
This special case of a scalar product in conjunction with general properties the scalar prod-

Just as the projection is linear in A, we want the scalar product of two vectors to be
linear in A and B, that is, obey the distributive and associative laws

A B C A B A C (1.23a)

A B A B A B (1.23b)

where is a number. Nowwe can use the decomposition ofB into its Cartesian components
according to Eq. (1.5), B x y z to construct the general scalar or dot product
of the vectors A and B as

A B A x y z

A x A y A z upon applying Eqs. (1.23a) and (1.23b)

upon substituting Eq. (1.22).

Hence

A B B A (1.24)

If A B in Eq. (1.24), we recover the magnitude 2 1 2 of A in Eq. (1.6) from
Eq. (1.24).
It is obvious from Eq. (1.24) that the scalar product treats A and B alike, or is sym-

metric in A and B
generalize Eqs. (1.22) to the projection of A onto the direction of a vector B 0
as cos A B, where B B is the unit vector in the direction of B and
is the angle between A and B, as shown in Fig. 1.7. Similarly, we project B onto A as

cos B A. Second, we make these projections symmetric in A and B, which

A B cos (1.25)

Scalar product A B cos .



The distributive law
A B C B C , Eq. (1.23a).

The distributive law in Eq. (1.23a) is illustrated in Fig. 1.8, which shows that the sum of
the projections of B and C onto A, is equal to the projection of B C onto A,
B C
It follows from Eqs. (1.22), (1.24), and (1.25) that the coordinate unit vectors satisfy the

relations

x x y y z z 1 (1.26a)

whereas

x y x z y z 0 (1.26b)

physics is in the calculation of work force displacement cos , which is interpreted as
displacement times the projection of the force along the displacement direction, i.e., the
scalar product of force and displacement, F S.
If A B 0 and we know that A 0 and B 0, then, from Eq. (1.25), cos 0, or
90 270 , and so on. The vectors A and B must be perpendicular. Alternately, we

may say A and B are orthogonal. The unit vectors x, y, and z are mutually orthogonal. To
develop this notion of orthogonality one more step, suppose that n is a unit vector and r is
a nonzero vector in the -plane; that is, r x y (Fig. 1.9). If

n r 0

for all choices of r, then n must be perpendicular (orthogonal) to the -plane.
Often it is convenient to replace x, y, and z by subscripted unit vectors e 1 2 3,

with x e1, and so on. Then Eqs. (1.26a) and (1.26b) become

e e (1.26c)

For the unit vectors e and e are orthogonal. For each vector is normal-
ized to unity, that is, has unit magnitude. The set e is said to be orthonormal. A major
advantage of Eq. (1.26c) over Eqs. (1.26a) and (1.26b) is that Eq. (1.26c) may readily be
generalized to -dimensional space: 1 2 . Finally, we are picking sets of
unit vectors e that are orthonormal for convenience – a very great convenience.



A normal vector.

We have not yet shown that the word scalar
a scalar quantity. To do this, we investigate the behavior of A B under a rotation of the
coordinate system. By use of Eq. (1.15),

(1.27)

Using the indices and to sum over , and , we obtain

(1.28)

and, by rearranging the terms on the right-hand side, we have

(1.29)

The last two steps follow by using Eq. (1.18), the orthogonality condition of the direction

delta is to cancel all terms in a summation over either index except the term for which the
indices are equal. In Eq. (1.29) its effect is to set and to eliminate the summation
over . Of course, we could equally well set and eliminate the summation over .



Equation (1.29) gives us

(1.30)

of the coordinate system.
In a similar approach that exploits this concept of invariance, we take C A B and

dot it into itself:

C C A B A B

A A B B 2A B (1.31)

Since

C C 2 (1.32)

the square of the magnitude of vector C and thus an invariant quantity, we see that

A B
1

2
2 2 2 invariant. (1.33)

Since the right-hand side of Eq. (1.33) is invariant— that is, a scalar quantity— the left-
hand side, A B, must also be invariant under rotation of the coordinate system. Hence
A B is a scalar.
Equation (1.31) is really another form of the law of cosines, which is

2 2 2 2 cos (1.34)

ferred, a vector derivation of the law of cosines (Fig. 1.10).
The dot product, given by Eq. (1.24), may be generalized in two ways. The space need

not be restricted to three dimensions. In -dimensional space, Eq. (1.24) applies with the
sum running from 1 to . Moreover,
nite series (Section 5.2). The other generalization extends the concept of vector to embrace
functions. The function analog of a dot, or inner, product appears in Section 10.4.

