
chapter 2
Linear Kinematics
Describing Objects in Linear Motion

objectives
When you finish this chapter, you should be able to do the following:

• Distinguish between linear, angular, and general motion
• Define distance traveled and displacement and distinguish between the two
• Define average speed and average velocity and distinguish between the two
• Define instantaneous speed and instantaneous velocity
• Define average acceleration
• Define instantaneous acceleration
• Name the units of measurement for distance traveled and displacement, speed and velocity, and 

acceleration
• Use the equations of projectile motion to determine the vertical or horizontal position of a pro-

jectile given the initial velocities and time
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The world’s best female sprinters are lined up at the starting line in the 100 m 
dash finals at the Olympic Games. The winner will earn the title of world’s fastest 
woman. The starter’s pistol goes off, and Shelly-Ann jumps into an early lead. At 
50 m she has a 1 m lead on the other runners. But during the last 40 m of the race, 
Carmelita slowly reduces that lead. At the finish, Shelly-Ann finishes less than 1 m 
ahead of Carmelita and wins the race. Shelly-Ann wins the title of world’s fastest 
woman, but was her top speed really faster than Carmelita’s? Whose acceleration 
was greater? Were both athletes accelerating during the entire race? Did either 
athlete decelerate? What performance parameters could be used to account for 
the last 40 m of the race? These questions concern the kinematic measures of 
performance covered in this chapter.

This chapter is about the subbranch of 
mechanics called kinematics. Dynamics is the branch of 
rigid-body mechanics concerned with the mechanics of 
moving objects. Kinematics, the topic of this chapter, is 
the branch of dynamics concerned with the description of 
motion. The outcomes of many sporting events are kine-
matic measures, so an understanding of these measures is 
important. Some of the kinematic terminology introduced 
in this chapter may sound familiar to you (speed, veloc-
ity, acceleration, and so forth). You may believe that you 
already know all about these terms, but we will be using 
them in specific ways. The precise mechanical definitions 
may not agree with the meanings you associate with the 
terms, and there will be misunderstandings unless our 
definitions agree. With that in mind, let’s begin.

 ➲ Kinematics is the branch of dynam-
ics concerned with the description 
of motion.

Motion
What is motion? Can you define it? We might define 
motion as the action or process of a change in position. 
Movement is a change in position. Moving involves a 
change in position from one point to another. Two things 
are necessary for motion to occur: space and time—space 
to move in and time during which to move. To make the 
study of movement easier, we classify movements as 
linear, angular, or both (general).

Linear Motion
Linear motion is also referred to as translation. It occurs 
when all points on a body or object move the same 

distance, in the same direction, and at the same time. 
This can happen in two ways: rectilinear translation or 
curvilinear translation.

Rectilinear translation is the motion you probably 
would think of as linear motion. Rectilinear translation 
occurs when all points on a body or object move in a 
straight line so that the direction of motion does not 
change, the orientation of the object does not change, and 
all points on the object move the same distance.

Curvilinear translation is very similar to rectilinear 
translation. Curvilinear translation occurs when all points 
on a body or object move so that the orientation of the 
object does not change and all points on the object move 
the same distance. The difference between rectilinear and 
curvilinear translation is that the paths followed by the 
points on an object in curvilinear translation are curved, 
so the direction of motion of the object is constantly 
changing, even though the orientation of the object does 
not change.

Try to think of some examples of linear motion in 
sports or human movement. What about a figure skater 
gliding across the ice in a static position? Is her motion 
rectilinear or curvilinear? What about a sailboarder zip-
ping across the lake in a steady breeze? Is it possible for 
the sailboarder’s motion to be rectilinear? What about a 
bicyclist coasting along a flat section of the road? (In each 
of these examples, it is possible for the athletes to achieve 
rectilinear motion.) Can you think of any examples of 
curvilinear motion? Can a gymnast on a trampoline 
experience linear motion? How? What about a diver? A 
ski jumper? A skateboarder rolling along a flat section of 
concrete? An in-line skater? (It’s possible for the gym-
nast, diver, and ski jumper to achieve curvilinear motion. 
The gymnast, diver, skateboarder, and in-line skater can 
achieve both rectilinear and curvilinear motion. The ski 
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jumper can achieve rectilinear motion during the in-run 
to the jump, and curvilinear motion during the flight 
phase of the jump.)

To determine whether a motion is linear, imagine 
two points on the object in question. Now imagine a 
straight line connecting these two points. As the object 
moves, does the line keep its same orientation; that is, 
does the line point in the same direction throughout the 
movement? Does the line stay the same length during the 
movement? If both of these conditions are true throughout 
the movement, the motion is linear. If both points on the 
imaginary line move in parallel straight lines during the 
motion, the motion is rectilinear. If both points on the 
imaginary line move in parallel lines that are not straight, 
the motion is curvilinear. Now try to think of more 
examples of linear motion in sport. Would you classify 
the motions you thought of as rectilinear or curvilinear?

Angular Motion
Angular motion is also referred to as rotary motion or 
rotation. It occurs when all points on a body or object 
move in circles (or parts of circles) about the same fixed 
central line or axis. Angular motion can occur about an 
axis within the body or outside of the body. A child on a 
swing is an example of angular motion about an axis of 
rotation external to the body. An ice-skater in a spin is 
an example of angular motion about an axis of rotation 
within the body. To determine whether or not a motion 
is angular, imagine any two points on the object in ques-
tion. As the object moves, are the paths that each of these 
points follow circular? Do these two circular paths have 
the same center or axis? If you imagine a line connect-
ing the two imaginary points, does this line continuously 
change orientation as the object moves? Does the line 
continuously change the direction in which it points? If 
these conditions are true, the object is rotating.

Examples of angular motion in sports and human 
movement are more numerous than examples of linear 
motion. What about a giant swing on the horizontal bar? 
Are parts of this motion rotary? What about individual 
movements of our limbs? Almost all of our limb move-
ments (if they are isolated) are examples of angular 
motion. Hold your right arm at your side. Keeping your 
upper arm still, flex and extend your forearm at the elbow 
joint. This is an example of angular motion. Your forearm 
rotated about a fixed axis (your elbow joint). During the 
flexing and extending, your wrist moved in a circular path 
about your elbow joint. Every point on your forearm and 
wrist moved in a circular path about your elbow joint. 
Consider each limb and the movements it can make when 
movement about only one joint is involved. Are these 
movements rotary—that is, do all the points on the limb 
move in circular paths about the joint?

Let’s consider motion about more than one joint. Is the 
limb’s motion still angular? Extend your knee and hip at 
the same time. Was the movement of your foot angular? 
Did your foot move in a circular path? Was the motion 
of your foot linear?

General Motion
Combining the angular motions of our limbs can produce 
linear motions of one or more body parts. When both 
the knee and hip joints extend, you can produce a linear 
motion of your foot. Similarly, extension at the elbow and 
horizontal adduction at the shoulder can produce a linear 
motion of the hand. General motion is a combination 
of linear and angular motions. Try self-experiment 2.1.

Self-Experiment 2.1
Grab hold of a pencil that is lying flat on a desk or a table. 
While keeping the pencil flat on the table, try to move the 
pencil rectilinearly across the table. Can you do it? You 
produced that motion by combining angular motions of 
your hand, forearm, and upper arm. The total motion of 
our limbs is called general or mixed motion.

General motion is the most common type of motion 
exhibited in sports and human movement. Running and 
walking are good examples of general motion. In these 
activities, the trunk often moves linearly as a result of 
the angular motions of the legs and arms. Bicycling is 
another example of general motion. Think of various 
human movements in sports and consider how you would 
classify them.

Classifying motion as linear, angular, or general 
motion makes the mechanical analysis of movements 
easier. If a motion can be broken down into linear com-
ponents and angular components, the linear components 
can be analyzed using the mechanical laws that govern 
linear motion. Similarly, the angular components can be 
analyzed using the mechanical laws that govern angular 
motion. The linear and angular analyses can then be 
combined to understand the general motion of the object.

 ➲ Classifying motion as linear, angular, 
or general motion makes the mechan-
ical analysis of movements easier.

Linear Kinematics
Now let’s examine linear motion in more detail. Linear 
kinematics is concerned with the description of linear 
motion. Questions about speed, distance, and direction 
are all inquiries about the linear kinematics of an object. 



Biomechanics of Sport and Exercise

54

Try self-experiment 2.2 to identify some of the charac-
teristics of linear motion.

Self-Experiment 2.2
How would you describe something that is moving? Roll 
a ball across the floor. Describe its movement. What 
words do you use? You might describe how fast or slow 
it is going, mention whether it is speeding up or slowing 
down, and note that it is rolling and not sliding. You also 
might say something about where it started and where it 
might end up. Or you might describe its direction: "It's 
moving diagonally across the room," or "It's moving 
toward the wall or toward the door." After it stops, you 
might say how far it traveled and how long it took to get 
to where it went. All of the terms you used to describe the 
motion of the ball are words that concern the kinematics 
of linear motion.

Position
The first kinematic characteristic we might describe about 
an object is its position. Our definition of motion—the 
action or process of change in position—refers to posi-
tion. Mechanically, position is defined as location in 
space. Where is an object in space at the beginning of 
its movement or at the end of its movement or at some 
time during its movement? This may not seem like 
such an important characteristic at first, but consider 
the importance of the positions of players on the field 
or court in sports such as football, tennis, racquetball, 
squash, soccer, field hockey, ice hockey, and rugby. The 
strategies employed often depend on where the players 
on each team are positioned.

Let’s start with a simple example. Consider a runner 
competing in a 100 m dash (see figure 2.1). How would 
you go about describing the runner’s position during the 
race? You might describe the runner’s position relative 
to the starting line: “She’s 40 m from the start.” Or you 
might describe the runner’s position relative to the finish 
line: “She’s 60 m from the finish.” In both cases, you 
have used a measure of length to identify the runner’s 
position relative to some fixed, nonmoving reference.* 
The references were the starting line and the finish line. 
Some concept of direction was also implied by your 
description and the event itself. When you say the runner 
is 40 m from the start, this is usually interpreted to mean 

that the runner is 40 m in front of the start and toward the 
finish line. Mechanically, if we used the starting line as 
our reference, we would say that the runner is at +40 m. 
If the runner was on the other side of the starting line, we 
would describe the runner’s position as −40 m. We use 
the positive and negative signs to indicate which side of 
the starting line the runner is on.

This example of the 100 m dash is only one-dimen-
sional. We were concerned about only one dimension—
the dimension from the starting line to the finish line. 
Only one number was required to identify the position 
of the runner in the race. Now let’s consider a two-
dimensional situation. Imagine you are watching a game 
of American football. A running back has broken out of 
the backfield and is running toward the goal line. He is 
on the opposing team’s 20 yd line. To describe his posi-
tion, you would say he is 20 yd from the goal line. But to 
fully describe his position, you would also have to give 
information about his location relative to the sidelines. 
Using the left sideline as a reference, you could then 
describe his position as 20 yd from the goal line and 15 
yd from the left sideline. This is shown in figure 2.2a.

In this situation, it might be helpful to set up a Car-
tesian coordinate system to help identify the location 
of the runner. Cartesian coordinates are named after 
René Descartes (1596-1650), a French philosopher and 
mathematician who is credited with inventing analytic 
geometry. You may remember this type of coordinate 
system from high school mathematics. First, we would 
need to locate a fixed reference point for our coordinate 
system. This fixed point is called the origin, because all 
our position measurements originate from it. Let’s put 
the origin for this system at the intersection of the left 
sideline and the running back’s goal line. We could put 
the origin at any fixed point; we chose the intersection of 
the goal line and the sideline because it was convenient. 
Imagine the x-axis lying along the goal line with zero at 
the origin and positive numbers to the right on the play-
ing field. Imagine the y-axis lying along the left sideline 
with zero at the origin and positive numbers increasing 
as you move toward the opposite goal. With this system, 
we could identify the running back’s position with two 
numbers corresponding to his x- and y-coordinates in 
yards as follows: (15, 80). This situation is shown in 
figure 2.2b. The x-coordinate of 15 indicates that he is 15 
yd from the left sideline on the field, and the y-coordinate 
of 80 indicates that he is 80 yd from his goal line or 20 
yd from scoring, because we know that the goal lines 
are 100 yd apart.

