total variation $d V=\nabla V \cdot d \mathbf{r}=-\mathbf{F} \cdot d \mathbf{r}$ is the work done against the force along the path $d \mathbf{r}$, we recognize the physical meaning of the potential (difference) as work and energy. Moreover, in a sum of path increments the intermediate points cancel,

$$
\left[V\left(\mathbf{r}+d \mathbf{r}_{1}+d \mathbf{r}_{2}\right)-V\left(\mathbf{r}+d \mathbf{r}_{1}\right)\right]+\left[V\left(\mathbf{r}+d \mathbf{r}_{1}\right)-V(\mathbf{r})\right]=V\left(\mathbf{r}+d \mathbf{r}_{2}+d \mathbf{r}_{1}\right)-V(\mathbf{r})
$$

so the integrated work along some path from an initial point \mathbf{r}_{i} to a final point \mathbf{r} is given by the potential difference $V(\mathbf{r})-V\left(\mathbf{r}_{i}\right)$ at the endpoints of the path. Therefore, such forces are especially simple and well behaved: They are called conservative. When there is loss of energy due to friction along the path or some other dissipation, the work will depend on the path, and such forces cannot be conservative: No potential exists. We discuss conservative forces in more detail in Section 1.13.

Example 1.6.1 the Gradient of a Potential $V(r)$

Let us calculate the gradient of $V(r)=V\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)$, so

$$
\nabla V(r)=\hat{\mathbf{x}} \frac{\partial V(r)}{\partial x}+\hat{\mathbf{y}} \frac{\partial V(r)}{\partial y}+\hat{\mathbf{z}} \frac{\partial V(r)}{\partial z}
$$

Now, $V(r)$ depends on x through the dependence of r on x. Therefore ${ }^{14}$

$$
\frac{\partial V(r)}{\partial x}=\frac{d V(r)}{d r} \cdot \frac{\partial r}{\partial x} .
$$

From r as a function of x, y, z,

$$
\frac{\partial r}{\partial x}=\frac{\partial\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}}{\partial x}=\frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}}=\frac{x}{r}
$$

Therefore

$$
\frac{\partial V(r)}{\partial x}=\frac{d V(r)}{d r} \cdot \frac{x}{r}
$$

Permuting coordinates $(x \rightarrow y, y \rightarrow z, z \rightarrow x)$ to obtain the y and z derivatives, we get

$$
\begin{aligned}
\nabla V(r) & =(\hat{\mathbf{x}} x+\hat{\mathbf{y}} y+\hat{\mathbf{z}} z) \frac{1}{r} \frac{d V}{d r} \\
& =\frac{\mathbf{r}}{r} \frac{d V}{d r}=\hat{\mathbf{r}} \frac{d V}{d r}
\end{aligned}
$$

Here $\hat{\mathbf{r}}$ is a unit vector (\mathbf{r} / r) in the positive radial direction. The gradient of a function of r is a vector in the (positive or negative) radial direction. In Section 2.5, $\hat{\mathbf{r}}$ is seen as one of the three orthonormal unit vectors of spherical polar coordinates and $\hat{\mathbf{r}} \partial / \partial r$ as the radial component of ∇.
${ }^{14}$ This is a special case of the chain rule of partial differentiation:

$$
\frac{\partial V(r, \theta, \varphi)}{\partial x}=\frac{\partial V}{\partial r} \frac{\partial r}{\partial x}+\frac{\partial V}{\partial \theta} \frac{\partial \theta}{\partial x}+\frac{\partial V}{\partial \varphi} \frac{\partial \varphi}{\partial x},
$$

where $\partial V / \partial \theta=\partial V / \partial \varphi=0, \partial V / \partial r \rightarrow d V / d r$.

A Geometrical Interpretation

One immediate application of $\nabla \varphi$ is to dot it into an increment of length

$$
d \mathbf{r}=\hat{\mathbf{x}} d x+\hat{\mathbf{y}} d y+\hat{\mathbf{z}} d z
$$

Thus we obtain

$$
\nabla \varphi \cdot d \mathbf{r}=\frac{\partial \varphi}{\partial x} d x+\frac{\partial \varphi}{\partial y} d y+\frac{\partial \varphi}{\partial z} d z=d \varphi
$$

the change in the scalar function φ corresponding to a change in position $d \mathbf{r}$. Now consider P and Q to be two points on a surface $\varphi(x, y, z)=C$, a constant. These points are chosen so that Q is a distance $d \mathbf{r}$ from P. Then, moving from P to Q, the change in $\varphi(x, y, z)=C$ is given by

$$
\begin{equation*}
d \varphi=(\nabla \varphi) \cdot d \mathbf{r}=0 \tag{1.63}
\end{equation*}
$$

since we stay on the surface $\varphi(x, y, z)=C$. This shows that $\nabla \varphi$ is perpendicular to $d \mathbf{r}$. Since $d \mathbf{r}$ may have any direction from P as long as it stays in the surface of constant φ, point Q being restricted to the surface but having arbitrary direction, $\nabla \varphi$ is seen as normal to the surface $\varphi=$ constant (Fig. 1.19).