The law of cosines.



1.3.1 Two unit magnitude vectors e and e are required to be either parallel or perpendicular
to each other. Show that e e provides an interpretation of Eq. (1.18), the direction
cosine orthogonality relation.

1.3.2 Given that (1) the dot product of a unit vector with itself is unity and (2) this relation is
valid in all (rotated) coordinate systems, show that x x 1 (with the primed system
rotated 45 about the -axis relative to the unprimed) implies that x y 0.

1.3.3 The vector r .
Find the surface swept out by the tip of r if

(a) r a a 0 Characterize a geometrically.
(b) r a r 0 Describe the geometric role of a.

The vector a is constant (in magnitude and direction).

1.3.4 The interaction energy between two dipoles of moments 1 and 2 may be written in
the vector form

1 2
3

3 1 r 2 r
5

and in the scalar form
1 2
3

2 cos 1 cos 2 sin 1 sin 2 cos

Here 1 and 2 are the angles of 1 and 2 relative to r, while is the azimuth of 2
relative to the 1–r plane (Fig. 1.11). Show that these two forms are equivalent.
Hint: Equation (12.178) will be helpful.

1.3.5 A pipe comes diagonally down the south wall of a building, making an angle of 45
with the horizontal. Coming into a corner, the pipe turns and continues diagonally down
a west-facing wall, still making an angle of 45 with the horizontal. What is the angle
between the south-wall and west-wall sections of the pipe?

ANS. 120 .

1.3.6 Find the shortest distance of an observer at the point 2 1 3 from a rocket in free
1 2 3 m s. The rocket was launched at time 0 from 1 1 1

Lengths are in kilometers.

1.3.7 Prove the law of cosines from the triangle with corners at the point of C and A in
Fig. 1.10 and the projection of vector B onto vector A

Two dipole moments.



A second form of vector multiplication employs the sine of the included angle instead
of the cosine. For instance, the angular momentum of a body shown at the point of the

angular momentum radius arm linear momentum

distance linear momentum sin

For convenience in treating problems relating to quantities such as angular momentum,

C A B with sin (1.35)

Unlike the preceding case of the scalar product, C is now a vector, and we assign it a
direction perpendicular to the plane of A and B such that A B, and C form a right-handed
system. With this choice of direction we have

A B B A anticommutation (1.36a)

x x y y z z 0 (1.36b)

whereas

x y z y z x z x y
y x z z y x x z y

(1.36c)

Among the examples of the cross product in mathematical physics are the relation between
linear momentum p and angular momentum L, with L

L r p

Angular momentum.



Parallelogram representation of the vector product.

and the relation between linear velocity v and angular velocity ,

v r

Vectors v and p describe properties of the particle or physical system. However, the posi-
tion vector r is determined by the choice of the origin of the coordinates. This means that
and L depend on the choice of the origin.
The familiar magnetic induction B

tion8

F v B (mks units)

Here v is the velocity of the electric charge and F is the resulting force on the moving
charge.
The cross product has an important geometrical interpretation, which we shall use in

A and B (Fig. 1.13), sin is the
height if is taken as the length of the base. Then A B sin is the area of the
parallelogram. As a vector, A B A and B, with
the area vector normal to the plane of the parallelogram. This suggests that area (with its
orientation in space) may be treated as a vector quantity.

coordinate unit vectors in Eqs. (1.36c) in conjunction with the linearity of the cross product
in both vector arguments, in analogy with Eqs. (1.23) for the dot product,

A B C A B A C (1.37a)

A B C A C B C (1.37b)

A B A B A B (1.37c)

8 E is assumed here to be zero.



where is a number again. Using the decomposition of A and B into their Cartesian com-

A B C x y z x y z

x y x z

y z

upon applying Eqs. (1.37a) and (1.37b) and substituting Eqs. (1.36a), (1.36b), and (1.36c)
so that the Cartesian components of A B become

(1.38)

or

all different (1.39)

and with cyclic permutation of the indices , , and corresponding to , and , respec-
tively. The vector product C may be mnemonically represented by a determinant,9

C
x y z

x y z (1.40)

which is meant to be expanded across the top row to reproduce the three components of C
listed in Eqs. (1.38).

form A C and B C, using Eqs. (1.38). We have

A C A A B

0 (1.41)

Similarly,

B C B A B 0 (1.42)

Equations (1.41) and (1.42) show that C is perpendicular to both A and B cos 0
90 and therefore perpendicular to the plane they determine. The positive direction is

determined by considering special cases, such as the unit vectors x y z
The magnitude is obtained from

A B A B 2 2 A B 2

2 2 2 2 cos2

2 2 sin2 (1.43)

9See Section 3.1 for a brief summary of determinants.