In three dimensions, we would need three numbers to 
describe the position of an object in space. For example, 
how would you describe the position of the ball during a 
game of racquetball? We might set up a three-dimensional 
Cartesian coordinate with one axis in the vertical direc-
tion and two axes in the horizontal plane. If we put the 

*Are these really fixed, nonmoving references? Relative to the surface 
of the earth they are, but the earth itself is moving around the sun in 
the solar system. And the solar system is moving in the galaxy. And the 
galaxy is moving in the universe. So, it is difficult to define a position 
in terms of an absolute nonmoving reference frame. For our purposes, 
however, we will consider anything that doesn't move relative to the 
earth's surface a fixed reference.



Linear Kinematics

55

Figure 2.1 How would you describe a runner’s position in a 100 m dash?

point of reference or origin in the lower left front corner 
of the court (where the front wall, left side wall, and 
floor intersect), the x-axis would be the line along the 
intersection of the front wall and floor. The y-axis would 
be the line along the intersection of the front wall and 
the left side wall, and the z-axis would be the line along 
the intersection of the left side wall and the floor. This 
is shown in figure 2.3. If the ball were 3 m to the right 
of the left side wall, 2 m above the floor, and 4 m away 
from the front wall, its x-, y-, and z-coordinates in meters 
would be (3, 2, 4).

 ➲ In three dimensions, we would need 
three numbers to describe the posi-
tion of an object in space.

To describe the position of something in space, we 
need to identify a fixed reference point to serve as the 
origin of our coordinate system. For our purposes, any 
point fixed relative to the earth will do. Then we set up 
a Cartesian coordinate system. If we are describing the 
position of objects in only one dimension, only one axis 
is needed; for two dimensions, two axes are needed; and 
for three dimensions, three axes are needed. The axes of 

this system may point in any direction that is convenient, 
as long as they are at right angles to each other if we 
are describing the position of something in two or three 
dimensions. Typically, one axis will be oriented vertically 
(the y-axis), and the other axis (the x-axis) or axes (the 
x- and z-axes) will be oriented horizontally. Each of these 
axes will have a positive and negative direction along 
them. The x-coordinate of an object is the distance the 
object is away from the plane formed by the y- and z-axes. 
The y-coordinate of an object is the distance the object 
is away from the plane formed by the x- and z-axes, and 
the z-coordinate of an object is the distance the object is 
away from the plane formed by the x- and y-axes. Units 
of length are used to describe position.

Distance Traveled  
and Displacement
Now we have a method of describing and locating the 
position of an object in space. This is our first task in 
describing motion. If we remember how we defined 
motion—the action or process of change in position—our 
next task will be discovering a way to describe or measure 
change in position. How would you do this?
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Figure 2.3 The location of 
a ball in a racquetball court, 
using Cartesian coordinates.

Distance Traveled
Let’s use a football example again. Suppose a football 
player has received the kickoff at his 5 yd line, 15 yd 
from the left sideline. His position on the field (using 
the Cartesian coordinate system we established in the 
previous section) is (15, 5) when he catches the ball. He 
runs the ball back following the path shown in figure 
2.4a. He is finally tackled on his 35 yd line, 5 yd from 
the left sideline. His position on the field at the end of 
the play is (5, 35). If we measure the length of the path 
of his run with the ball, it turns out to be 48 yd. So we 
might describe this run as a run of 48 yd to gain 30 yd.

Another way of saying this is to say that the runner’s 
displacement was +30 yd in the y-direction and −10 yd 
in the x-direction, or a resultant displacement of 31.6 yd 
toward the left sideline and goal. The distance traveled 
by the runner was 48 yd. We’ve used two different terms 
to describe the runner’s progress: displacement and dis-
tance traveled. Distance traveled is easily defined—it’s 
simply a measure of the length of the path followed by 
the object whose motion is being described, from its 
starting (initial) position to its ending (final) position. 
Distance traveled doesn’t mean a whole lot in a foot-
ball game, though, because the direction of travel isn’t 

considered. Displacement does take into account the 
direction of travel.

Displacement
Displacement is the straight-line distance in a specific 
direction from initial (starting) position to final (ending) 
position. The resultant displacement is the distance 
measured in a straight line from the initial position to 
the final position. Displacement is a vector quantity. If 
you recall from chapter 1, we said force was also a vector 
quantity. A vector has a size associated with it as well as 
a direction. It can be represented graphically as an arrow 
whose length represents the size of the vector and whose 
orientation and arrowhead represent the direction of the 
vector. Representation of displacement with an arrow is 
appropriate and communicates what displacement means 
as well. Figure 2.4b shows the path of the player in the 
kick return example. The arrow from the initial position 
of the player to where he was tackled represents the 
displacement of the back.

 ➲ Displacement is the straight-line 
distance in a specific direction from 
starting (initial) position to ending 
(final) position.
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If you also recall from chapter 1, vectors can be 
resolved into components. In the football example, the 
resultant displacement of the running back does not indi-
cate directly how many yards the back gained. But if we 
resolve this resultant displacement into components in 
the x-direction (across the field) and y-direction (down 
the field toward the goal), we then have a measure of how 
effective the run was. In this case, the y-displacement of 
the running back is the measure of importance. His initial 
y-position was 5 yd and his final y-position was 35 yd. 
We can find his y-displacement by subtracting his initial 
position from his final position:

dy = ∆y = yf − yi (2.1)

where

dy = displacement in the y-direction,

∆ = change, so ∆y = change in y-position,

yf = final y-position, and

yi = initial y-position.

If we put in the initial (5 yd) and final (35 yd) values 
for y-position, we get the runner’s y-displacement:

dy = ∆y = yf − yi = 35 yd − 5 yd

dy = +30 yd

The runner’s y-displacement or displacement down 
the field was +30 yd. The positive sign indicates that the 
displacement was in the positive y-direction or toward the 
goal (a gain in field position in this case). This measure is 
probably the most important measurement to the coaches, 
players, and fans because it indicates the effectiveness 
of the kick return.

We may also be curious about the player’s displace-
ment across the field (in the x-direction). We can use the 
same equation to determine the x-displacement:

dx = ∆x = xf − xi (2.2)

where

dx = displacement in the x-direction,

∆x = change in x-position,

xf = final x-position, and

xi = initial x-position.

If we put in the initial (15 yd) and final (5 yd) values for 
x-position, we get the runner’s x-displacement:

dx = ∆x = xf − xi = 5 yd − 15 yd

dx = −10 yd

The runner’s x-displacement or displacement across the 
field was −10 yd. The negative sign indicates that the 
displacement was in the negative x-direction or toward 
the left sideline.

We could find the resultant displacement of the runner 
similarly to the way we found a resultant force. Graphi-
cally, we could do this by drawing the arrows represent-
ing the component displacements of the runner in the 
x- and y-directions. Look at figure 2.4c. Put the tail of 
the  x-displacement vector at the tip of the y-displacement 
vector, and then draw an arrow from the tail of the 
y-displacement vector to the tip of the x-displacement 
vector. This arrow represents the resultant displacement.

We could also determine this resultant displacement 
by starting with the x-displacement vector and then put-
ting the tail of the y-displacement vector at the tip of the 
x-displacement vector. We would determine the resultant 
by drawing an arrow from the tail of the x-displacement 
vector to the tip of the y-displacement vector. We should 
get the same resultant as determined using the method 
shown in figure 2.4c.

We could determine this resultant displacement in 
still another way, using trigonometric relationships. The 
displacement vectors arranged as shown in figure 2.4c 
form a triangle, specifically, a right triangle with the 
hypotenuse represented by the resultant displacement. 
As explained in chapter 1, the size of the hypotenuse 
can be determined as follows. If A and B represent the 
two sides that make up the right angle and C represents 
the hypotenuse, then

A2 + B2 = C2 (2.3)

(∆x)2 + (∆y)2 = R2.

For our displacements, then, we can substitute −10 yd 
for ǻx and +30 yd for ǻy and then solve for R, which 
represents the resultant displacement.

(−10 yd)2 + (30 yd)2 = R2

100 yd2 + 900 yd2 = R2

1000 yd2 = R2

R = 1000 yd2  = 31.6 yd

To find the direction of this resultant displacement, we 
can use the relationship between the two sides of the 
displacement triangle.

tan� = opposite side
adjacent side

 (2.4)

� = arctan
opposite side
adjacent side

�
��

�
��

� = arctan
�x
�y

�
��

�
��
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In these equations, ș, which is pronounced “theta,” 
represents the angle between the resultant displacement 
vector and the y-displacement vector. To find the value 
of ș, substitute −10 yd for ǻx and +30 yd for ǻy.

� = arctan
–10 yd
30 yd

�
��

�
��

To determine the angle ș, we use the inverse of the 
tangent function or the arctangent. On most scientific 
calculators, the arctangent function is the second function 
for the tangent key and is usually abbreviated as tan−1.

ș = arctan (−.333)

ș = −18.4°

We can now describe several qualities of movement—
initial and final positions, distance traveled, and displace-
ment. Distance traveled can be described by a single 
number that represents the length of the path followed by 
the object during its motion. Displacement, however, is a 
vector quantity, so it is expressed with a length measure-
ment and a direction. The resultant displacement is the 
length of a straight line from the initial position to the 
final position in the direction of motion from the initial 
position to the final position. Components of the resultant 
displacement may also be used to describe displacement 
of the object in specific directions. In some situations 
(such as our football examples), a component displace-
ment is more important than the resultant displacement.

Now let’s see if we understand the concept of dis-
placement. Imagine two downhill ski racers, Tamara 
and Cindy, competing on the same course. They start 
at the same starting position and finish the race at the 
same finish point. Tamara takes wider turns than Cindy 
does, so the length of the path Tamara follows is longer. 
Who has the greater resultant displacement from start to 
finish? Because they start at the same spot and finish at 
the same spot, their resultant displacements are the same. 
Now consider a 100 m swimming race in a 50 m pool. 
Which measure (displacement or distance traveled) is 
more meaningful? In a 100 m swimming race in a 50 m 
pool, you have to start and finish in the same place, so 
your displacement is zero! Distance traveled is the more 
meaningful measure. What about a 400 m running race 
around a 400 m oval track? Or a 100 m running race on 
a straight section of track?

Speed and Velocity
We can now describe an object’s position, and we have 
measures (distance traveled and displacement) for 
describing its change in position, but how do we describe 

how quickly something changes its position? When we 
speak of how fast or slow something moves, we are 
describing its speed or velocity. Both are used to refer to 
the rate of motion. You have probably used both of these 
terms, perhaps interchangeably.

Speed
Are speed and velocity the same thing? Mechanically, 
speed and velocity are different. Speed is just rate of 
motion. More specifically, it is the rate of distance trav-
eled. It is described by a single number only. Velocity is 
rate of motion in a specific direction. More specifically 
it is the rate of displacement. Since displacement is a 
vector quantity, so is velocity. Velocity has a magnitude 
(number) and a direction associated with it.

 ➲ Speed is rate of motion; velocity is 
rate of motion in a specific direction.

Average speed of an object is distance traveled 
divided by the time it took to travel that distance. Math-
ematically, this can be expressed as

s = �
�t

  (2.5)

where

s– = average speed,

ℓ = distance traveled, and

ǻt = time taken or change in time.

The units for describing speed are a unit of length 
divided by a unit of time. The SI unit for describing 
speed is meters per second. You have probably used other 
units of measurement for speed. If you have driven a car, 
you are probably more familiar with miles per hour or 
kilometers per hour. These are also units of measurement 
for speed.

Average speed is an important descriptor of perfor-
mance in many sport activities. In some activities, average 
speed is in fact the measure of success. Consider almost 
any type of racing event (swimming, running, cycling, 
and so on). The winner is the person who completes the 
specified distance in the shortest time. The average speed 
of the winner is the distance of the race divided by the 
time. The winner’s average speed over the race distance 
will always be the fastest among all the competitors if 
everyone raced the same distance.

This one number, average speed, doesn’t tell us much 
about what went on during the race itself, though. It 
doesn’t tell us how fast the racer was moving at any spe-
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cific instant in the race. It doesn’t tell us the maximum 
speed reached by the racer during the race. It doesn’t 
indicate when the racer was slowing down or speeding 
up. Average speed for the whole race is just a number 
indicating that, on average, the competitor was moving 
that fast. To find out more about the speed of a competitor 
in a race, a coach or athlete may want to measure more 
than one average speed.

