
total variation r F r is the work done against the force along the path
r we recognize the physical meaning of the potential (difference) as work and energy.

Moreover, in a sum of path increments the intermediate points cancel,

r r1 r2 r r1 r r1 r r r2 r1 r

so the integrated work along some path from an initial point r r is given by
the potential difference r r at the endpoints of the path. Therefore, such forces
are especially simple and well behaved: They are called conservative. When there is loss of
energy due to friction along the path or some other dissipation, the work will depend on the
path, and such forces cannot be conservative: No potential exists. We discuss conservative
forces in more detail in Section 1.13.

Let us calculate the gradient of 2 2 2 , so

x y z

Now, depends on through the dependence of on . Therefore14

From as a function of ,

2 2 2 1 2

2 2 2 1 2

Therefore

Permuting coordinates to obtain the and derivatives, we get

x y z
1

r
r

Here r is a unit vector r in the positive radial direction. The gradient of a function of
is a vector in the (positive or negative) radial direction. In Section 2.5, r is seen as one

of the three orthonormal unit vectors of spherical polar coordinates and r as the radial
component of .

14This is a special case of the chain rule of partial differentiation:

where 0



One immediate application of is to dot it into an increment of length

r x y z

Thus we obtain

r

the change in the scalar function corresponding to a change in position r. Now consider
and to be two points on a surface , a constant. These points are chosen

so that is a distance r from . Then, moving from to , the change in
is given by

r 0 (1.63)

since we stay on the surface . This shows that is perpendicular to r.
Since r may have any direction from as long as it stays in the surface of constant ,
point being restricted to the surface but having arbitrary direction, is seen as normal
to the surface constant (Fig. 1.19).

If we now permit r to take us from one surface 1 to an adjacent surface 2
(Fig. 1.20),

1 2 r (1.64)

For a given , r is a minimum when it is chosen parallel to cos 1 ; or, for
a given r , the change in the scalar function is maximized by choosing r parallel to

The length increment r has to stay on the surface .



Gradient.

. as a vector having the direction of the maximum space rate
of change of

may also be developed by using
the calculus of variations subject to a constraint, Exercise 17.6.9.

the surfaces consisting of concentric spherical shells, Fig. 1.21. We have

2 2 2 1 2

where is the radius, equal to , our constant. , the distance between two
shells. From Example 1.6.1

r r

The gradient is in the radial direction and is normal to the spherical surface .

Let us prove the formula A r r 3 r A r 3 , whereA or or both

ple, A is the electromagnetic vector potential and is a bound-state wave function r



Gradient for
2 2 2 1 2 spherical

shells: 2
2

2
2

2
2

1 2
2 2,

2
1

2
1

2
1

1 2
1 1

Writing the inner product in Cartesian coordinates, integrating each one-dimensional
integral by parts, and dropping the integrated terms, we obtain

A r r 3

r A r 3

If A e describes an outgoing photon in the direction of the constant polarization unit
vector e and r is an exponentially decaying bound-state wave function, then

e r 3 r 3 r 3

because only the -component of the gradient contributes.

1.6.1 If 2 2 2 3 2

(a) S at the point 1 2 3 ;
(b) the magnitude of the gradient of , at 1 2 3 ; and
(c) the direction cosines of at 1 2 3 .


