frac{\partial x_l}{\partial x'_j} A'_j = \sum_j a_{jl} A'_j.$$

¹¹Note the order of the indices of the direction cosine a_{il} in this **inverse** transformation. We have

142 Chapter 2 Vector Analysis in Curved Coordinates and Tensors

This must hold for each value of the index *i* and for every primed coordinate system. Since the A'_i is arbitrary,¹² we conclude

$$K'_{ij} = a_{ik}a_{jl}K_{kl}, (2.87)$$

which is our definition of second-rank tensor.

The other equations may be treated similarly, giving rise to other forms of the quotient rule. One minor pitfall should be noted: The quotient rule does not necessarily apply if B is zero. The transformation properties of zero are indeterminate.

Example 2.8.1 Equations of Motion and Field Equations

In classical mechanics, Newton's equations of motion $m\dot{\mathbf{v}} = \mathbf{F}$ tell us on the basis of the quotient rule that, if the mass is a scalar and the force a vector, then the acceleration $\mathbf{a} \equiv \dot{\mathbf{v}}$ is a vector. In other words, the vector character of the force as the driving term imposes its vector character on the acceleration, provided the scale factor *m* is scalar.

The wave equation of electrodynamics $\partial^2 A^{\mu} = J^{\mu}$ involves the four-dimensional version of the Laplacian $\partial^2 = \frac{\partial^2}{c^2 \partial t^2} - \nabla^2$, a Lorentz scalar, and the external four-vector current J^{μ} as its driving term. From the quotient rule, we infer that the vector potential A^{μ} is a four-vector as well. If the driving current is a four-vector, the vector potential must be of rank 1 by the quotient rule.

The quotient rule is a substitute for the illegal division of tensors.

Exercises

- **2.8.1** The double summation $K_{ij}A_iB_j$ is invariant for any two vectors A_i and B_j . Prove that K_{ij} is a second-rank tensor. *Note.* In the form ds^2 (invariant) = $g_{ij} dx^i dx^j$, this result shows that the matrix g_{ij} is a tensor.
- **2.8.2** The equation $K_{ij}A_{jk} = B_{ik}$ holds for all orientations of the coordinate system. If **A** and **B** are arbitrary second-rank tensors, show that **K** is a second-rank tensor also.
- **2.8.3** The exponential in a plane wave is $\exp[i(\mathbf{k} \cdot \mathbf{r} \omega t)]$. We recognize $x^{\mu} = (ct, x_1, x_2, x_3)$ as a prototype vector in Minkowski space. If $\mathbf{k} \cdot \mathbf{r} \omega t$ is a scalar under Lorentz transformations (Section 4.5), show that $k^{\mu} = (\omega/c, k_1, k_2, k_3)$ is a vector in Minkowski space. *Note.* Multiplication by \hbar yields $(E/c, \mathbf{p})$ as a vector in Minkowski space.

2.9 PSEUDOTENSORS, DUAL TENSORS

So far our coordinate transformations have been restricted to pure passive rotations. We now consider the effect of reflections or inversions.

¹²We might, for instance, take $A'_1 = 1$ and $A'_m = 0$ for $m \neq 1$. Then the equation $K'_{i1} = a_{ik}a_{1l}K_{kl}$ follows immediately. The rest of Eq. (2.87) comes from other special choices of the arbitrary A'_j .