Let’s look at a 100 m dash as an example. At the 12th 
IAAF World Championships in Athletics in Berlin in 
2009, the men’s 100 m dash was won by Usain Bolt of 
Jamaica in an astounding world-record time of 9.58 s. The 
second-place finisher, Tyson Gay of the United States, 
finished in 9.71 s, the fastest time ever for a second-
place finish. Comparing the average speeds of these two 
sprinters over the entire 100 m using equation 2.5, we 
find the following:

Average speed = s = �
�t

Bolt: Gay:

s = 100 m
9.58 s

 s = 100 m
9.71 s

s– = 10.44 m/s s– = 10.30 m/s

To find out more about how the two sprinters ran this 
race, we might have timed them for the first 50 m of the 
100 m as well. Bolt’s time for the first 50 m was 5.47 s. 
Gay’s time for the first 50 m was 5.55 s. Their average 
speeds for the first 50 m of the race were

Average speed = s0-50m = �
�t

.

Bolt: Gay:

s0-50m = 50 m
5.47 s  s0-50m = 50 m

5.55 s

s–0-50m= 9.14 m/s s–0-50m = 9.01 m/s

Their average speeds from 50 to 100 m also could be 
determined:

Average speed = s50-100m = �
�t

= 100 m � 50 m
�t

Bolt: Gay:

s50-100m = 100 m � 50 m
9.58 s� 5.47 s  s50-100m = 100 m � 50 m

9.71 s� 5.55 s

s50-100m = 50 m
4.11 s

 s50-100m = 50 m
4.16 s

s–50-100m = 12.17 m/s s–50-100m = 12.02 m/s

With two numbers to describe each runner’s speed during 
the race, we know much more about how each runner 
ran the race. Usain Bolt took the lead in the first 50 m. 
His average speed was 0.13 m/s faster than Gay’s over 
this portion of the race. Both sprinters were even faster 
over the second 50 m, but Bolt’s average speed over the 
second 50 m was 0.15 m/s faster than Gay’s.

If we wanted to know which athlete had the fastest 
top speed in the 100 m, we would have to record split 
times at more frequent intervals in the race. This would 
give us even more information about the performance 
of each sprinter. Sport scientists at the 12th IAAF World 
Championships in Athletics in Berlin recorded the split 
times at the 20, 40, 60, and 80 m marks for the finalists in 
the men’s 100 m dashes (IAAF 2009). The split times the 
scientists recorded were used to estimate the 10 m split 
times for Usain Bolt and Tyson Gay shown in table 2.1.

These 10 m split times can be used to determine the 
average speed of each sprinter during each 10 m interval. 
To do this we divide the distance covered in each interval, 
10 m in this case, by the time taken to run that distance, 
the interval time. Table 2.2 shows the values of each run-
ner’s average speed over each 10 m interval.

Now we have much more information about each 
sprinter’s performance. From table 2.2, we can tell that 

Table 2.1 Elapsed and Interval Times 
for Each 10 m Interval for Usain Bolt and 
Tyson Gay in the Men’s 100 m Dash Final 
at the 12th IAAF World Championships 
in Athletics in Berlin, 2009

Position 
(m)

Usain Bolt Tyson Gay

Elapsed 
time (s)

Interval 
time (s)

Elapsed 
time (s)

Interval 
time (s)

0 0 0

10 1.89 1.89 1.91 1.91

20 2.88 .99 2.92 1.01

30 3.78 .90 3.83 .91

40 4.64 .86 4.70 .87

50 5.47 .83 5.55 .85

60 6.29 .82 6.39 .84

70 7.10 .81 7.20 .81

80 7.92 .82 8.02 .82

90 8.75 .83 8.86 .84

100 9.58 .83 9.71 .85
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Bolt was faster than Gay over every interval up to the 60 
to 80 m. During the 60 to 70 m interval, both Bolt and 
Gay reached their maximum speed, and their average 
speeds during this interval were the same. After 70 m, 
both runners slowed down, but Gay slowed down more, 
especially over the last 20 m of the race, from 80 to 100 m.

By taking more split times during the race, we can 
determine the runners’ average speeds for more inter-
vals and shorter intervals. This procedure also gives us a 
better idea of what each runner’s speeds were at specific 
instants of time during the race. The speed of an object 
at a specific instant of time is its instantaneous speed. 
The speed of an object may vary with time, especially 
in an event such as a 100 m dash. The maximum or top 
speed a runner achieves during a race is an example of 
an instantaneous speed. An average speed gives us an 
estimate of how fast something was moving over only 
an interval of time—not an instant in time. If we are told 
what a runner’s average speed was for an interval of time, 
we can correctly assume that the runner’s instantaneous 
speed was faster than the average speed during some parts 
of that interval and slower than the average speed during 
other parts of that interval.

Think about your car’s speedometer. Does it measure 
average speed or instantaneous speed? Does it indicate 
how fast you were going during the past hour? During the 

past minute? During the past second? The speedometer 
on your car measures instantaneous speed. It indicates 
how fast you are going at the instant in time that you 
are looking at it. Practically speaking, we can think of 
instantaneous speed as distance traveled divided by the 
time it took to travel that distance if the time interval used 
in the measurement is very small. If the word average 
does not precede the word speed, you should assume that 
instantaneous speed is being referred to.

 ➲ We can think of instantaneous speed 
as distance traveled divided by the 
time it took to travel that distance if 
the time interval used in the measure-
ment is very small.

Velocity
Now let’s turn our attention to velocity. Average velocity 
is displacement of an object divided by the time it took 
for that displacement. Because displacement is a vector, 
described by a number (magnitude) and a direction, 
average velocity is also a vector, described by a number 
(magnitude) and a direction. Mathematically, this can 
be expressed as

v = d
�t   (2.6)

where

v– = average velocity,

d = displacement, and

ǻt = time taken or change in time.

The units for describing velocity are the same as those 
for describing speed: a unit of length divided by a unit 
of time. The SI unit for describing velocity is meters per 
second. To measure the average velocity of an object, 
you need to know its displacement and the time taken 
for that displacement.

Sometimes we are interested in the components of 
velocity. So, just as we were able to resolve force and dis-
placement vectors into components, we can also resolve 
velocity vectors into components. To resolve a resultant 
average velocity into components, we could simply deter-
mine the components of the resultant displacement. For 
the football player returning the kickoff in the example 
used earlier, the player’s displacement from the instant he 
received the ball until he was tackled was −10 yd in the 
x-direction (across the field) and +30 yd in the y-direction 
(down the field). His resultant displacement was 31.6 yd 
down and across the field (or −71.6° across the field). If 

Table 2.2 Interval Times and Average 
Speeds for Each 10 m Interval for Usain 
Bolt and Tyson Gay in the Men’s 100 m 
Dash Final at the 12th IAAF World Cham-
pionships in Athletics in Berlin, 2009

Interval 
(m)

Usain Bolt Tyson Gay

Interval 
time (s)

Average 
speed 
(m/s)

Interval 
time (s)

Average 
speed 
(m/s)

0-10 1.89 5.29 1.91 5.24

10-20 .99 10.10 1.01 9.90

20-30 .90 11.11 .91 10.99

30-40 .86 11.63 .87 11.49

40-50 .83 12.05 .85 11.76

50-60 .82 12.20 .84 11.90

60-70 .81 12.35 .81 12.35

70-80 .82 12.20 .82 12.20

80-90 .83 12.05 .84 11.90

90-100 .83 12.05 .85 11.76
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this kick return lasted 6 s, his resultant average velocity, 
using equation 2.6, was

v = d
�t

v = 31.6 yd
6 s

v–= 5.3 yd/s

This resultant average velocity was in the same direc-
tion as the resultant displacement. Similarly, the running 
back’s average velocity across the field (in the x-direction) 
would be the x-component of his displacement divided 
by time or

vx =
�x
�t

  (2.7)

vx =
–10 yd

6 s

v–x= −1.7 yd/s

The running back’s average velocity down the field (in 
the y-direction), which is the most important of all these 
velocities, would be the y-component of his displacement 
divided by time or

vy =
�y
�t   (2.8)

vy =
30 yd

6 s

v–y= 5.0 yd/s

Just as with the displacements, the resultant average 
velocity is larger than any of its components. And just 
as with the displacements, the square of the resultant 
average velocity should equal the sum of the squares of 
its components. Let’s check, starting with equation 2.3.

A2 + B2 = C2

(v–x)
2 + (v–y)

2 = v–2

(−1.7 yd/s)2 + (5.0 yd/s)2 = v–2

2.8 yd2/s2 + 25.0 yd2/s2 = v–2

5.3 yd/s = 27.8 yd2 /s2 = v

This indeed matches the resultant average velocity of 
5.3 yd/s we computed from the resultant displacement 
and elapsed time.

Average velocity and average speed would both be 
good descriptors to use for the 100 m dash because it is 

in a straight line. The runner’s speed and the magnitude of 
the velocity toward the finish line would be identical. In 
such a case, speed and velocity may be used interchange-
ably with no problem. Generally, if the motion of the 
object under analysis is in a straight line and rectilinear, 
with no change in direction, average speed and average 
velocity will be identical in magnitude. However, if we 
are speaking of an activity in which the direction of 
motion changes, speed and the magnitude of velocity are 
not synonymous. Imagine a 100 m swimming race in a 
50 m pool. If the first-place finisher completes the race 
in 50 s, we can use equation 2.5 to calculate the swim-
mer’s average speed.

s = �
�t

s = 100 m
50 s

s–= 2.0 m/s

What is the swimmer’s average velocity? If the swim-
mer starts and finishes in the same place, the swimmer’s 
displacement is zero, which means the swimmer’s aver-
age velocity would also have to be zero. In this case, 
average velocity and average speed do not mean the 
same thing, and the average speed measurement is a 
better descriptor.

 ➲ If the motion of the object under 
analysis is in a straight line and rec-
tilinear, with no change in direction, 
average speed and average velocity 
will be identical in magnitude.

What about instantaneous speed and instantaneous 
velocity? We haven’t discussed instantaneous velocity 
yet. It is similar to the concept of instantaneous speed 
except that direction is included. If we measured aver-
age velocity over shorter and shorter intervals of time, 
practically speaking we would soon have a measure of 
instantaneous velocity. Instantaneous velocity is the 
velocity of an object at an instant in time. When we speak 
of the magnitude of the resultant instantaneous velocity 
of an object, that number is the same as the instantaneous 
speed of the object.

A resultant instantaneous velocity can also be resolved 
into components in the direction of interest. For the foot-
ball player running back the kickoff, we could describe 
his instantaneous resultant velocity, and we could also 
describe his instantaneous velocity in the x-direction 
(across the field) or the y-direction (down the field). If 
we were concerned about how quickly he was gaining 
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yardage, his instantaneous velocity down the field would 
be important. Similarly, with the downhill ski racers, it is 
not their instantaneous resultant velocity that is important; 
it is the component of this velocity in the direction down 
the hill that will have the greater effect on the result of the 
race. Try self-experiment 2.3 to illustrate the difference 
between speed and velocity.

Self-Experiment 2.3
Imagine that you are in a room with four walls. You are 
facing the north wall. Let's consider north the direction 
we are interested in, so north is positive. We are interested 
only in the component of velocity in the north–south 
directions. As you begin walking forward, toward the 
north wall, your velocity north is positive. When you 
stop, your velocity north is zero. As you begin walking 
backward, toward the south wall, your velocity north 
is negative (you are moving in the negative direction). 
If you walk to your right or left, directly east or west, 
your velocity north is zero, because you are not getting 
closer to or farther away from the north wall. If you walk 
forward toward the north wall and begin turning right 
toward the east wall, your velocity north is positive and 
then decreases as you turn. If you are walking east and 
then turn left toward the north wall, your velocity north 
is zero and then increases as you turn. During all of these 
turns, your speed may not even be changing, but if your 
direction of motion changes, then your velocity changes.

