
Law of sines.

and the second rocket path as r r2 2v2 with r2 5 2 1 and v2 1 1 1
Lengths are in kilometers, velocities in kilometers per hour.

Sections 1.3 and 1.4 cover the two types of multiplication of interest here. However, there
are combinations of three vectors, A B C and A B C
frequency to deserve further attention. The combination

A B C

is known as the triple scalar product. B C yields a vector that, dotted into A, gives a
scalar. We note that A B C represents a scalar crossed into a vector, an operation that

may be omitted and the triple scalar product written A B C.
Using Eqs. (1.38) for the cross product and Eq. (1.24) for the dot product, we obtain

A B C

B C A C A B

A C B C B A B A C and so on (1.48)

There is a high degree of symmetry in the component expansion. Every term contains the
factors , , and . If , , and are in cyclic order , the sign is positive. If the
order is anticyclic, the sign is negative. Further, the dot and the cross may be interchanged,

A B C A B C (1.49)



Parallelepiped representation of triple scalar product.

A convenient representation of the component expansion of Eq. (1.48) is provided by the
determinant

A B C (1.50)

The rules for interchanging rows and columns of a determinant12 provide an immediate
A, B, and

C in the determinant form suggests the relation given in Eq. (1.49). The triple products
encountered in Section 1.4, which showed that A B was perpendicular to both A and B,
were special cases of the general result (Eq. (1.48)).
The triple scalar product has a direct geometrical interpretation. The three vectors A, B,

and C

B C sin

area of parallelogram base. (1.51)

The direction, of course, is normal to the base. Dotting A into this means multiplying the
base area by the projection of A onto the normal, or base times height. Therefore

A B C A B and C

tion of a reciprocal crystal lattice. Let a, b, and c (not necessarily mutually perpendicular)

12See Section 3.1 for a summary of the properties of determinants.



to another may then be written

r a b c (1.52)

with , and taking on integral values. With these vectors we may form

a
b c

a b c
b

c a

a b c
c

a b

a b c
(1.53a)

We see that a is perpendicular to the plane containing b and c, and we can readily show
that

a a b b c c 1 (1.53b)

whereas

a b a c b a b c c a c b 0 (1.53c)

It is from Eqs. (1.53b) and (1.53c) that the name reciprocal lattice is associated with the
points r a b c . The mathematical space in which this reciprocal lattice ex-
ists is sometimes called a Fourier space, on the basis of relations to the Fourier analysis of
Chapters 14 and 15. This reciprocal lattice is useful in problems involving the scattering of
waves from the various planes in a crystal. Further details may be found in R. B. Leighton’s
Principles of Modern Physics, pp. 440–448 [New York: McGraw-Hill (1959)].

The second triple product of interest isA B C , which is a vector. Here the parentheses
must be retained, as may be seen from a special case x x y 0, while x x y
x z y.

For the vectors

A x 2y z 1 2 1 B y z 0 1 1 C x y 0 1 1

B C
x y z
0 1 1
1 1 0

x y z

and

A B C
x y z
1 2 1
1 1 1

x z y z x y

B C

By rewriting the result in the last line of Example 1.5.1 as a linear combination of B and
C, we notice that, taking a geometric approach, the triple vector product is perpendicular



B and C are in the -plane.
B C is perpendicular to the -plane and

is shown here along the -axis. Then
A B C is perpendicular to the -axis

and therefore is back in the -plane.

to A and to B C B and C is perpendicular to B C, and so the
triple product lies in this plane (see Fig. 1.17):

A B C B C (1.54)

Taking the scalar product of Eq. (1.54) with A gives zero for the left-hand side, so
A B A C 0. Hence A C and A B for a suitable . Substitut-

ing these values into Eq. (1.54) gives

A B C B A C C A B (1.55)

we want to show that

1

in Eq. (1.55), an important relation sometimes known as the BAC–CAB rule. Since
Eq. (1.55) is linear in , , and , is independent of these magnitudes. That is, we
only need to show that 1 for unit vectors A, B, C. Let us denote B C cos ,
C A cos A B cos , and square Eq. (1.55) to obtain

A B C
2

A2 B C 2 A B C
2

1 cos2 A B C 2

2 A C 2 A B 2 2 A B A C B C

2 cos2 cos2 2 cos cos cos (1.56)


