
further reduces the number of independent components to 21. Finally, if the components
satisfy an identity 0, show that the number of independent
components is reduced to 20.
Note.
different. Then it reduces the number of independent components by one-third.

2.6.6 is antisymmetric with respect to all pairs of indices. How many independent com-
ponents has it (in three-dimensional space)?

When dealing with vectors, we formed a scalar product (Section 1.3) by summing products
of corresponding components:

A B (summation convention). (2.76)

The generalization of this expression in tensor analysis is a process known as contraction.
Two indices, one covariant and the other contravariant, are set equal to each other, and then
(as implied by the summation convention) we sum over this repeated index. For example,
let us contract the second-rank mixed tensor ,

(2.77)

using Eq. (2.71), and then by Eq. (2.72)

(2.78)

Our contracted second-rank mixed tensor is invariant and therefore a scalar.10 This is ex-
actly what we obtained in Section 1.3 for the dot product of two vectors and in Section 1.7
for the divergence of a vector. In general, the operation of contraction reduces the rank of
a tensor by 2. An example of the use of contraction appears in Chapter 4.

and those of a contravariant vec-
may be multiplied component by component to give the general

term . This, by Eq. (2.66) is actually a second-rank tensor, for

(2.79)

Contracting, we obtain

(2.80)

10In matrix analysis this scalar is the trace of the matrix, Section 3.2.



as in Eqs. (2.77) and (2.78), to give the regular scalar product.
The operation of adjoining two vectors and as in the last paragraph is known as

forming the direct product. For the case of two vectors, the direct product is a tensor of
second rank. In this sense we may attach meaning to E
the framework of vector analysis. In general, the direct product of two tensors is a tensor
of rank equal to the sum of the two initial ranks; that is,

(2.81a)

where is a tensor of fourth rank. From Eqs. (2.66),

(2.81b)

The direct product is a technique for creating new, higher-rank tensors. Exer-
. Applications appear

in Section 4.6.
When T is an th-rank Cartesian tensor, a component of T, is a

Cartesian tensor of rank 1 (Exercise 2.7.1). However, is not a tensor
in more general spaces. In non-Cartesian systems will act on the partial derivatives

and destroy the simple tensor transformation relation (see Eq. (2.129)).
So far the distinction between a covariant transformation and a contravariant transfor-

mation has been maintained because it does exist in non-Euclidean space and because it is
of great importance in general relativity. In Sections 2.10 and 2.11 we shall develop differ-

we restrict ourselves to Cartesian tensors. As noted in Section 2.6, the distinction between
contravariance and covariance disappears.

2.7.1 If is a tensor of rank , show that is a tensor of rank 1 (Cartesian
coordinates).
Note. are, in general, functions
of the coordinates, and the simple derivative of a tensor of rank is not a tensor except
in the special case of 0. In this case the derivative does yield a covariant vector
(tensor of rank 1) by Eq. (2.64).

2.7.2 If is a tensor of rank , show that is a tensor of rank 1
(Cartesian coordinates).

2.7.3 The operator

2 1
2

2

2

may be written as

4

1

2

2