Importance of Speed and Velocity
Now let’s make sure we realize the importance of speed 
and velocity in different sport activities. We’ve already 
indicated that in racing events, average speed and average 
velocity are direct indicators of performance. The athlete 
with the greatest average speed or greatest average veloc-
ity will be the winner. In what other sports is speed or 
velocity important? How about baseball? A good fastball 
pitch, which moves with a velocity of 90 to 100 mi/h (145 
to 160 km/h), is difficult to hit. Why? The faster the ball 
is pitched, the less time the batter has to react and decide 
whether or not to swing at the ball. For instance, in 2010, 
Ardolis Chapman of the Cincinnati Reds threw a fastball 
pitch that was clocked at 105.1 mi/h. This is equivalent to 
154 ft/s or 47 m/s. The distance from the pitching rubber 
to home plate is 60 ft 6 in., or 60.5 ft (18.4 m). The ball 
is released about 2 ft 6 in. in front of the rubber, so the 
horizontal distance it must travel to reach the plate is only 
58 ft (60.5 ft − 2.5 ft) or 17.7 m. Another way to say this 
is that the horizontal displacement of the ball is 58 ft. 
How much time does a batter have to react to a fastball 
pitched at 105.1 mi/h? If we assume that this is the aver-
age horizontal velocity of the ball during its flight, then, 
using equation 2.6,

v = d
�t

154 ft/s =  
58 ft
�t

�t = 58 ft
154 ft/s

∆t = 0.38 s

Wow! A batter only has 0.38 s to decide whether or not to 
swing his bat, and if he does decide to swing it, he has to 
do so in the time he has left. No wonder hitting a baseball 
thrown by a major league pitcher is so difficult. The faster 
the pitcher can pitch the ball, the less time the batter has 
to react, and the less likely it is that the batter will hit the 
ball. In 2003, USA Today ranked hitting a baseball thrown 
at more than 90 mi/h as the most difficult thing to do in 
sports. Speed and velocity are very important in baseball.

Are speed and velocity important in soccer, lacrosse, 
ice hockey, field hockey, team handball, or any other sport 
where a goal is guarded by a goalkeeper? The speed of 
the ball (or puck) when it is shot toward the goal is very 
important to the goalkeeper. The faster the shot, the less 
time the goalkeeper has to react and block it.

Are speed and velocity important in the jumping 
events in track and field? Yes! Faster long jumpers jump 
farther. Faster pole-vaulters vault higher. Speed is also 
related to success in the high jump and triple jump.

Can you think of any sports where speed and velocity 
are not important? There aren’t many. Speed and velocity 
play an important role in almost every sport. Table 2.3 
lists the fastest reported speeds for a variety of balls and 
implements used in sport. The typical speeds of the balls 
and implements used in these sports are much slower than 
those reported in table 2.3.

Acceleration
We now have a large repertoire of motion descriptors: 
position, distance traveled, displacement, speed, and 
velocity. In addition, we can use component displace-
ments or velocities to describe an object’s motion, 
because displacement and velocity are vector quantities. 
Did we use any other descriptors at the beginning of this 
section to describe the motion of a ball rolling across the 
floor? Let’s try another motion of the ball. Throw the 
ball up in the air and let it fall back into your hand. How 
would you describe this motion? You might say that the 
ball moves upward and slows down on the way up, then 
begins moving downward and speeds up on the way 
down. Another way to describe how the ball slows down 
or speeds up would be to say that it decelerates on the 
way up and accelerates on the way down. Acceleration 
is a term you are probably somewhat familiar with, but 
the mechanical definition of acceleration may differ from 
yours, so we’d better get some agreement.
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Table 2.3 Fastest Reported Speeds for Balls and Implements Used in Various Sports
Ball or implement Mass (g) Fastest speed (mi/h) Fastest speed (m/s)

Golf ball ≤45.93 204 91.2

Jai alai pelota 125-140 188 84.0

Squash ball 23-25 172 76.9

Golf club head – 163 72.9

Tennis ball 56.0-59.4 156 69.7

Baseball (batted) 142-149 120 53.6

Hockey puck 160-170 110 49.2

Baseball (pitched) 142-149 105 46.9

Softball (12 in.) 178.0-198.4 104 46.5

Lacrosse ball 140-149 100 44.7

Cricket ball (bowled) 156-163 100 44.7

Volleyball 260-280 88 39.3

Soccer ball 410-450 82 36.7

Field hockey ball 156-163 78 34.9

Javelin (men) 800 70 31.3

Team handball (men) 425-475 63 28.2

Water polo ball 400-450 60 26.8

SAMPLE PROBLEM 2.1
The average horizontal velocity of a penalty kick in soccer is 22 m/s. The horizontal displacement of the 
ball from the kicker’s foot to the goal is 11 m. How long does it take for the ball to reach the goal after it 
is kicked?

Solution:
Step 1: Write down the known quantities.

vx = 22 m/s

dx = 11 m

Step 2: Identify the variable to solve for.

ǻt = ?

Step 3: Review equations and definitions, and identify the appropriate equation with the known quantities 
and the unknown variable in it.

v = d
�t

Step 4: Substitute values into the equation and solve for the unknown variable. Keep track of the units 
when doing arithmetic operations.

22 m/s =  
11 m
�t

�t = 11 m
22 m/s

ǻt = 0.5 s

Step 5: Check your answer using common sense.
A penalty kick is pretty quick, definitely less than a second. A half second seems reasonable.
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Mechanically, acceleration is the rate of change in 
velocity. Because velocity is a vector quantity, with a 
number and direction associated with it, acceleration 
is also a vector quantity, with a number and direction 
associated with it. An object accelerates if the magnitude 
or direction of its velocity changes.

 ➲ When an object speeds up, slows 
down, starts, stops, or changes direc-
tion, it is accelerating.

Average acceleration is defined as the change in 
velocity divided by the time it took for that velocity 
change to take place. Mathematically, this is

a = �v
�t

a =
v f  – vi

�t
 (2.9)

where

a–= average acceleration,

ǻv = change in velocity,

vf = instantaneous velocity at the end of an inter-
val, or final velocity,

vi = instantaneous velocity at the beginning of an 
interval, or initial velocity, and

ǻt = time taken or change in time.

From this mathematical definition of average accel-
eration, it is apparent that acceleration can be positive or 
negative. If the final velocity is less (slower) than the ini-
tial velocity, the change in velocity is a negative number, 
and the resulting average acceleration is negative. This 
happens if an object slows down in the positive direction. 
You may have thought of this as a deceleration, but we’ll 
call it a negative acceleration. A negative average accel-
eration will also result if the initial and final velocities are 
both negative and if the final velocity is a larger negative 
number than the initial velocity. This occurs if an object 
is speeding up in the negative direction.

The units for describing acceleration are a unit of 
length divided by a unit of time divided by a unit of time. 
The SI units for describing acceleration are meters per 
second per second or meters per second squared. You may 
have seen car ads that tout the acceleration capabilities 
of the car. An ad may say that a car can accelerate from 
0 to 60 in 7 s. Using equation 2.9, this would represent 
an average acceleration for the car of

a =
v f  – vi

�t

a = 60 mi/h – 0 mi/h
7s

= 8.6 mi/h/s

This acceleration can be interpreted as follows: In 1 s, the 
car’s velocity increases (the car speeds up) by 8.6 mi/h. 
If the car is accelerating at 8.6 mi/h/s and moving at 30 
mi/h, 1 s later the car will be traveling 8.6 mi/h faster or 
38.6 mi/h. Two seconds later the car will be traveling two 
times 8.6 mi/h faster (17.2 mi/h) or 47.2 mi/h (=30 mi/h 
+ 17.2 mi/h), and so on.

If we measured average acceleration over shorter and 
shorter time intervals, practically speaking we would soon 
have a measure of instantaneous acceleration. Instanta-
neous acceleration is the acceleration of an object at an 
instant in time. Instantaneous acceleration indicates the 
rate of change of velocity at that instant in time.

Because acceleration is a vector (as are force, dis-
placement, and velocity), it can also be resolved into 
component accelerations. This is true for both average 
and instantaneous accelerations. But how is the direction 
of an acceleration determined? Try self-experiment 2.4 to 
get a better understanding of acceleration direction. One 
of the difficulties of understanding acceleration is that 
it is not directly observed as displacement and velocity 
are. The direction of motion is not necessarily the same 
as the direction of the acceleration.

Self-Experiment 2.4
Let's go back to the example of walking around the room 
with four walls. You are facing the north wall. Again, 
consider north to be the direction we are interested in, 
so north is positive. We are interested in describing the 
motion only in the north–south directions. As you begin 
walking forward, toward the north wall, your velocity 
north is positive; and since you speed up in the north-
erly direction, your acceleration north is positive (your 
velocity and acceleration are north). When you slow 
down and stop, your velocity north decreases to zero, and 
your acceleration north must be negative since you are 
slowing down in the positive direction. This could also 
be described as an acceleration in the southerly direction. 
This is where you may be confused—you were moving 
north, but your acceleration was south! This is correct, 
however, since acceleration indicates your change in 
motion. As you begin walking backward, you speed up 
toward the south wall; your velocity north is negative and 
increasing (you are moving in the negative direction), and 
your acceleration is also negative (or an acceleration in 
the southerly direction). If you walk to your right or left, 
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directly east or west, your velocity north is zero because 
you are not getting closer to or farther away from the 
north wall. Your acceleration is also zero since you are 
not speeding up or slowing down toward the north wall. 
If you walk forward toward the north wall and begin 
turning right toward the east wall, your velocity north is 
positive and decreases as you turn, so your acceleration 
north is negative as you turn. If you are walking east and 
then turn left toward the north wall, your velocity north is 
zero and then increases as you turn, so your acceleration 
north is positive as you turn. During all of these turns, 
your speed may not even be changing, but if your direc-
tion of motion changes, then your velocity changes and 
you are accelerating. Figure 2.5 illustrates the directions 
of motion and acceleration for various motions in one 
dimension (along a line).

 ➲ The direction of motion does not indi-
cate the direction of the acceleration.

Let’s summarize some things about acceleration. 
If you are speeding up, your acceleration is in the 

direction of your motion. If you are slowing down, 
your acceleration is in the opposite direction of your 
motion. If we assign positive and negative signs to the 
directions along a line, then the acceleration direction 
along that line is determined as follows. If something 
speeds up in the positive direction, its acceleration is 
positive (it accelerates in the positive direction). Think 
of this as a double positive (+ +), which results in a 
positive (+). If it slows down in the positive direction, 
its acceleration is negative (it accelerates in the negative 
direction). Think of this as a negative positive (− +), 
which results in a negative (−). If something speeds up 
in the negative direction, its acceleration is negative (it 
accelerates in the negative direction). Think of this as a 
positive negative (+ −), which results in a negative (−). 
If something slows down in the negative direction, its 
acceleration is positive (it accelerates in the positive 
direction). Think of this as a double negative (− −), 
which results in a positive (+). Remember, though, 
the algebraic signs + and − are only symbols we use 
to indicate directions in the real world. Before analyz-
ing a problem, first establish which direction you will 
identify as +.

Direction +– V
(Direction
of motion)

Change
in motion
(Speeding

up +; slowing
down –)

a
(Direction of
acceleration)

Speeding
up

Not
changing

Slowing
down

Slowing
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Not
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+

+

+

+

+ +

–

– –

–

–

–

–
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v a
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Figure 2.5 The direction of motion and direction of acceleration are the same when the object is speeding up, but 
opposite to each other when the object is slowing down.
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Uniform Acceleration  
and Projectile Motion
In certain situations, the acceleration of an object is con-
stant—it doesn’t change. This is an example of uniform 
acceleration. It occurs when the net external force acting 
on an object is constant and unchanging. If this is the 
case, then the acceleration of the object is also constant 
and unchanging. The motion of such an object can then 
be described by equations relating time with velocity, 
position, or acceleration. Using these equations, we can 
predict the future! If an object undergoes uniform accel-
eration, its position and velocity at any future instant in 
time can be predicted. Wow! Can you think of any situ-
ations in which the net external force acting on an object 
is constant and thus the resulting acceleration is uniform? 
Try self-experiment 2.5 and see if this is an example of 
uniform acceleration.

Self-Experiment 2.5
Throw a ball straight up into the air and try to describe 
its motion. Let's use the terms we have learned— 
displacement, velocity, and acceleration. If we set up a 
coordinate system with the x-axis oriented horizontally 
in the direction of the horizontal motion of the ball and 
the y-axis oriented vertically, how would you describe 
the vertical motion of the ball? Let's consider the posi-
tive direction along the y-axis (vertical axis) as upward. 
As the ball leaves your hand, it is moving in the upward 
direction, so its velocity is positive. Is the ball speeding up 
or slowing down as it goes up? The ball is slowing down 
in the upward direction, so its acceleration is negative or 
in the downward direction. When the ball reaches the 
peak of its flight, its velocity is changing from positive 
to negative (or from upward to downward), so it is still 
accelerating downward. After the ball is past its peak, it 
falls downward, so its velocity is negative (downward). 
Since the ball speeds up in the downward direction, 
its acceleration is still negative (downward). Despite 
the changes in the direction the ball was moving in, its 
vertical acceleration was always downward while it was 
in the air. The direction of its acceleration was constant. 
Was the magnitude of the acceleration constant as well? 
What forces acted on the ball while it was in the air? If 
air resistance can be ignored, then the only force acting 
on the ball was the force of gravity or the weight of the 
ball. Since the ball’s weight does not change while it’s in 
the air, the net external force acting on the ball is constant 
and equal to the weight of the ball. This means that the 
acceleration of the ball is constant as well.

