
Equilibrium of forces: F1 F2 F3.

sum of the two forces F1 and F2 must just cancel the downward force of gravity, F3. Here
1

magnitude but with reversed direction. Then

A B A B

In Fig. 1.3,

A E B

Note that the vectors are treated as geometrical objects that are independent of any coor-
dinate system. This concept of independence of a preferred coordinate system is developed
in detail in the next section.
The representation of vector A by an arrow suggests a second possibility. Arrow A

(Fig. 1.5), starting from the origin,2 terminates at the point . Thus, if we agree

Cartesian coordinates of the arrowhead.
Although A

one particularly important vector quantity, the displacement from the origin to the point

1

forces are vector quantities and we combine them by parallelogram addition, the equilibrium condition of zero resultant force is

2We could start from any point in our Cartesian reference frame; we choose the origin for simplicity. This freedom of shifting
the origin of the coordinate system without affecting the geometry is called translation invariance.



Cartesian components and direction cosines of A.

, is denoted by the special symbol r. We then have a choice of referring to the dis-
placement as either the vector r or the collection , the coordinates of its endpoint:

r (1.3)

Using for the magnitude of vector r
dinates and the magnitude are related by

cos cos cos (1.4)

Here cos , cos , and cos are called the direction cosines, being the angle between the
given vector and the positive -axis, and so on. One further bit of vocabulary: The quan-
tities , and are known as the (Cartesian) components of A or the projections
of A, with cos2 cos2 cos2 1.
Thus, any vector A may be resolved into its components (or projected onto the coordi-

nate axes) to yield cos , etc., as in Eq. (1.4). We may choose to refer to the vector
as a single quantity A or to its components . Note that the subscript in
denotes the component and not a dependence on the variable . The choice between
using A or its components is essentially a choice between a geometric and
an algebraic representation. Use either representation at your convenience. The geometric
“arrow in space” may aid in visualization. The algebraic set of components is usually more
suitable for precise numerical or algebraic calculations.
Vectors enter physics in two distinct forms. (1) Vector A may represent a single force

acting at a single point. The force of gravity acting at the center of gravity illustrates this
form. (2) Vector A A and its compo-
nents may be functions of position: and so on. Examples of this sort



being a function of position will become extremely important when we differentiate and
integrate vectors.
At this stage it is convenient to introduce unit vectors along each of the coordinate axes.

Let x be a vector of unit magnitude pointing in the positive -direction, y, a vector of unit
magnitude in the positive -direction, and z a vector of unit magnitude in the positive -
direction. Then x is a vector with magnitude equal to and in the -direction. By
vector addition,

A x y z (1.5)

Note that if A vanishes, all of its components must vanish individually; that is, if

A 0 then 0

This means that these unit vectors serve as a basis, or complete set of vectors, in the three-
dimensional Euclidean space in terms of which any vector can be expanded. Thus, Eq. (1.5)
is an assertion that the three unit vectors x, y, and z span our real three-dimensional space:
Any vector may be written as a linear combination of x, y, and z Since x, y, and z are
linearly independent (no one is a linear combination of the other two), they form a basis
for the real three-dimensional Euclidean space. Finally, by the Pythagorean theorem, the
magnitude of vector A is

A 2 2 2 1 2 (1.6)

Note that the coordinate unit vectors are not the only complete set, or basis. This resolution
of a vector into its components can be carried out in a variety of coordinate systems, as
shown in Chapter 2. Here we restrict ourselves to Cartesian coordinates, where the unit
vectors have the coordinates x 1 0 0 , y 0 1 0 and z 0 0 1 and are all constant
in length and direction, properties characteristic of Cartesian coordinates.
As a replacement of the graphical technique, addition and subtraction of vectors may

now be carried out in terms of their components. For A x y z and B
x y z

A B x y z (1.7)

It should be emphasized here that the unit vectors x, y, and z are used for convenience.
They are not essential; we can describe vectors and use them entirely in terms of their
components: A This is the approach of the two more powerful, more

x y, and
z emphasize the direction.

a scalar, or inner, product, a vector product peculiar to three-dimensional space, and a



1.1.1 A and B, given A B and A B.

1.1.2 The vector A whose magnitude is 1 732 units makes equal angles with the coordinate
axes. Find , and .

1.1.3 Calculate the components of a unit vector that lies in the -plane and makes equal
angles with the positive directions of the - and -axes.

1.1.4 The velocity of sailboat relative to sailboat , vrel vrel
v v , where v is the velocity of and v is the velocity of . Determine the
velocity of relative to if

v 30 km hr east
v 40 km hr north.

