
1.6.2 (a) Find a unit vector perpendicular to the surface

2 2 2 3

at the point 1 1 1 . Lengths are in centimeters.
(b) Derive the equation of the plane tangent to the surface at 1 1 1 .

ANS. (a) x y z 3, (b) 3

1.6.3 Given a vector r12 x 1 2 y 1 2 z 1 2 , show that 1 12 (gradient
with respect to 1, 1, and 1 of the magnitude 12) is a unit vector in the direction of
r12.

1.6.4 If a vector function F depends on both space coordinates and time , show that

F r F
F

1.6.5 Show that , where and are differentiable scalar functions of
and .

and are
related by some function 0 is that 0.

(b) If and , show that the condition 0 leads to
the two-dimensional Jacobian

0

The functions and are assumed differentiable.

Differentiating a vector function is a simple extension of differentiating scalar quantities.
Suppose r describes the position of a satellite at some time . Then, for differentiation
with respect to time,

r
lim

0

r r
v linear velocity.

Graphically, we again have the slope of a curve, orbit, or trajectory, as shown in Fig. 1.22.
If we resolve r into its Cartesian components, r always reduces directly to a

vector sum of not more than three (for three-dimensional space) scalar derivatives. In other
coordinate systems (Chapter 2) the situation is more complicated, for the unit vectors are
no longer constant in direction. Differentiation with respect to the space coordinates is
handled in the same way as differentiation with respect to time, as seen in the following
paragraphs.



Differentiation of a vector.

In Section 1.6,
vector and its differential properties, we let it operate on a vector. First, as a vector we dot
it into a second vector to obtain

V (1.65a)

known as the divergence of V. This is a scalar, as discussed in Section 1.3.

Calculate r:

r x y z x y z

or r 3.

Generalizing Example 1.7.1,

r

3
2 2 2

3



The manipulation of the partial derivatives leading to the second equation in Example 1.7.2
is discussed in Example 1.6.1. In particular, if 1,

r 1 r

3 1 1 1

2 1 (1.65b)

This divergence vanishes for 2, except at 0, an important fact in Section 1.14.

Let us prove the formula r A r 3 A 3 where A or or both

To show this, we proceed, as in Example 1.6.3, by integration by parts after writing
the inner product in Cartesian coordinates. Because the integrated terms are evaluated at

r A r 3

A 3

v with
v , its density at point .
If we consider a small volume (Fig. 1.23) at
this volume per unit time (positive -direction) through the face EFGH
in)EFGH 0 and tangential to this

-direction) through face ABCD is
15 This yields

ABCD

0

density or velocity or both.16 The zero-order term 0

15Here we have the increment and we show a partial derivative with respect to since may also depend on and .
16Strictly speaking, is averaged over face EFGH and the expression is similarly averaged over face
ABCD



cancels out:

Equivalently, we can arrive at this result by

lim
0

0 0 0 0 0

0 0 0

Now, the -axis is not entitled to any preferred treatment. The preceding result for the two
faces perpendicular to the -axis must hold for the two faces perpendicular to the -axis,
with replaced by and the corresponding changes for and : , . This is
a cyclic permutation of the coordinates. A further cyclic permutation yields the result for

pairs of surfaces of our volume element, we have

(per unit time)

v (1.66)

per
unit volume per unit time is v . Hence the name divergence. A direct application is
in the continuity equation

v 0 (1.67a)

volume. Note that in Eq. (1.67a), is considered to be a possible function of time as well
as of space: . The divergence appears in a wide variety of physical problems,



ranging from a probability current density in quantum mechanics to neutron leakage in a
nuclear reactor.

The combination V , in which is a scalar function and V is a vector function,
may be written

V

V V (1.67b)

which is just what we would expect for the derivative of a product. Notice that as a
differential operator differentiates both and V; as a vector it is dotted into V (in each
term).

If we have the special case of the divergence of a vector vanishing,

B 0 (1.68)

the vector B is said to be solenoidal, the term coming from the example in which B is the
magnetic induction and Eq. (1.68) appears as one of Maxwell’s equations. When a vector
is solenoidal, it may be written as the curl of another vector known as the vector potential.
(In Section 1.13 we shall calculate such a vector potential.)

1.7.1 For a particle moving in a circular orbit r x cos y sin ,

(a) evaluate r r with r r v

(b) Show that r 2r 0 with r v

The radius and the angular velocity are constant.

ANS. (a) z 2

1.7.2 Vector A
derivative A

1.7.3 Show, by differentiating components, that

(a) A B A B A B ,

(b) A B A B A B ,
just like the derivative of the product of two algebraic functions.

1.7.4 In Chapter 2 it will be seen that the unit vectors in non-Cartesian coordinate systems are
usually functions of the coordinate variables, e e 1 2 3 but e 1. Show that
either e 0 or e is orthogonal to e .
Hint. e2 0.