Vertical Motion of a Projectile
In self-experiment 2.5, the ball you threw up in the air 
was a projectile. A projectile is an object that has been 
projected into the air or dropped and is acted on only by 
the forces of gravity and air resistance. If air resistance 
is too small to measure, and the only force acting on a 
projectile is the force of the earth’s gravity, then the force 
of gravity will accelerate the projectile. In the previous 
chapter we learned that this acceleration, the accelera-
tion due to gravity or g, is 9.81 m/s2 downward. This is 
a uniform acceleration. Now let’s see if we can come up 
with the equations that describe the vertical motion of a 
projectile such as the ball in self-experiment 2.5.

Since the vertical acceleration of the ball is constant, 
we already have one equation to describe this kinematic 
variable. If we define upward as the positive vertical 
direction, then

a = g = −9.81 m/s2. (2.10)

The negative sign indicates that the acceleration due to 
gravity is in the downward direction.

We know what the vertical acceleration of the ball 
is; perhaps we can use this knowledge to determine its 
velocity from equation 2.9, which relates acceleration 
to velocity.

a =
v f  – vi

�t

The acceleration in equation 2.9 is an average accelera-
tion, but in our case we know the acceleration of the ball 
at any instant in time—it’s 9.81 m/s2 downward. But since 
the acceleration is constant, 9.81 m/s2 is also the average 
acceleration. So, we can substitute g for average accelera-
tion, a–, in equation 2.9 and solve for final velocity, vf:

a =
v f  –  vi

�t
= g

vf − vi = g∆t

vf = vi + g∆t (2.11)

Equation 2.9 gives us a means of determining the 
instantaneous vertical velocity of the ball (vf) at the end 
of some time interval (ǻt) if we know its initial vertical 
velocity (vi) and the length of the time interval. We can 
predict the future! Look closer at this equation. If you 
remember your high school algebra, you might recognize 
this as the equation for a line:

y = mx + b (2.12)
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where

y = dependent variable (plotted on vertical axis),

x = independent variable (plotted on horizontal 
axis),

m = slope of line = 
�y
�x

, and

b = intercept.

In equation 2.11,

vf = vi + g∆t,

vf is the dependent variable, y,

∆t is the independent variable, x,

g is the slope, m, and

vi is the intercept, b.

The vertical velocity of the ball changes linearly 
with changes in time—the vertical velocity of the ball 
is directly proportional to the time that the ball has been 
in the air.

What about the vertical position of the ball? Perhaps 
we can use the definition for average velocity from 
equation 2.8.

vy =
�y
�t

vy =
yf - yi

�t

Since velocity is linearly proportional to time (it’s defined 
by a linear equation), the average velocity over a time 
interval is equal to the velocity midway between the initial 
and final velocities. This velocity is the average of the 
initial and final velocities:

v
v + v

2y
f i"

vy =
v f +vi

2
=

yf - yi

�t
 (2.13)

If we use the expression from equation 2.11,

vf = vi + g∆t,

and substitute it for vf in equation 2.13,

v f +vi

2
=

yf - yi

�t
,

we can solve for yf .

(vi  + g�t)+ vi

2
=

yf - yi

�t

(2vi  + g �t)�t
2

=
yf - yi

�t

(2vi + g�t)�t
2

= yf � yi

2vi�t  + g(�t)2

2
= yf � yi

vi�t  + 
1
2

g(�t)2 = yf � yi

yf = yi + vi�t + 1
2

g(�t)2  (2.14)

If you couldn’t follow the derivation of equation 2.14, 
don’t worry about it. The result is what is important for 
our understanding of the motion of the ball. Equation 
2.14 gives us a means of determining the vertical posi-
tion of the ball (yf) at the end of a time interval (ǻt) if 
we know its initial vertical velocity (vi) and the length 
of the time interval.

There is one more equation that describes vertical 
velocity of the ball as a function of its vertical displace-
ment and initial vertical velocity. The equation is pre-
sented here, but we’ll have to wait until chapter 4 (see p. 
127) for the derivation of this equation.

v2 = v2 + 2g∆y (2.15)

Using equations 2.11 and 2.14 (or 2.15), we can now pre-
dict not only how fast the ball will be moving vertically, 
but where it will be as well. We now have four equations 
to describe the vertical motion of a projectile.

 ➲ Vertical position of projectile (equation 2.14):

yf = yi + vi�t + 1
2

g(�t)2

Vertical velocity of projectile (equation 2.11 and 2.15):

vf = vi + gǻt

v2 = v2 + 2gǻy

Vertical acceleration of projectile (equation 2.10):

a = g = −9.81 m/s2
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where

yi = initial vertical position,

yf = final vertical position,

ǻy = yf − yi = vertical displacement,

ǻt = change in time,

vi = initial vertical velocity,

vf = final vertical velocity, and

g = acceleration due to gravity = −9.81 m/s2.

If we are analyzing the motion of something that is 
dropped, the equations are simplified. For a dropped 
object, vf = 0. If we set the vertical scale to zero at the 
position the object was dropped from, then yi = 0 as well. 
For a dropped object, the equations become the following:

Vertical position of falling object:

yf =
1
2

g(�t)2
  (2.16)

Vertical velocity of falling object:

vf = g∆t (2.17)

v2 = 2g∆y (2.18)

Imagine that you could safely drop a ball from the top 
of some tall building and that air resistance is not signifi-
cant. When you let go of the ball, its vertical velocity is 
zero. According to equation 2.17, after it has fallen for 1 
s, its velocity would be 9.81 m/s downward. According 
to equation 2.16, its position would be 4.91 m below you. 
After 2 s, its velocity would be another 9.81 m/s faster, 
or −19.62 m/s, and its position would be 19.62 m below 
you. After 3 s its velocity would be another 9.81 m/s 
faster, or −29.43 m/s, and its position would be 44.15 m 
below you. Notice that the ball’s velocity is just increas-
ing by the same amount (9.81 m/s) during each 1 s time 
interval, but the ball’s position changes by a larger and 
larger amount during each second it falls (see figure 2.6).

Some other observations about the vertical motion 
of projectiles may simplify things further. Throw a ball 
straight up in the air again. How fast is the vertical veloc-
ity of the ball at the instant it reaches its peak height? 
Hmmm. Just before it reached its peak height, it had a 
small positive velocity (it was going upward slowly). Just 
after it reached its peak height, it had a small negative 
velocity (it was going downward slowly). Its vertical 
velocity went from positive to negative. What number is 
between positive and negative numbers? How fast is it 
moving if it’s not moving up anymore and hasn’t started 

moving downward yet? The ball’s vertical velocity at the 
peak of its flight is zero.

vpeak = 0 (2.19)

A useful application of this is in the sport of tennis. 
When you serve a tennis ball, you want to toss it up in 
the air just high enough that your racket hits it when it is 
at or near the peak of its flight. Small errors in the timing 
of your serve won’t significantly affect where on the 
racket the ball hits, because at the peak of its flight the 
ball’s velocity is zero, so it will be near this position for 
a longer time. If you toss the ball up too high, however, 
the time during which the ball is in the hitting zone of 
the racket will be shorter, since the ball is moving much 
faster as it falls through the hitting zone.

The symmetry of the flight of a projectile is the source 
of more simplification for our analyses. Toss a ball up 
again and try to determine which is longer—the time it 
takes for the ball to reach its peak height or the time it 
takes for the ball to fall back down from its peak height 
to its initial height. Wow, those time intervals are close 
to the same. In fact, they are the same.

t = 0
4.91 m

14.72 m

t = 1 s

t = 2 s

t = 3 s

t = 4 s

24.53 m

34.34 m

y3 = –44.15 m
v3 = –29.43 m/s

y2 = –19.62 m
v2 = –19.62 m/s

y1 = –4.91 m
v1 = –9.81 m/s

y0 = 0.00, V0 = 0.00

y4 = –78.48 m
v4 = –39.24 m/s

E4696/McGinnis/Fig.2.6/410407/JG/R1

Figure 2.6 Vertical position of a dropped ball at each 
1 s interval.
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∆tup = ∆tdown if the initial and final y-positions  
are the same (2.20)

or,

∆tflight = 2∆tup if the initial and final y-positions  
are the same (2.21)

Similarly, the upward velocity of the ball as it passes 
any height on the way up is the same as the downward 
velocity of the ball when it passes that same height on 
the way down. The time it takes for the ball’s upward 
velocity to slow down to zero is the same as the time it 

takes for the ball’s downward velocity to speed up from 
zero to the same size velocity downward. If you throw 
a ball upward with an initial vertical velocity of 5 m/s, 
when you catch it on the way down its velocity will also 
be 5 m/s but downward.

Horizontal Motion  
of a Projectile
Now we can describe the vertical motion of a projectile—
at least a projectile that is moving only up and down. 
What about the horizontal motion of a projectile? Try 
self-experiment 2.6.

SAMPLE PROBLEM 2.2
A volleyball player sets the ball for the spiker. When the ball leaves the setter’s fingers, it is 2 m high and 
has a vertical velocity of 5 m/s upward. How high will the ball go?

Solution:
Step 1: Write down the known quantities and any quantities that can be inferred from the problem

yi = 2 m

vi = 5 m/s

vf = vpeak = 0

Step 2: Identify the variable to solve for.

h = yf = ?

Step 3: Review equations and definitions, and identify the appropriate equation with the known quantities 
and the unknown variable in it (equation 2.15).

v2 = v2 + 2gǻy

Step 4: Substitute values into the equation and solve for the unknown variable. Keep track of the units 
when doing arithmetic operations.

 v2 = v2 + 2gǻy

0 = (5 m/s)2 + 2(–9.81 m/s2)ǻy

�y = 
5 m/s( )2

2(9.81 m/s2)
= 1.27 m

ǻy = yf − yi

1.27 m = yf − 2 m

yf = h = 2 m + 1.27 m = 3.27 m

Step 5: Check your answer using common sense.
The answer, 3.27 m, is almost 11 feet, which seems about right for a set in volleyball.
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Self-Experiment 2.6
Throw a ball in the air from one hand to the other so 
the ball has both vertical motion and horizontal motion. 
What forces act on the ball? If we resolve the motion of 
the ball into horizontal (x) and vertical (y) components, 
we know that gravity is an external force that acts in the 
vertical direction and pulls downward on the ball. What 
about horizontally (sideways)? Are there any external 
forces pulling or pushing sideways against the ball to 
change its horizontal motion once it leaves your hand? 
The only thing that could exert a horizontal force on the 
ball is the air through which the ball moves. This force 
will probably be very small in most cases, and its effect 

will be too small to notice. If air resistance is negligible, 
the horizontal velocity of the ball should not change from 
the time it leaves your hand until it contacts your other 
hand or another object, since no horizontal forces act on 
the ball. Try to observe only the horizontal motion of 
the ball. The ball continues to move in the direction you 
projected it. It does not swerve right or left. Its horizontal 
velocity is positive. Does the ball accelerate horizontally 
while it is in the air? Does it speed up or slow down hori-
zontally? No. Does it change its direction horizontally? 
No. If the ball doesn’t speed up or slow down or change 
direction, it is not accelerating in the horizontal direction.

SAMPLE PROBLEM 2.3
A punter punts the football. The football leaves the punter’s foot with a vertical velocity of 20 m/s and a 
horizontal velocity of 15 m/s. What is the hang time of the football (how long is it in the air)? (Assume that 
air resistance has no effect and that the height at landing and at release are the same.)

Solution:
Step 1: Write down the known quantities and any quantities that can be inferred from the problem.

yi = yf

vi = 20 m/s

vx = 15 m/s

vpeak = 0

ǻtup = ǻtdown

Step 2: Identify the variable to solve for.

ǻt =?

Step 3: Review equations and definitions, and identify the appropriate equation with the known quantities 
and the unknown variable in it (equation 2.11).

