
using 4 . This is the four-dimensional Laplacian, sometimes called the d’Alem-
bertian and denoted by 2. Show that it is a scalar operator, that is, is invariant under
Lorentz transformations.

If and are vectors, as seen in Section 2.7, we can easily show that is a second-
rank tensor. Here we are concerned with a variety of inverse relations. Consider such equa-
tions as

(2.82a)

(2.82b)

(2.82c)

(2.82d)

(2.82e)

Inline with our restriction to Cartesian systems, we write all indices as subscripts and,

In each of these expressions A and B are known tensors of rank indicated by the number
of indices and A is arbitrary. In each case is an unknown quantity. We wish to establish
the transformation properties of . The quotient rule asserts that if the equation of interest
holds in all (rotated) Cartesian coordinate systems, is a tensor of the indicated rank. The
importance in physical theory is that the quotient rule can establish the tensor nature of
quantities. Exercise 2.8.1 is a simple illustration of this. The quotient rule (Eq. (2.82b))
shows that the inertia matrix appearing in the angular momentum equation L , Sec-
tion 3.5, is a tensor.
In proving the quotient rule, we consider Eq. (2.82b) as a typical case. In our primed

coordinate system

(2.83)

using the vector transformation properties of B. Since the equation holds in all rotated
Cartesian coordinate systems,

(2.84)

Now, transforming A back into the primed coordinate system11 (compare Eq. (2.62)), we
have

(2.85)

Rearranging, we obtain

0 (2.86)

11Note the order of the indices of the direction cosine in this inverse transformation. We have



This must hold for each value of the index and for every primed coordinate system. Since
the is arbitrary,12 we conclude

(2.87)

The other equations may be treated similarly, giving rise to other forms of the quotient
rule. One minor pitfall should be noted: The quotient rule does not necessarily apply if
is zero. The transformation properties of zero are indeterminate.

In classical mechanics, Newton’s equations of motion v F tell us on the basis of the
quotient rule that, if the mass is a scalar and the force a vector, then the acceleration a v
is a vector. In other words, the vector character of the force as the driving term imposes its
vector character on the acceleration, provided the scale factor is scalar.
The wave equation of electrodynamics 2 involves the four-dimensional ver-

sion of the Laplacian 2 2

2 2
2 a Lorentz scalar, and the external four-vector current

as its driving term. From the quotient rule, we infer that the vector potential is a
four-vector as well. If the driving current is a four-vector, the vector potential must be of
rank 1 by the quotient rule.

The quotient rule is a substitute for the illegal division of tensors.

2.8.1 The double summation is invariant for any two vectors and . Prove that
is a second-rank tensor.

Note. In the form 2 (invariant) , this result shows that the matrix is
a tensor.

2.8.2 The equation holds for all orientations of the coordinate system. If A and
B are arbitrary second-rank tensors, show that K is a second-rank tensor also.

2.8.3 The exponential in a plane wave is exp k r . We recognize 1 2 3

as a prototype vector in Minkowski space. If k r is a scalar under Lorentz transfor-
mations (Section 4.5), show that 1 2 3 is a vector in Minkowski space.
Note. Multiplication by yields p as a vector in Minkowski space.

So far our coordinate transformations have been restricted to pure passive rotations. We

12We might, for instance, take 1 1 and 0 for 1. Then the equation 1 1 follows immediately. The
rest of Eq. (2.87) comes from other special choices of the arbitrary .