If we now permit $d \mathbf{r}$ to take us from one surface $\varphi=C_{1}$ to an adjacent surface $\varphi=C_{2}$ (Fig. 1.20),

$$
\begin{equation*}
d \varphi=C_{1}-C_{2}=\Delta C=(\nabla \varphi) \cdot d \mathbf{r} \tag{1.64}
\end{equation*}
$$

For a given $d \varphi,|d \mathbf{r}|$ is a minimum when it is chosen parallel to $\nabla \varphi(\cos \theta=1)$; or, for a given $|d \mathbf{r}|$, the change in the scalar function φ is maximized by choosing $d \mathbf{r}$ parallel to

Figure 1.19 The length increment $d \mathbf{r}$ has to stay on the surface $\varphi=C$.

36 Chapter 1 Vector Analysis

Figure 1.20 Gradient.
$\nabla \varphi$. This identifies $\nabla \varphi$ as a vector having the direction of the maximum space rate of change of φ, an identification that will be useful in Chapter 2 when we consider nonCartesian coordinate systems. This identification of $\nabla \varphi$ may also be developed by using the calculus of variations subject to a constraint, Exercise 17.6.9.

Example 1.6.2 Force as Gradient of a Potential

As a specific example of the foregoing, and as an extension of Example 1.6.1, we consider the surfaces consisting of concentric spherical shells, Fig. 1.21. We have

$$
\varphi(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}=r=C,
$$

where r is the radius, equal to C, our constant. $\Delta C=\Delta \varphi=\Delta r$, the distance between two shells. From Example 1.6.1

$$
\nabla \varphi(r)=\hat{\mathbf{r}} \frac{d \varphi(r)}{d r}=\hat{\mathbf{r}} .
$$

The gradient is in the radial direction and is normal to the spherical surface $\varphi=C$.

Example 1.6.3 integration by Parts of Gradient

Let us prove the formula $\int \mathbf{A}(\mathbf{r}) \cdot \nabla f(\mathbf{r}) d^{3} r=-\int f(\mathbf{r}) \nabla \cdot \mathbf{A}(\mathbf{r}) d^{3} r$, where \mathbf{A} or f or both vanish at infinity so that the integrated parts vanish. This condition is satisfied if, for example, \mathbf{A} is the electromagnetic vector potential and f is a bound-state wave function $\psi(\mathbf{r})$.

Figure 1.21 Gradient for $\varphi(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$, spherical shells: $\left(x_{2}^{2}+y_{2}^{2}+z_{2}^{2}\right)^{1 / 2}=r_{2}=C_{2}$, $\left(x_{1}^{2}+y_{1}^{2}+z_{1}^{2}\right)^{1 / 2}=r_{1}=C_{1}$.

Writing the inner product in Cartesian coordinates, integrating each one-dimensional integral by parts, and dropping the integrated terms, we obtain

$$
\begin{aligned}
& \int \mathbf{A}(\mathbf{r}) \cdot \nabla f(\mathbf{r}) d^{3} r=\iint\left[\left.A_{x} f\right|_{x=-\infty} ^{\infty}-\int f \frac{\partial A_{x}}{\partial x} d x\right] d y d z+\cdots \\
& \quad=-\iiint f \frac{\partial A_{x}}{\partial x} d x d y d z-\iiint f \frac{\partial A_{y}}{\partial y} d y d x d z-\iiint f \frac{\partial A_{z}}{\partial z} d z d x d y \\
& =-\int f(\mathbf{r}) \nabla \cdot \mathbf{A}(\mathbf{r}) d^{3} r .
\end{aligned}
$$

If $\mathbf{A}=e^{i k z} \hat{\mathbf{e}}$ describes an outgoing photon in the direction of the constant polarization unit vector $\hat{\mathbf{e}}$ and $f=\psi(\mathbf{r})$ is an exponentially decaying bound-state wave function, then

$$
\int e^{i k z} \hat{\mathbf{e}} \cdot \nabla \psi(\mathbf{r}) d^{3} r=-e_{z} \int \psi(\mathbf{r}) \frac{d e^{i k z}}{d z} d^{3} r=-i k e_{z} \int \psi(\mathbf{r}) e^{i k z} d^{3} r
$$

because only the z-component of the gradient contributes.

Exercises

1.6.1 If $S(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}$, find
(a) $\quad \nabla \mathrm{S}$ at the point $(1,2,3)$;
(b) the magnitude of the gradient of $S,|\nabla S|$ at $(1,2,3)$; and
(c) the direction cosines of ∇S at $(1,2,3)$.