ǻt = ǻtup + ǻtdown = 2ǻtup

vf = vi + gǻt 

Step 4: Substitute values into the equation and solve for the unknown variable. Keep track of the units 
when doing arithmetic operations.

vf = vi + gǻt 

0 = 20 m/s + (−9.81 m/s2)(ǻtup)

ǻtup = 
(�20 m/s)

(–9.81 m/s)
 = 2.04 s

ǻt = 2 ǻtup = 2(2.04 s) = 4.08 s

Step 5: Check your answer using common sense.
Four seconds seems like a reasonable hang time for a punt.
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It is difficult to examine or observe the horizontal 
motion of a projectile separately from its vertical motion, 
though, because when you observe a projectile, you see 
the horizontal and vertical motions simultaneously as one 
motion. How can we view a projectile, such as the ball in 
self-experiment 2.6, so that we isolate only its horizontal 
motion? What if we watched the projectile from above? 
Imagine yourself perched on the catwalk of a gymnasium 
watching a basketball game. Better yet, imagine watching 
a football game from the Goodyear blimp. How would 
the motions of the football or basketball appear to you 
from these vantage points? If your depth perception 
was hindered (if you closed one eye), could you see the 
vertical motion of the football during a kickoff? Could 
you detect the vertical motion of the basketball during a 
free throw? The answer is no in both cases. All you see 
is the horizontal motion of the balls. Does the basketball 
slow down, speed up, or change direction horizontally as 
you view it from above? How about the football? If we 
tried to represent the motion of the basketball as viewed 
from above in a single picture, it might look something 
like figure 2.7.

To represent the motion, we show the position of the 
basketball at four instants in time, each 0.10 s apart. 
Notice that the images line up along a straight line, so 
the motion of the ball is in a straight line. Also notice 
that the displacement of the ball over each interval of 
time is the same, so the velocity of the ball is constant. 
The horizontal velocity of a projectile is constant, and 
its horizontal motion is in a straight line.

 ➲ The horizontal velocity of a projectile 
is constant and its horizontal motion 
is in a straight line.

We derived equations describing the vertical position, 
velocity, and acceleration of a projectile. Now we can 
do the same for the horizontal position, velocity, and 
acceleration of a projectile. We start with the fact that the 
horizontal velocity of a projectile is constant.

v = vf = vi = constant (2.22)

If the horizontal velocity is constant, that means there is 
no change in horizontal velocity. If horizontal velocity 
doesn’t change, then horizontal acceleration must be 
zero, since acceleration was defined as the rate of change 
in velocity.

a = 0 (2.23)

Also, if the horizontal velocity is constant, then the aver-
age horizontal velocity of the projectile is the same as its 
instantaneous horizontal velocity. Since average velocity 

is displacement divided by time, displacement is equal 
to velocity times time (equation 2.6).

v = d
�t

v = �x
�t

∆x = v∆t (2.24)

xf – xi = v∆t

xf = xi + v∆t (2.25)

If our measuring system is set up so that the initial hori-
zontal position (xi) is zero, then equation 2.25 simplifies to

x = v∆t. (2.26)

Using equations 2.22 and 2.26 (or 2.25), we can now 
predict not only how fast a projectile will be moving 

6x

6x

6x

E4696/McGinnis/Fig.2.7/410408/JG/R1

Figure 2.7 An overhead view of a basketball free throw 
shows that the horizontal displacement, ǻx, for each 0.10 
s time interval is the same.
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horizontally but where it will be as well. We now have the 
equations to describe the horizontal motion of a projectile.

 ➲ Horizontal position of projectile (equations 2.25 
and 2.26):

xf = xi + v∆t

x = v∆t if initial position is zero

 ➲ Horizontal velocity of projectile (equation 2.22):

v = vf = vi = constant

 ➲ Horizontal acceleration of projectile (equation 
2.23):

a = 0

where

xi = initial horizontal position,

xf = final horizontal position,

ǻt = change in time,

vi = initial horizontal velocity, and

vf = final horizontal velocity.

Combined Horizontal and  
Vertical Motions of a Projectile
We have now developed equations that describe the 
motion of a projectile in terms of its vertical and 
horizontal components. Does the vertical motion of a 
projectile affect its horizontal motion or vice versa? Try 
self-experiment 2.7.

Self-Experiment 2.7
Put a coin on the edge of a tabletop. Place another same-
denomination coin on the end of a ruler or other long, 
flat object. Place the ruler with the coin on it on the table 
next to the other coin so that the end of the ruler with the 
coin on it overhangs the tabletop. Strike the ruler with 
your hand so that it in turn strikes the coin on the table 
and knocks the coin off of the table. Simultaneously, the 
movement of the ruler will dislodge the coin off the end of 
the ruler. Figure 2.8 shows the setup of the demonstration.

Which coin will strike the floor first? Try it several 
times to see. The two coins hit the floor at the same time. 
The coin that is knocked off of the table has a horizontal 
velocity as it begins to fall, while the coin that slips off 
of the ruler does not. The two coins fall the same verti-
cal distance, and neither of them has a vertical velocity 
when it begins to fall. What force pulls the coins toward 

the earth? The force of gravity pulls the coins downward 
and accelerates both downward at the same rate of 9.81 
m/s2. Does the fact that one coin has a horizontal velocity 
affect how the force of gravity acts on that coin, and thus 
affect the vertical acceleration of that coin? No, the force 
of gravity has the same effect on the coin knocked off 
the table as it does on the coin that slid off of the ruler.

The vertical and horizontal motions of a projectile are 
independent of each other. In other words, a projectile 
continues to accelerate downward at 9.81 m/s2 with or 
without horizontal motion, and the horizontal velocity of 
a projectile remains constant even though the projectile 
is accelerating downward at 9.81 m/s2. Although the 
motions of a projectile are independent of each other, an 
equation can be derived to describe the path of a projectile 
in two dimensions. Take equation 2.26 and solve for ǻt.

�t = x
vx

Now substitute this expression for ǻt in equation 2.14.

yf = yi + vi�t + 1
2

g(�t)2

y y v
x
v

x
v

1
2

gf i y
x x

2

i
= +






+







 (2.27)

Equation 2.27 is the equation of a parabola. It describes 
the vertical (y) and horizontal (x) coordinates of a pro-
jectile during its flight based solely on the initial vertical 
position and vertical and horizontal velocities. Figure 
2.9 shows the parabolic path followed by a ball thrown 
in the air with an initial vertical velocity of 6.95 m/s and 
an initial horizontal velocity of 4.87 m/s. The ball was 

E4696/McGinnis/Fig.2.8/410409/JG/R1

Figure 2.8 The coin experiment demonstrates the 
independence of the horizontal and vertical components 
of projectile motion.
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photographed at a rate of 12 frames per second, so the 
position of the ball at each 0.0833 s interval is shown 
in the figure. Notice that the horizontal displacements 
over each time interval are the same and that the path is 
symmetrical on either side of the peak. The peak height 
actually occurs between the ninth and 10th ball images 
as counted from the left.

Several of the equations that describe projectile motion 
can be written with only three variables. These equations 
(2.11, 2.15, and 2.24) are

vf = vi + g∆t

v2 = v2 + 2g∆y

∆x = v∆t

Equation 2.14 has four variables, but it can be modi-
fied by substituting ǻy for yi and yf as shown to produce 
equation 2.28 with only three variables.

yf = yi + vi�t + 1
2

g(�t)2

yf � yi = vi�t + 1
2

g(�t)2

�y = vi�t + 1
2

g(�t)2
 (2.28)

We now have four equations, and each has only 
three variables. In each of these equations, if two of the 
variables are known, the equation can be solved for the 
third variable. Table 2.4 lists these equations and their 
variables. You can use this table as an aid to help you solve 
projectile problems by following these steps. First iden-
tify the unknown variable that you are trying to determine. 
Look in the first column, labeled “Unknown variable” in 
table 2.4, to see if the variable is in the table. If it appears 
in a row in this column, look to the right in that row to 
see if you know the values for the two variables listed in 
the “Known variables” column. If you know the values 
for those two variables, look to the right in the “Equa-
tion” column and plug the values into the equation and 
solve for the unknown variable. Remember, you might 
have to solve two or more equations before you get to the 
equation that has the unknown variable that interests you.

Projectiles in Sport
Examples of projectiles in sports and human movement 
are numerous. Can you name a few? Here are some 
examples of projectiles: a shot in flight during a shot 
put, a basketball in flight, a hammer in flight during 
a hammer throw, a volleyball in flight, a squash ball 
in flight, a lacrosse ball in flight, a football in flight, a 
rugby ball in flight . . . just about any ball used in sport 
becomes a projectile once it is thrown, released, or hit, 

Figure 2.9 Stroboscopic photos of a ball in flight taken at equally spaced time intervals. Note the parabolic trajectory.
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if air resistance is negligible. So in ball sports, the path 
of the ball cannot be changed in flight if air resistance 
is negligible. Its path is determined by equation 2.27. 
Vertically, the ball is constantly accelerating downward, 
and horizontally it won’t slow down or speed up. Once 
a ball has left our hands and is in flight, our actions and 
antics cannot change its predetermined course or velocity.

It seems pretty obvious that the balls used in sport are 
projectiles, but what if we ourselves are the projectiles? 
Can the human body be a projectile? Are there situations 
in which the only external force acting on you is the 
force of gravity? Yes, of course there are! Think of some 
examples in sport in which the human body is a projectile. 
How about in running? High jumping? Long jumping? 
Diving? Pole vaulting? Volleyball? Basketball? Soccer? 
Football? In each of these sports, there are situations in 
which the athlete is airborne and the only force acting 

on her is gravity. Do the projectile equations govern 
the motion of an athlete in these situations? Yes! This 
means that, once an athlete’s body has left the ground 
and become a projectile, the athlete cannot change her 
path. Once a volleyball player has jumped up to the left 
to block a shot, the path of her body motion cannot be 
changed; in other words, once she has jumped up to the 
left, she won’t be able to change direction and block a 
shot to the right. And once a pole-vaulter releases the 
pole, he cannot change his motion. Once he has let 
go of the pole, he no longer has control over where he 
falls. Once a long jumper leaves the takeoff board and 
becomes a projectile, her actions while in the air will not 
affect the velocity of her body. She cannot speed up her 
horizontal velocity to increase the distance of the jump 
after leaving the ground. Nor can she turn off gravity to 
stay in the air longer.

Table 2.4 Solution Guide for Solving Projectile Problems If Two Variables Are Known
Identify the unknown variable in the first column set. Find the two known variables in the second column set that match 
the row of the unknown variable. Solve for the unknown variable using the equation in the rightmost column of that row.

Unknown variable
If you want to find 
this . . .

Known variables
. . . and you know these,

Equation
. . . use this equation to find the unknown variable.

y
(vertical)

ǻy vi ǻt
�y = vi�t + 1

2
g(�t)2

vi ǻt ǻy

ǻt ǻy vi

vi vf ǻt vf = vi + gǻt

vf vi ǻt

ǻt vf vi

ǻy vf vi vf
2 = vi

2 + 2gǻy

vi vf ǻy

vf vi ǻy

x
(horizontal)

ǻx vx ǻt ǻx = vxǻt

vx ǻt ǻx

ǻt ǻx vx

Variable definitions:
ǻt = time

ǻy = yf – yi = vertical displacement

yi = initial vertical position

yf = final vertical position

vi = initial vertical velocity

vf = final vertical velocity

g = acceleration due to gravity = -9.81 m/s2

ǻx = xf – xi = horizontal displacement

xi = initial horizontal position

xf = final horizontal position

vx = horizontal velocity
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In projectile activities, the initial conditions (the initial 
position and initial velocity) of the projectile determine 
the motion that the projectile will have. In sports involving 
projectiles, the athlete’s objective when throwing, kick-
ing, striking, shooting, or hitting the projectile usually 
concerns one of three things: time of flight, peak height 
reached by the projectile, or horizontal displacement.

Time of flight of a projectile is dependent on two 
things: initial vertical velocity and initial vertical position. 
We can use the equations to mathematically demonstrate 
this, or we can just make some simple observations. 
Drop a ball to the floor first from waist height, then from 
shoulder height, and then from over your head. Which 
one took the shortest time to reach the floor? Which one 
took the longest time to reach the floor? The higher the 
initial height of the projectile, the longer it stays in the 
air. The shorter the initial height of the projectile, the 
shorter the time it stays in the air.

Now, rather than dropping the ball, throw it upward. 
Throw it upward again, but harder this time, and try to 
release it at the same height. Now throw it down, and 
again, try to release it at the same height. What should 
you do if you want the ball to stay in the air longer? The 
faster the initial upward velocity of the projectile, the 
longer it stays in the air. The slower the initial upward 
velocity (or the faster its initial downward velocity), the 
shorter the time it stays in the air.

