using $x_{4}=i c t$. This is the four-dimensional Laplacian, sometimes called the d'Alembertian and denoted by \square^{2}. Show that it is a scalar operator, that is, is invariant under Lorentz transformations.

2.8 Quotient Rule

If A_{i} and B_{j} are vectors, as seen in Section 2.7, we can easily show that $A_{i} B_{j}$ is a secondrank tensor. Here we are concerned with a variety of inverse relations. Consider such equations as

$$
\begin{align*}
K_{i} A_{i} & =B \tag{2.82a}\\
K_{i j} A_{j} & =B_{i} \tag{2.82b}\\
K_{i j} A_{j k} & =B_{i k} \tag{2.82c}\\
K_{i j k l} A_{i j} & =B_{k l} \tag{2.82d}\\
K_{i j} A_{k} & =B_{i j k} . \tag{2.82e}
\end{align*}
$$

Inline with our restriction to Cartesian systems, we write all indices as subscripts and, unless specified otherwise, sum repeated indices.

In each of these expressions \mathbf{A} and \mathbf{B} are known tensors of rank indicated by the number of indices and \mathbf{A} is arbitrary. In each case K is an unknown quantity. We wish to establish the transformation properties of K. The quotient rule asserts that if the equation of interest holds in all (rotated) Cartesian coordinate systems, K is a tensor of the indicated rank. The importance in physical theory is that the quotient rule can establish the tensor nature of quantities. Exercise 2.8 .1 is a simple illustration of this. The quotient rule (Eq. (2.82b)) shows that the inertia matrix appearing in the angular momentum equation $\mathbf{L}=I \omega$, Section 3.5, is a tensor.

In proving the quotient rule, we consider Eq. (2.82b) as a typical case. In our primed coordinate system

$$
\begin{equation*}
K_{i j}^{\prime} A_{j}^{\prime}=B_{i}^{\prime}=a_{i k} B_{k} \tag{2.83}
\end{equation*}
$$

using the vector transformation properties of \mathbf{B}. Since the equation holds in all rotated Cartesian coordinate systems,

$$
\begin{equation*}
a_{i k} B_{k}=a_{i k}\left(K_{k l} A_{l}\right) \tag{2.84}
\end{equation*}
$$

Now, transforming \mathbf{A} back into the primed coordinate system ${ }^{11}$ (compare Eq. (2.62)), we have

$$
\begin{equation*}
K_{i j}^{\prime} A_{j}^{\prime}=a_{i k} K_{k l} a_{j l} A_{j}^{\prime} \tag{2.85}
\end{equation*}
$$

Rearranging, we obtain

$$
\begin{equation*}
\left(K_{i j}^{\prime}-a_{i k} a_{j l} K_{k l}\right) A_{j}^{\prime}=0 \tag{2.86}
\end{equation*}
$$

[^0]$$
A_{l}=\sum_{j} \frac{\partial x_{l}}{\partial x_{j}^{\prime}} A_{j}^{\prime}=\sum_{j} a_{j l} A_{j}^{\prime}
$$

This must hold for each value of the index i and for every primed coordinate system. Since the A_{j}^{\prime} is arbitrary, ${ }^{12}$ we conclude

$$
\begin{equation*}
K_{i j}^{\prime}=a_{i k} a_{j l} K_{k l} \tag{2.87}
\end{equation*}
$$

which is our definition of second-rank tensor.
The other equations may be treated similarly, giving rise to other forms of the quotient rule. One minor pitfall should be noted: The quotient rule does not necessarily apply if B is zero. The transformation properties of zero are indeterminate.

Example 2.8.1 Equations of Motion and Field Equations

In classical mechanics, Newton's equations of motion $m \dot{\mathbf{v}}=\mathbf{F}$ tell us on the basis of the quotient rule that, if the mass is a scalar and the force a vector, then the acceleration $\mathbf{a} \equiv \dot{\mathbf{v}}$ is a vector. In other words, the vector character of the force as the driving term imposes its vector character on the acceleration, provided the scale factor m is scalar.

The wave equation of electrodynamics $\partial^{2} A^{\mu}=J^{\mu}$ involves the four-dimensional version of the Laplacian $\partial^{2}=\frac{\partial^{2}}{c^{2} \partial t^{2}}-\nabla^{2}$, a Lorentz scalar, and the external four-vector current J^{μ} as its driving term. From the quotient rule, we infer that the vector potential A^{μ} is a four-vector as well. If the driving current is a four-vector, the vector potential must be of rank 1 by the quotient rule.

The quotient rule is a substitute for the illegal division of tensors.

Exercises

2.8.1 The double summation $K_{i j} A_{i} B_{j}$ is invariant for any two vectors A_{i} and B_{j}. Prove that $K_{i j}$ is a second-rank tensor.
Note. In the form $d s^{2}$ (invariant) $=g_{i j} d x^{i} d x^{j}$, this result shows that the matrix $g_{i j}$ is a tensor.
2.8.2 The equation $K_{i j} A_{j k}=B_{i k}$ holds for all orientations of the coordinate system. If \mathbf{A} and \mathbf{B} are arbitrary second-rank tensors, show that \mathbf{K} is a second-rank tensor also.
2.8.3 The exponential in a plane wave is $\exp [i(\mathbf{k} \cdot \mathbf{r}-\omega t)]$. We recognize $x^{\mu}=\left(c t, x_{1}, x_{2}, x_{3}\right)$ as a prototype vector in Minkowski space. If $\mathbf{k} \cdot \mathbf{r}-\omega t$ is a scalar under Lorentz transformations (Section 4.5), show that $k^{\mu}=\left(\omega / c, k_{1}, k_{2}, k_{3}\right)$ is a vector in Minkowski space. Note. Multiplication by \hbar yields ($E / c, \mathbf{p}$) as a vector in Minkowski space.

2.9 Pseudotensors, Dual Tensors

So far our coordinate transformations have been restricted to pure passive rotations. We now consider the effect of reflections or inversions.

[^1]
[^0]: ${ }^{11}$ Note the order of the indices of the direction cosine $a_{j l}$ in this inverse transformation. We have

[^1]: rest of Eq. (2.87) comes from other special choices of the arbitrary A_{j}^{\prime}.