Hence

sin (1.44)

Eqs. (1.38) for A B and Eq. (1.24) for the dot product. From Eqs. (1.41), (1.42), and

uct.
There still remains the problem of verifying that C A B is indeed a vector, that

is, that it obeys Eq. (1.15), the vector transformation law. Starting in a rotated (primed
system),

and in cyclic order

(1.45)

The combination of direction cosines in parentheses vanishes for . We therefore have
and , and six combinations of
and . If 3, then 1 2 (cyclic order), and we have the following direction

cosine combinations:10

11 22 21 12 33

13 21 23 11 32

12 23 22 13 31

(1.46)

back into Eq. (1.45),

3 33 1 2 32 3 1 31 2 3 33 2 1 32 1 3 31 3 2

31 1 32 2 33 3

3 (1.47)

By permuting indices to pick up 1 and 2 C is
indeed a vector. It should be mentioned here that this vector nature of the cross product
is an accident associated with the three-dimensional nature of ordinary space.11 It will be
seen in Chapter 2 that the cross product may also be treated as a second-rank antisymmetric
tensor.

10Equations (1.46) hold for rotations because they preserve volumes. For a more general orthogonal transformation, the r.h.s. of
Eqs. (1.46) is multiplied by the determinant of the transformation matrix (see Chapter 3 for matrices and determinants).
11 Clifford Algebra to Geometric
Calculus (Dordrecht: Reidel, 1984) for a far-reaching generalization of the cross product.



of Section 1.2, then there is no problem identifying the cross product as a vector. The cross-
product operation maps the two triples A and B into a third triple, C
is a vector.
We now have two ways of multiplying vectors; a third form appears in Chapter 2. But

what about division by a vector? It turns out that the ratio B A
(Exercise 3.2.21) unless A and B are also required to be parallel. Hence division of one

1.4.1 Show that the medians of a triangle intersect in the center, which is 2 3 of the median’s
length from each corner. Construct a numerical example and plot it.

1.4.2 Prove the law of cosines starting from A2 B C 2.

1.4.3 Starting with C A B, show that C C 0 leads to

A B B A

1.4.4 Show that

(a) A B A B 2 2

(b) A B A B 2A B
The distributive laws needed here,

A B C A B A C

and

A B C A B A C

1.4.5 Given the three vectors,

P 3x 2y z

Q 6x 4y 2z

R x 2y z

1.4.6 If P x y and Q x y are any two nonparallel (also nonantiparallel)
vectors in the -plane, show that P Q is in the -direction.

1.4.7 Prove that A B A B 2 A B 2



1.4.8 Using the vectors

P x cos y sin

Q x cos y sin

R x cos y sin

prove the familiar trigonometric identities

sin sin cos cos sin

cos cos cos sin sin

1.4.9 (a) Find a vector A that is perpendicular to

U 2x y z

V x y z

(b) What is A if, in addition to this requirement, we demand that it have unit magni-
tude?

1.4.10 If four vectors a b c, and d all lie in the same plane, show that

a b c d 0

Hint. Consider the directions of the cross-product vectors.

1.4.11 The coordinates of the three vertices of a triangle are 2 1 5 5 2 8 and 4 8 2
Compute its area by vector methods, its center and medians. Lengths are in centimeters.
Hint. See Exercise 1.4.1.

1.4.12 The vertices of parallelogram ABCD are 1 0 0 2 1 0 0 1 1 , and 1 0 1
in order. Calculate the vector areas of triangle ABD and of triangle BCD. Are the two
vector areas equal?

ANS. AreaABD 1
2 x y 2z

1.4.13 The origin and the three vectors A, B, and C
tetrahedron. Taking the outward direction as positive, calculate the total vector area of
the four tetrahedral surfaces.
Note. In Section 1.11 this result is generalized to any closed surface.

1.4.14 Find the sides and angles of the spherical triangle ABC

A 1 0 0

B
1

2
0

1

2

C 0
1

2

1

2

Each vector starts from the origin (Fig. 1.14).