Maximizing time in the air is desirable in certain situ-
ations in sport such as a football punt or a lob in tennis. 
Gymnasts and divers also need sufficient time in the air 
to complete stunts. In these situations, the initial vertical 
velocity of the projectile is relatively large (compared to 
the horizontal velocity), and the angle of projection is 
above 45°. The optimal angle of projection to achieve 
maximum height and time of flight is 90° or straight up.

In some sport activities, minimizing the projectile’s 
time in the air is important. Examples of these activities 
include a spike in volleyball, an overhead smash in tennis, 
throws in baseball, and a penalty kick in soccer. In these 
situations, the initial upward vertical velocity of the ball is 
minimized or the ball may even have an initial downward 
velocity. The projection angle is relatively small—less 
than 45°—and in some cases even less than zero.

The peak height reached by a projectile is also depen-
dent on its initial height and initial vertical velocity. The 
higher a projectile is at release and the faster it is moving 
upward at release, the higher it will go. Maximizing peak 
height is important in sports such as volleyball and bas-
ketball, where the players themselves are the projectiles. 
Another obvious example of a sport in which maximal 
peak height is desired is high jumping. Again, the athlete 
is the projectile. In these activities, the angle of projection 
is large, above 45°.

Maximizing the horizontal displacement or range of 
a projectile is the objective of several projectile sports. 
Examples of these include many of the field events in 
track and field, including the shot put, hammer throw, 
discus throw, javelin throw, and long jump. In the discus 
throw and javelin throw, the effects of air resistance are 
large enough that our projectile equations may not be 
accurate in describing the flight of the discus or javelin. 
For the shot put, hammer throw, and long jump, air 
resistance is too small to significantly affect things, so 
our projectile equations are valid. Our analysis of these 
situations may require the use of equations. If we want 
to maximize horizontal displacement, then equation 2.24 
may be useful.

∆x = v∆t

This equation describes horizontal displacement (ǻx) 
as a function of initial horizontal velocity (v) and time 
(ǻt). But time in this case would be total time in the air or 
the flight time of the projectile. We just saw that the flight 
time of a projectile is determined by its initial height and 
its initial vertical velocity. The horizontal displacement 
of a projectile is thus determined by three things: initial 
horizontal velocity, initial vertical velocity, and initial 
height. If the initial height of release is zero (the same as 
the landing height), then the resultant velocity (the sum 
of vertical and horizontal velocities) at release determines 
the horizontal displacement of the projectile. The faster 
you can throw something, the farther it will go. But what 
direction should you throw in—more upward (vertical) 
or more outward (horizontal)?

If the initial velocity of the ball is totally vertical (a 
projection angle of 90°), the initial horizontal velocity 
(v in equation 2.24) would be zero, and the horizontal 
displacement would be zero as well. If the initial veloc-
ity of the ball is totally horizontal (a projection angle 
of zero), the flight time (ǻt in equation 2.24) would be 
zero, and the horizontal displacement would be zero as 
well. Obviously, a combination of horizontal and verti-
cal initial velocities (and a projection angle somewhere 
between 0° and 90°) would be better. What combination 
works best? If the resultant velocity is the same no matter 
what the angle of projection, then maximum horizontal 
displacement will occur if the horizontal and vertical 
components of the initial velocity are equal, or when the 
projection angle is 45°. If we look at equation 2.24, this 
makes sense. Horizontal displacement is determined by 
initial horizontal velocity and time in the air, but time in 
the air is determined by initial vertical velocity alone (if 
height of release is zero). It makes sense that these two 
variables—initial horizontal and vertical velocities—
would have equal influence on horizontal displacement.
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Let’s check to see if this reasoning is confirmed by 
observations of projection angles in the sport of shot 
putting. At the 1995 World Track and Field Champion-
ships, the average angle of release for the best throw by 
the six medalists (three men and three women) in the 
shot put was 35° (Bartonietz and Borgtom 1995). This is 
much less than the optimal angle of 45°. But wait, does 
a shot have a height of release? Yes, the shot is released 
more than 2 m high. Look at figure 2.10, which shows 
a shot-putter near the instant he releases the shot. The 
shot is well above the ground. This height is its initial 
height. The height of release will give the shot more time 
in the air, so the time in the air does not have to be cre-
ated by the vertical velocity at release. If the shot-putter 
doesn’t have to give the shot as much vertical velocity at 
release, he can put more effort into generating horizontal 

velocity. The optimal projection angle will thus be less 
than 45°. The higher the height of release, the lower the 
projection angle.

Is there any other reason why the optimal release 
angle for shot putting should be less than 45° (other 
than the fact that shot-putters have a release height of 
2 m or more)? Maybe. Our conclusion that 45° was an 
optimal projection angle for maximizing the horizontal 
displacement of a projectile relied on two conditions—
first, that the release height was zero, and second, that 
the resultant velocity of the projectile was the same no 
matter what the projection angle was. For the shot putter, 
the first assumption was incorrect, so the release angle 
was less than 45°. What about the second assumption? 
In shot putting, does the resultant velocity of the shot 
change if you change the release angle? To answer this 
question, consider another question: Is it easier to move 
something faster horizontally or vertically upward? If 
you have access to a shot, determine whether you can 
roll it across the floor (move it horizontally) faster than 
you can throw it straight up. It’s more difficult to acceler-
ate objects upward and produce a large upward velocity 
than it is to accelerate objects horizontally and produce 
large horizontal velocities. In shot putting (and in most 
other throwing events), the resultant velocity of the shot 
increases as the angle of projection decreases below 45°.

If we examine projection angles for the discus throw 
or the javelin throw, we find that they are even lower than 
those of the shot put—even though the height of release is 
lower for the discus and javelin. Why? During the flight of 
the discus or javelin, the implement is acted on by another 
force besides gravity—air resistance. If the javelin or 
discus is thrown correctly, the air resistance force will 
exert some upward force on the javelin or discus during 
its flight. This upward force reduces the net downward 
force acting on the implement and thus causes its down-
ward acceleration to be smaller as well. The result is that 
the javelin or discus stays airborne longer. Since the lift 
force gives the javelin or discus more time in the air, the 
time in the air does not have to be created by the vertical 
velocity at release. Once again, if the thrower doesn’t have 
to give the javelin or discus as much vertical velocity at 
release, the athlete can put more effort into generating 
horizontal velocity. An extreme example of the lift effect 
of air resistance providing a projectile with more time in 
the air would be throwing a flying disc or ring such as a 
Frisbee or an Aerobie for distance. The lift effect of air 
resistance is so large on these projectiles that the optimal 
angle of release for maximizing horizontal distance is not 
much above horizontal.

Let’s summarize what we now know about projectiles 
in sports.

Figure 2.10 The shot has an initial height at the instant 
of release.
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1. If you want to maximize the time of flight or the 
height reached by a projectile, the vertical com-
ponent of release velocity should be maximized, 
and the projection angle should be above 45°.

2. If you want to minimize the time of flight of a pro-
jectile, the upward component of release velocity 
should be minimized (perhaps so much so that the 
vertical velocity at release is downward). The pro-
jection angle should be much lower than 45° and 
in some situations may even be below horizontal.

3. If you want to maximize the horizontal displace-
ment of a projectile, release velocity should be 
maximized and a higher release height is better. 
The horizontal component of release velocity 
should be slightly faster than the vertical com-
ponent so that the projection angle is slightly 
lower than 45°. The higher the release height and 
the greater the lift effects of air resistance on the 
projectile, the farther below 45° the projection 
angle should be.

The equations governing projectile motion dictate the 
path that a ball or other thrown object will take once it 
leaves our hands. Once you release a ball, you no longer 
have control over it. Likewise, if you yourself become a 
projectile, the path taken by your body in the air is pre-
determined by your velocity and position at the instant 
you leave the ground. Once you have left the ground, if 
the only force acting on you is the force of gravity, you 
no longer have control over the path your body will take 
or your velocity.

Summary
Motion may be classified as linear, angular, or a com-
bination of the two (general motion). Most examples of 
human movement are general motion, but separating 
the linear and angular components of the motion makes 
it easier to analyze the motion. Linear displacement is 
the straight-line distance from starting point to finish, 
whereas linear distance traveled represents the length of 
the path followed from start to finish. Velocity is the rate 
of change of displacement, whereas speed is the rate of 
change of distance. Acceleration is the rate of change of 
velocity. Displacement, velocity, and acceleration are 
vector quantities and are described by size and direction.

The vertical and horizontal motion of a projectile 
can be described by a set of simple equations if the only 
force acting on the projectile is the force of gravity. The 
horizontal velocity of a projectile is constant, and its 
vertical velocity is constantly changing at the rate of 
9.81 m/s2. The path of a projectile and its velocity are set 
once the projectile is released or is no longer in contact 
with the ground.

We now have the terms to describe many aspects 
of the linear motion of an object—distance traveled, 
displacement, speed, velocity, and acceleration. But 
what causes linear motion of objects? How do we affect 
our motion and the motion of things around us? We’ve 
gotten some hints in this and the previous chapter. In the 
next chapter, we will explore the causes of linear motion 
more thoroughly.

KEY TERMS
acceleration (p. 66)
angular motion (p. 53)
average acceleration (p. 66)
average speed (p. 60)
average velocity (p. 62)
Cartesian coordinate system (p. 54)
curvilinear translation (p. 52)

displacement (p. 57)
distance traveled (p. 57)
general motion (p. 53)
instantaneous acceleration (p. 66)
instantaneous speed (p. 62)
instantaneous velocity (p. 63)
linear motion (p. 52)

position (p. 54)
projectile (p. 68)
rectilinear translation (p. 52)
resultant displacement (p. 57)
speed (p. 60)
uniform acceleration (p. 68)
velocity (p. 60)



80

REVIEW QUESTIONS

1. Give an example of a human movement involving the whole body that represents curvilinear 
motion. Do not use the examples given at the beginning of the chapter.

2. Give an example of a human movement involving the whole body that represents rectilinear 
motion. Do not use the examples given at the beginning of the chapter.

3. Give an example of a human movement involving the whole body that represents angular motion. 
Do not use the examples given at the beginning of the chapter.

4. Tyler and Jim race each other up a mountain on their bicycles. Tyler rides a road bike on the 
switchbacks of the twisting and turning mountain road. Jim rides a mountain bike and follows 
a direct, but steeper, straight-line path up the mountain. They start at the same time and place 
at the bottom of the mountain and finish at the same time and place at the top of the mountain. 
From start to finish,

a. whose distance traveled was longer?

b. whose displacement was longer?

c. which rider had the faster average speed?

d. which rider had the faster average velocity?

e. who won the race?

Tyler

Start

Finish

Ji
m

E4696/McGinnis/Fig.P2.1/443280/JG/R3
5. Are the sizes of the goals in ice hockey, lacrosse, soccer, field hockey, and team handball related 

to the speeds of the balls (or puck) used in these games? If so, explain the relationship.

6. Are the sizes of the courts in tennis, volleyball, racquetball, squash, table tennis, and badmin-
ton related to the speeds of the balls (or shuttlecock) used in these games? If so, explain the 
relationship.

7. What factors affect the speeds of the balls and implements listed in table 2.3?

8. When a 100 m sprinter has reached her maximum speed, is her average horizontal velocity faster 
during the support phase of a step (when her foot is on the ground) or during the flight phase of 
a step (when she is not in contact with the ground)? Explain.

9. Can a runner moving around a curve at constant speed be accelerating? Explain.
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10. If Jim runs around a circle counterclockwise, in which direction (relative to the circle) is his 
acceleration? Explain.

11. List as many examples as you can of sports or situations in sport in which maximizing a projec-
tile’s time in the air is important.

12. List as many examples as you can of sports in which minimizing a projectile’s time in the air 
is important.

13. Elite long jumpers have takeoff angles around 20°. Why do elite long jumpers have takeoff angles 
so much lower than the theoretically optimal takeoff angle of 45°?

PROBLEMS

1. Sam receives the kicked football on the 3 yd line and runs straight ahead toward the goal line 
before cutting to the right at the 15 yd line. He then runs 9 yd along the 15 yd line directly toward 
the right sideline before being tackled.

a. What was Sam’s distance traveled?

b. What was Sam’s resultant displacement?

c. How many yards did Sam gain in this play (how far was the ball advanced toward the goal 
line)?

