
1.9.10 In a (nonrotating) isolated mass such as a star, the condition for equilibrium is

0

Here is the total pressure, is the density, and is the gravitational potential. Show
that at any given point the normals to the surfaces of constant pressure and constant
gravitational potential are parallel.

1.9.11 In the Pauli theory of the electron, one encounters the expression

p A p A

where is a scalar (wave) function. A is the magnetic vector potential related to the
magnetic induction B by B A Given that p , show that this expression
reduces to B . Show that this leads to the orbital -factor 1 upon writing the
magnetic moment as L in units of Bohr magnetons and L r See also
Exercise 1.13.7.

1.9.12 Show that any solution of the equation

A 2A 0

2A 2A 0

and the solenoidal condition

A 0

Hint. Let

1.9.13 The theory of heat conduction leads to an equation

2 2

where is a potential satisfying Laplace’s equation: 2 0. Show that a solution of
this equation is
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The next step after differentiating vectors is to integrate them. Let us start with line integrals
and then proceed to surface and volume integrals. In each case the method of attack will be
to reduce the vector integral to scalar integrals with which the reader is assumed familiar.



Line Integrals

Using an increment of length r x y z , wemay encounter the line integrals

r (1.92a)

V r (1.92b)

V r (1.92c)

in each of which the integral is over some contour that may be open (with starting point
and ending point separated) or closed (forming a loop). Because of its physical interpreta-
tion that follows, the second form, Eq. (1.92b) is by far the most important of the three.
With

r x y z (1.93)

This separation has employed the relation

x x (1.94)

which is permissible because the Cartesian unit vectors x, y, and z are constant in both
magnitude and direction. Perhaps this relation is obvious here, but it will not be true in the
non-Cartesian systems encountered in Chapter 2.
The three integrals on the right side of Eq. (1.93) are ordinary scalar integrals and, to

avoid complications, we assume that they are Riemann integrals. Note, however, that the
integral with respect to cannot be evaluated unless and are known in terms of
and similarly for the integrals with respect to and . This simply means that the path
of integration
the integral depends only on the value of the end points, the value will depend on the
particular choice of contour . For instance, if we choose the very special case 1,
Eq. (1.92a) is just the vector distance from the start of contour to the endpoint, in this

r x y
z , the second and third forms also reduce to scalar integrals and, like Eq. (1.92a), are
dependent, in general, on the choice of path. The form (Eq. (1.92b)) is exactly the same
as that encountered when we calculate the work done by a force that varies along the
path,

F r (1.95a)

In this expression F is the force exerted on a particle.



A path of integration.

The force exerted on a body is F x y . The problem is to calculate the work done
going from the origin to the point 1 1 :
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0 0
F r
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(1.95b)

Separating the two integrals, we obtain
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0
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0
(1.95c)

as ranges from 0
to 1. Likewise, the second integral requires as a function of
shown in Fig. 1.25. Then
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1 1 (1.95d)

since 1 along the second. If we select the
path 0 0 1 and 0 1 1 , then Eq. (1.95c) gives 1. For this
force the work done depends on the choice of path.

Surface Integrals

Surface integrals appear in the same forms as line integrals, the element of area also being
a vector, .20 Often this area element is written n , in which n is a unit (normal) vector
to indicate the positive direction.21 There are two conventions for choosing the positive
direction. First, if the surface is a closed surface, we agree to take the outward normal
as positive. Second, if the surface is an open surface, the positive normal depends on the

20Recall that in Section 1.4 the area (of a parallelogram) is represented by a cross-product vector.
21Although n always has unit length, its direction may well be a function of position.



Right-hand rule for
the positive normal.

are placed in the direction of travel around the perimeter, the positive normal is indicated by
the thumb of the right hand. As an illustration, a circle in the -plane (Fig. 1.26) mapped
out from to to to and back to will have its positive normal parallel to the
positive -axis (for the right-handed coordinate system).
Analogous to the line integrals, Eqs. (1.92a) to (1.92c), surface integrals may appear in

the forms

V V

Again, the dot product is by far the most commonly encountered form. The surface integral
V

reappears in Section 1.11 as Gauss’ theorem. Note that both physically and from the dot

the surface.

Volume Integrals

Volume integrals are somewhat simpler, for the volume element is a scalar quantity.22

We have

V x y z (1.96)

again reducing the vector integral to a vector sum of scalar integrals.

22Frequently the symbols 3 and 3 are used to denote a volume element in coordinate ( or 1 2 3) space.


