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From electrodynamics we know that B 0 which has the general solution B A
whereA r is called the vector potential (of the magnetic induction), because A

A 0 as a triple scalar product with two identical vectors. This last identity will
not change if we add the gradient of some scalar function to the vector potential, which,
therefore, is not unique.
In our case, we want to show that a vector potential is A 1

2 B r
Using the BAC–BAC

2 A B r r B B r 3B B 2B

where we indicate by the ordering of the scalar product of the second term that the gradient
still acts on the coordinate vector.

Calculate r .
By Eq. (1.71),

r r r (1.72)

First,

r
x y z

0 (1.73)

Second, using r (Example 1.6.1), we obtain

r r r 0 (1.74)

This vector product vanishes, since r r and r r 0.

-plane, Fig. 1.24.

Circulation around a differential loop.



Although the circulation is technically given by a vector line integral V (Sec-
tion 1.10), we can set up the equivalent scalar integrals here. Let us take the circulation to
be

circulation1234
1 2

3 4
(1.75)

integral, ; but in the third integral, because the third line segment
is traversed in the negative -direction. Similarly, for the second integral,
for the fourth. Next, the integrands are referred to the point 0 0 with a Taylor expan-
sion18 taking into account the displacement of line segment 3 from 1 and that of 2 from 4.
For our differential line segments this leads to

circulation1234 0 0 0 0

0 0 0 0

(1.76)

Dividing by , we have

circulation per unit area V (1.77)

The circulation19 about our differential area in the -plane is given by the -component
of V. In principle, the curl V at 0 0 could be determined by inserting a

0 0 . The rotation of the little
paddle wheel would be a measure of the curl, and its axis would be along the direction of

V, which is perpendicular to the plane of circulation.
We shall use the result, Eq. (1.76), in Section 1.12 to derive Stokes’ theorem. Whenever

the curl of a vector V vanishes,

V 0 (1.78)

V is labeled irrotational. The most important physical examples of irrotational vectors are
the gravitational and electrostatic forces. In each case

V
r
2

r
3 (1.79)

where is a constant and r is the unit vector in the outward radial direction. For the
gravitational case we have 1 2 given by Newton’s law of universal gravitation.
If 1 2 4 0, we have Coulomb’s law of electrostatics (mks units). The force V

18Here, 0 0 0 0 0 0 The higher-order terms will drop out in the limit as 0.
A correction term for the variation of with is canceled by the corresponding term in the fourth integral.
19 V is called the “vorticity.”



given in Eq. (1.79) may be shown to be irrotational by direct expansion into Cartesian
components, as we did in Example 1.8.1. Another approach is developed in Chapter 2, in
which we express , the curl, in terms of spherical polar coordinates. In Section 1.13 we
shall see that whenever a vector is irrotational, the vector may be written as the (negative)

For waves in an elastic medium, if the displacement u is irrotational, u 0, plane
waves (or spherical waves at large distances) become longitudinal. If u is solenoidal,

u 0, then the waves become transverse. A seismic disturbance will produce a dis-
placement that may be resolved into a solenoidal part and an irrotational part (compare
Section 1.16). The irrotational part yields the longitudinal (primary) earthquake waves.
The solenoidal part gives rise to the slower transverse (secondary) waves.
Using the gradient, divergence, and curl, and of course the BAC–CAB rule, we may

expansion into Cartesian components is always a possibility. Sometimes if we use insight

ened drastically.
Remember that is a vector operator, a hybrid creature satisfying two sets of rules:

1. vector rules, and
2. partial differentiation rules— including differentiation of a product.

Verify that

A B B A A B B A A B (1.80)

This particular example hinges on the recognition that A B is the type of term that
appears in the BAC–CAB expansion of a triple vector product, Eq. (1.55). For instance,

A B A B A B

with the differentiating only B, not A. From the commutativity of factors in a scalar
product we may interchange A and B and write

B A A B B A

now with differentiating only A, not B. Adding these two equations, we obtain dif-
ferentiating the product A B and the identity, Eq. (1.80). This identity is used frequently
in electromagnetic theory. Exercise 1.8.13 is a simple illustration.