ANS. vrel 50 km hr, 53 1 south of east.

1.1.5 A sailboat sails for 1 hr at 4 km hr (relative to the water) on a steady compass heading
of 40 east of north. The sailboat is simultaneously carried along by a current. At the
end of the hour the boat is 6.12 km from its starting point. The line from its starting point
to its location lies 60 east of north. Find the (easterly) and (northerly) components
of the water’s velocity.

ANS. east 2 73 km hr, north 0 km hr.

1.1.6 A vector equation can be reduced to the form A B. From this show that the one vector
equation is equivalent to three scalar equations. Assuming the validity of Newton’s
second law, F a, as a vector equation, this means that depends only on and
is independent of and .

1.1.7 The vertices , and of a triangle are given by the points 1 0 2 0 1 0 , and
1 1 0 , respectively. Find point forms a plane parallel-
ogram.

ANS. 0 2 2 or 2 0 2

1.1.8 A B and C that extend from the
origin. In terms of A B, and C show that the vector sum of the successive sides of the
triangle is zero, where the side is from to etc.

1.1.9 A sphere of radius is centered at a point r1.

(a) Write out the algebraic equation for the sphere.
(b) Write out a vector equation for the sphere.

ANS. (a) 1
2

1
2

1
2 2.

(b) r r1 a, with r1 center.
(a .)

A sailboat sails for 1 hr at 4 km hr (relative to the water) on a steady compass heading
of 40of 40 east of north. The sailboat is simultaneously carried along by a current. At the
end of the hour the boat is 6.12 km from its starting point. The line from its starting point
to its location lies 60to its location lies 60 east of north. Find the (easterly) and (northerly) components
of the water’s velocity.



1.1.10

Hint
direction of the light ray.

1.1.11 Hubble’s law. Hubble found that distant galaxies are receding with a velocity propor-
tional to their distance from where we are on Earth. For the th galaxy,

v 0r

with us at the origin. Show that this recession of the galaxies from us does not imply
r1 as a new

origin and show that Hubble’s law is still obeyed.

1.1.12 Find the diagonal vectors of a unit cube with one corner at the origin and its three sides
lying along Cartesian coordinates axes. Show that there are four diagonals with length
3 Representing these as vectors, what are their components? Show that the diagonals

of the cube’s faces have length 2 and determine their components.

3

(1) geometrically by specifying magnitude and direction, as with an arrow, and (2) al-
gebraically by specifying the components relative to Cartesian coordinate axes. The sec-

transformation theory approach leads into the tensor analysis of Chapter 2 and groups of

and generalized according to the mathematician’s concepts of vector and vector space. This
approach leads to function spaces, including the Hilbert space.

the one hand, we encounter quantities, such as elastic constants and index of refraction
in anisotropic crystals, that have magnitude and direction but that are not vectors. On
the other hand, our naïve approach is awkward to generalize to extend to more complex

r as a
prototype.

ical world by mathematics, but it and any physical predictions we may make must be
independent of our mathematical conventions.

rection, or all directions are equivalent. Then the physical system being analyzed or the
physical law being enunciated cannot and must not depend on our choice or orientation

does not depend on the orientation of
the coordinate axes, it is called a scalar.

3This section is optional here. It will be essential for Chapter 2.



Rotation of Cartesian coordinate axes about the -axis.

Now we return to the concept of vector r as a geometric object independent of the
coordinate system. Let us look at r in two different systems, one rotated in relation to the
other.

-, -coordinates are
rotated counterclockwise through an angle , keeping r, (Fig. 1.6), we get the fol-
lowing relations between the components resolved in the original system (unprimed) and
those resolved in the new rotated system (primed):

cos sin
sin cos

(1.8)

We saw in Section 1.1 that a vector could be represented by the coordinates of a point;
that is, the coordinates were proportional to the vector components. Hence the components
of a vector must transform under rotation as coordinates of a point (such as r). Therefore
whenever any pair of quantities and in the -coordinate system is transformed into

by this rotation of the coordinate system with

cos sin
sin cos (1.9)

we 4 and as the components of a vector A
of the transformation of its components under rotation of the coordinate system. If and

transform in the same way as and , the components of the general two-dimensional
coordinate vector r, they are the components of a vector A. If and do not show this

4A scalar quantity does not depend on the orientation of coordinates; expresses the fact that it is invariant under rotation
of the coordinates.



form invariance (also called covariance) when the coordinates are rotated, they do not
form a vector.

