
Exact
cancellation of ’s on
interior surfaces. No
cancellation on the
exterior surface.

and the dimensions of each approach zero 0 :

exterior surfaces
V

volumes
V

V V

The result is Eq. (1.101a), Gauss’ theorem.
From a physical point of view Eq. (1.66) has established V

integral V is just another way of expressing this same quantity, which is the equality,
Gauss’ theorem.

A frequently useful corollary of Gauss’ theorem is a relation known as Green’s theorem. If
and are two scalar functions, we have the identities

(1.102)

(1.103)

Subtracting Eq. (1.103) from Eq. (1.102), integrating over a volume ( , and their
derivatives, assumed continuous), and applying Eq. (1.101a) (Gauss’ theorem), we obtain

(1.104)



This is Green’s theorem. We use it for developing Green’s functions in Chapter 9. An
alternate form of Green’s theorem, derived from Eq. (1.102) alone, is

(1.105)

This is the form of Green’s theorem used in Section 1.16.

Although Eq. (1.101a) involving the divergence is by far the most important form of Gauss’
theorem, volume integrals involving the gradient and the curl may also appear. Suppose

V a (1.106)

in which a is a vector with constant magnitude and constant but arbitrary direction. (You

a a a (1.107)

by Eq. (1.67b). This may be rewritten

a 0 (1.108)

Since a 0 and its direction is arbitrary, meaning that the cosine of the included angle
cannot always vanish, the terms in brackets must be zero.23 The result is

(1.109)

In a similar manner, using V a P in which a is a constant vector, we may show

P P (1.110)

These last two forms of Gauss’ theorem are used in the vector form of Kirchoff diffraction
theory. They may also be used to verify Eqs. (1.97) and (1.99). Gauss’ theorem may also
be extended to tensors (see Section 2.11).

1.11.1 Using Gauss’ theorem, prove that

0

if is a closed surface.

23This exploitation of the arbitrary nature of a part of a problem is a valuable and widely used technique. The arbitrary vector
is used again in Sections 1.12 and 1.13. Other examples appear in Section 1.14 (integrands equated) and in Section 2.8, quotient
rule.



1.11.2 Show that

1

3
r

where is the volume enclosed by the closed surface .
Note. This is a generalization of Exercise 1.10.5.

1.11.3 If B A, show that

B 0

for any closed surface .

1.11.4 Over some volume let be a solution of Laplace’s equation (with the derivatives
appearing there continuous). Prove that the integral over any closed surface in of the
normal derivative of ( , or n) will be zero.

1.11.5
show that

2 lim
0

1.11.6 The electric displacement vector D D , where
is the charge density (per unit volume). At the boundary between two media there is a
surface charge density (per unit area). Show that a boundary condition for D is

D2 D1 n

n is a unit vector normal to the surface and out of medium 1.
Hint. Consider a thin pillbox as shown in Fig. 1.29.

1.11.7 From Eq. (1.67b), with V E and the electrostatic potential show
that, for integration over all space,

0
2

This corresponds to a three-dimensional integration by parts.
Hint. E E 0 You may assume that vanishes at large at least as
fast as 1.

Pillbox.



1.11.8 A particular steady-state electric current distribution is localized in space. Choosing a
bounding surface far enough out so that the current density J is zero everywhere on the
surface, show that

J 0

Hint. Take one component of J at a time. With J 0, show that J J and
apply Gauss’ theorem.

1.11.9 The creation of a localized system of steady electric currents (current density J) and

1

2
H B

Transform this into

1

2
J A

Here A is the magnetic vector potential: A B.
Hint. In Maxwell’s equations take the displacement current term D
and currents are localized, a bounding surface may be taken far enough out so that the

1.11.10 Prove the generalization of Green’s theorem:

Here is the self-adjoint operator (Section 10.1),

r r

and , and are functions of position, and
and and having continuous second derivatives.
Note. This generalized Green’s theorem appears in Section 9.7.

Gauss’ theorem relates the volume integral of a derivative of a function to an integral of
the function over the closed surface bounding the volume. Here we consider an analogous
relation between the surface integral of a derivative of a function and the line integral of
the function, the path of integration being the perimeter bounding the surface.
Let us take the surface and subdivide it into a network of arbitrarily small rectangles.

In Section 1.8 we showed that the circulation about such a differential rectangle (in the
-plane) is V . From Eq. (1.76) applied to one differential rectangle,

four sides

V V (1.111)