and
sociate a magnitude and a direction with each point in space. The magnitude is a scalar
quantity, invariant to the rotation of the coordinate system. The direction (relative to the
unprimed system) is likewise invariant to the rotation of the coordinate system (see Exer-
cise 1.2.1). The result of all this is that the components of a vector may vary according to
the rotation of the primed coordinate system. This is what Eqs. (1.9) say. But the variation
with the angle is just such that the components in the rotated coordinate system and

the components and relative to the -, -coordinate axes. (Compare Exercise 1.2.1.)
The components of A in a particular coordinate system constitute the representation of
A in that coordinate system. Equations (1.9), the transformation relations, are a guarantee
that the entity A is independent of the rotation of the coordinate system.

notation. Let

1

2
(1.10)

11 cos 12 sin

21 sin 22 cos
(1.11)

Then Eqs. (1.8) become

1 11 1 12 2

2 21 1 22 2
(1.12)

may be interpreted as a direction cosine, the cosine of the angle between
and ; that is,

12 cos 1 2 sin
21 cos 2 1 cos 2 sin

(1.13)

The advantage of the new notation5 is that it permits us to use the summation symbol
and to rewrite Eqs. (1.12) as

2

1

1 2 (1.14)

Note that remains as a parameter that gives rise to one equation when it is set equal to 1
and to a second equation when it is set equal to 2. The index , of course, is a summation
index, a dummy index, and, as with a variable of integration, may be replaced by any
other convenient symbol.

5You may wonder at the replacement of one parameter by four parameters . Clearly, the do not constitute a minimum
set of parameters. For two dimensions the four
this redundant set of direction cosines is the convenience it provides. Hopefully, this convenience will become more apparent
in Chapters 2 and 3. For three-dimensional rotations (9 but only three independent) alternate descriptions are provided by:
(1) the Euler angles discussed in Section 3.3, (2) quaternions, and (3) the Cayley–Klein parameters. These alternatives have their
respective advantages and disadvantages.



The generalization to three, four, or dimensions is now simple. The set of quantities
is said to be the components of an -dimensional vector V if and only if their values

relative to the rotated coordinate axes are given by

1

1 2 (1.15)

As before, is the cosine of the angle between and . Often the upper limit and
the corresponding range of will not be indicated. It is taken for granted that you know
how many dimensions your space has.

as the cosine of the angle between the positive direction
and the positive direction we may write (Cartesian coordinates)6

(1.16a)

Using the inverse rotation ( ) yields

2

1

or (1.16b)

Note that these are partial derivatives. By use of Eqs. (1.16a) and (1.16b), Eq. (1.15)
becomes

1 1

(1.17)

The direction cosines satisfy an orthogonality condition

(1.18)

or, equivalently,

(1.19)

Here, the symbol

1 for
0 for

(1.20)

from Eqs. (1.11). The result is the well-known identity
sin2 cos2 1 for the nonvanishing case. To verify Eq. (1.18) in general form, we
may use the partial derivative forms of Eqs. (1.16a) and (1.16b) to obtain

(1.21)

6Differentiate with respect to . See discussion following Eq. (1.21).



The last step follows by the standard rules for partial differentiation, assuming that is
a function of 1 2 3 , is equal to , since and

as coordinate lines ( ) are assumed to be perpendicular (two or three dimensions)
or orthogonal (for any number of dimensions). Equivalently, we may assume that and

( ) are totally independent variables. If , the partial derivative is clearly equal
to 1.

coordinate system, we should emphasize two points:

physical world. Our vector equations will be independent of any particular coordinate
system. (The coordinate system need not even be Cartesian.) The vector equation can
always be expressed in some particular coordinate system, and, to obtain numerical

ics known as tensor analysis (Chapter 2).

coordinates is used in Section 1.3 to prove that a scalar product is a scalar, in Section 1.4
to prove that a vector product is a vector, and in Section 1.6 to show that the gradient of a
scalar , is a vector. The remainder of this chapter proceeds on the basis of the less

It is customary in mathematics to label an ordered triple of real numbers ( 1 2 3) a
vector x. The number is called the th component of vector x. The collection of all
such vectors (obeying the properties that follow) form a three-dimensional real vector
space x 1 2 3 and y 1 2 3 ,

1. Vector equality: x y means , 1 2 3.
2. Vector addition: x y z means 1 2 3
3. Scalar multiplication: x 1 2 3 (with real).
4. Negative of a vector: x 1 x 1 2 3 .
5. Null vector: There exists a null vector 0 0 0 0 .

Since our vector components are real (or complex) numbers, the following properties
also hold:

1. Addition of vectors is commutative: x y y x.
2. Addition of vectors is associative: x y z x y z .
3. Scalar multiplication is distributive:

x y x y also x x x

4. Scalar multiplication is associative: x x .