2. During an ice hockey game, Phil had two shots on goal—one shot from 5 m away at 10 m/s 
and one shot from 10 m away at 40 m/s. Which shot did Brian, the hockey goalie, have a better 
chance of blocking?

3. The horizontal velocity of Bruce’s fastball pitch is 40 m/s at the instant it's released from his hand. 
If the horizontal distance from Bruce’s hand to home plate is 17.5 m at the instant of release, 
how much time does the batter have to react to the pitch and swing the bat?

4. The world-record times for the men’s 50 m, 100 m, 200 m, and 400 m sprint races are 5.47 s, 9.58 s,  
19.19 s, and 43.18 s, respectively. Which world-record race was run at the fastest average speed?

5. Matt is sailboarding northeast across the river with a velocity of 10 m/s relative to the water. The 
river current is moving the water north at a velocity of 3 m/s downstream. If the angle between 

?
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the relative velocity of the sailboard and the river current is 30°, what is the resultant or true 
velocity of the sailboard?

6. Sean is running a 100 m dash. When the starter's pistol fires, he leaves the starting block and 
continues speeding up until 6 s into the race, when he reaches his top speed of 11 m/s. He holds 
this speed for 2 s; then his speed has slowed to 10 m/s by the time he crosses the finish line 11 s  
after he started the race.

a. What was Sean’s average acceleration during the first 6 s of the race?

b. What was Sean’s average acceleration from 6 to 8 s into the race?

c. What was Sean’s average velocity for the whole race?

d. What was Sean’s average acceleration from 8 to 11 s into the race?

7. It is the final seconds of an ice hockey game between the Flyers and the Bruins. The Bruins are 
down by 1 point. With 20 s left in the game, the Bruins pull the goalie and have him play as a 
forward in an attempt to tie the game. The Flyers successfully defend their goal for 9 s. With only 
1.25 s remaining on the game clock, a Flyer shoots the puck on the ice past the skates and sticks 
of the other players and toward the Bruins’ goal. The puck is 37 m from the goal when it leaves 
the stick with an initial horizontal velocity of 30 m/s. The shot is perfectly directed toward the 
empty goal, but the ice slows the puck down at a constant rate of 0.50 m/s2 as it slides toward 
the goal. None of the Bruins can stop the puck before it reaches the goal.

a. Where is the puck when the game clock reaches zero and the horn sounds to end the game?

b. Do the Flyers win the game by 1 or 2 points?

8. Mike clears a crossbar while pole vaulting. He releases the pole before he achieves his peak 
height. It takes him 1 s to fall from his peak height to the landing pit. The landing pit is 1 m high. 
How high above the ground was Mike at the peak height of his vault?

9. Brian is attempting to high jump over a crossbar set at 2.44 m (8 ft). At the instant of takeoff 
(when he is no longer in contact with the ground) his vertical velocity is 4.0 m/s, and his center 
of gravity is 1.25 m high.

a. What is Brian’s vertical acceleration at the instant of takeoff?

b. How much time elapses after takeoff until Brian reaches his peak height?

c. What peak height does Brian’s center of gravity achieve?

10. Oliver punts a football into the air. The football has an initial vertical velocity of 15 m/s and 
an initial horizontal velocity of 15 m/s when it leaves the Oliver’s foot. The ball experiences a 
constant vertical acceleration of 9.81 m/s2 downward while it is in the air.

a. What is the ball’s horizontal velocity 2 s after it leaves the kicker's foot?

b. What is the ball’s vertical velocity 2 s after it leaves the kicker's foot?
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c. What is the ball’s horizontal displacement 2 s after it leaves the kicker's foot?

d. What is the ball’s vertical displacement 2 s after it leaves the kicker's foot?

11. Gerri leaves the long jump takeoff board with a vertical velocity of 2.8 m/s and a horizontal 
velocity of 7.7 m/s.

a. What is Gerri’s resultant velocity at takeoff?

b. What is Gerri’s takeoff angle—the angle of her resultant takeoff velocity with horizontal?

c. What is Gerri’s horizontal velocity just before she lands?

d. If Gerri is in the air for 0.71 s, what is her horizontal displacement during this time in the air?

e. What is Gerri’s vertical velocity at the end of her 0.71 s flight?

f. If Gerri’s center of gravity was 1.0 m high at the instant of takeoff, how high will it be at 
the peak of her flight?

g. How high is Gerri’s center of gravity at the end of her flight, when she first hits the pit?

12. Louise spikes a volleyball. At the instant the ball leaves her hand, its height is 2.6 m and its 
resultant velocity is 20 m/s downward and forward at an angle of 60° below horizontal.

a. How long will it take for the ball to strike the floor if the opposing team does not block it?

b. How far will the ball travel horizontally before it strikes the floor?

60°

20 m/s2.
6 

m

E4696/McGinnis/Fig.P2.4/443283/JG/R2
13. Chloe has a vertical velocity of 3 m/s when she leaves the 1 m diving board. At this instant, her 

center of gravity is 2.5 m above the water.

a. How high will Chloe go?

b. How long will Chloe be in the air before she touches the water? Assume that she first 
touches the water when her center of gravity is 1 m above the water.

14. Sam fields a baseball hit to him in the left field. He then throws the ball to third to force out the 
base runner, Mike. Sam releases the ball 1.80 m above the ground with a vertical velocity of 8 m/s 
and a horizontal velocity of 25 m/s. At the instant Sam releases the ball, he is 41 m from the third 
baseman, Charlie, and Mike is 13 m from third base and running at 8 m/s toward third. Assume 
that air resistance does not affect the flight of the ball when answering the following questions.

a. How high in the air does the ball go?

b. How much time does it take for the ball to reach the third baseman?

c. How high is the ball when it reaches the third baseman?

d. If Mike maintains a constant velocity of 8 m/s toward third base, does he reach third base 
before the ball reaches the third baseman?

15. At the Dallas Cowboys Stadium, the minimum clearance height between the football field and 
the gigantic video screens that hang over the field is only 90 ft (27.43 m). In the first game played 
at the Cowboys Stadium on August 21, 2009, a punter’s kick hit the video screen.

a. What minimum initial vertical velocity would a football need to have to hit the video 
screens if it were kicked from a height 1 m above the playing field surface? Assume that 
air resistance does not affect the flight of the football.

?
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b. If the video screens were not in the way, what would be the hang time for a football kicked 
27.43 m high? Again, assume that air resistance does not affect the flight of the football 
and that the ball is 1 m above the playing field when it is kicked.

Motion Analysis Exercises Using MaxTRAQ
If you haven’t done so already, review the instructions for downloading and using the educational ver-
sion of the MaxTRAQ motion analysis software at the beginning of this book, then download and install 
the software. Once this is done, you are ready to try the following two-dimensional kinematic analyses 
using MaxTRAQ.

1. Open MaxTRAQ. Select Tools in the menu bar and then open Options under the Tools menu. 
In the Options submenu, select Video. In the upper right side of the Video window, under Video 
Aspect Ratio, make sure that Default-Used Preferred Aspect Ratio is selected. In the lower half 
of the right side of the Video window, under Deinterlace Options, select BOB, select Use Odd 
Lines First, and select Stretch Image Vertically. Click OK. Close MaxTRAQ and reopen it to 
have the deinterlace options take effect. Now open the Run Slow video from within MaxTRAQ. 
The video clips will have been downloaded with the software and saved to your local disk under 
Program Files\Motion Analysis\MaxTRAQP\VideoFiles. In the Open window, make sure that 
the drop-down menu at the bottom is set to Video Files.

2. When you open the Run Slow video, you should see a running track with three yellow balls in 
the middle lane. These balls are 2.5 m apart, so the yellow ball on the left is 5 m from the yellow 
ball on the right. Make sure that the scaling/calibration tool is activated by clicking View on the 
menu bar, then selecting Tools from the drop-down menu, and then making sure that Show Scale 
is checked. Open the scaling tool by clicking on Tools on the menu bar and selecting Scale. In 
the Scaling Tool window that opens, set the gauge length to 500 cm, then click OK. Now place 
the cursor over the left ball and click the left mouse button once (nothing will appear on screen 
yet); then place the cursor over the right ball and click the left mouse button a second time. The 
scale should appear in the video window. Hide the scale by selecting View in the menu, then 
click Tools, and uncheck Show Scale (this appears in the submenu).

a. What is the stride length of the runner? Advance the video (using the Step Forward button 
in the video controls panel at the bottom of the screen) until the runner’s right foot touches 
the track; then continue to advance the video to the last instant when the right foot is in 
contact with the track. Activate the digitizing function by clicking on the Digitize button 
on the right side of the screen. Place the cursor over the toe of the runner’s right foot and 
click the left mouse button. A mark should appear on the toe along with the horizontal and 
vertical coordinates of the toe. If the coordinates do not appear, select Point Markers from 
the View drop-down menu and make sure that Show Coordinates is checked. Record the 
horizontal coordinate. Advance the video through one full stride to the next instant of takeoff 
of the right foot. Back up one frame to the last instant of contact of the right foot. Digitize 
the toe of the runner again and record the horizontal coordinate. The difference between the 
horizontal coordinates is the runner’s stride length in centimeters.

b. What is the stride rate of the runner in the Run Slow video? Use the frame number/time 
window at the bottom of the MaxTRAQ window to compute stride rate. Determine the time 
that elapses from takeoff of the right foot until the next takeoff of the right foot (the two 
points you digitized in part a). To improve accuracy, compute the elapsed time by multiply-
ing the difference in frame numbers by 1/60 second (or just divide by 60). Divide one by 
this stride duration to calculate the number of strides per second.

c. What is the average velocity of the runner in the Run Slow video during the one full stride 
you measured in parts a and b?

3. Open the Run Medium video in MaxTRAQ. If you did not set the video aspect ratio and deinter-
lace options in exercise 1, do so now by following those instructions. As you did in exercise 1, 
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make sure that the scaling/calibration tool is activated by clicking View, then Tools, and making 
sure that Show Scale is checked. Open the scaling tool by clicking on Tools on the menu bar 
and selecting Scale. Set the gauge length to 500 cm, then click once over the left ball and once 
over the right ball to set the scale. Hide the scale by selecting View, then Tools, and unchecking 
Show Scale.

a. What is the stride length of the runner in the Run Medium video? Measure the stride length 
from the instant of takeoff of the left foot until the next instant of takeoff of the left foot.

b. What is the stride rate of the runner in the Run Medium video?

c. What is the average velocity of the runner over one full stride in the Run Medium video?

4. Open the Run Fast video in MaxTRAQ. If you have not set the video aspect ratio and deinterlace 
options, do so now by following the instructions in exercise 1. As you did in exercise 1, make 
sure that Show Scale is checked under View—Tools, then open the scaling tool, set the gauge 
length to 500 cm, and click once over the left ball and once over the right ball to set the scale.

a. What is the stride length of the runner in the Run Fast video? Measure the stride length 
from the instant of takeoff of the right foot until the next instant of takeoff of the right foot.

b. What is the stride rate of the runner in the Run Fast video?

c. What is the average velocity of the runner over one full stride in the Run Fast video?

5. Open the Run Fastest video in MaxTRAQ. If you have not set the video aspect ratio and deinterlace 
options, do so now by following the instructions in exercise 1. As you did in exercise 1, make 
sure that Show Scale is checked under View—Tools, then open the scaling tool, set the gauge 
length to 500 cm, and click once over the left ball and once over the right ball to set the scale.

a. What is the stride length of the runner in the Run Fastest video? Measure the stride length 
from the instant of takeoff of the left foot until the next instant of takeoff of the left foot.

b. What is the stride rate of the runner in the Run Fastest video?

c. What is the average velocity of the runner over one full stride in the Run Fastest video?

6. Open the Run Spring Stilts video in MaxTRAQ. If you have not set the video aspect ratio and 
deinterlace options, do so now by following the instructions in exercise 1. As you did in exercise 
1, make sure that Show Scale is checked under View—Tools, then open the scaling tool, set the 
gauge length to 500 cm, and click once over the left ball and once over the right ball to set the scale.

a. What is the stride length of the athlete in the Run Spring Stilts video? Measure the stride 
length from the instant of takeoff of the left stilt tip until the next instant of takeoff of the 
left stilt tip.

b. What is the stride rate of the athlete in the Run Spring Stilts video?

c. What is the average velocity of the athlete over one full stride in the Run Spring Stilts video?

7. Open the Ball Drop video in MaxTRAQ. If you have not previously set the video aspect ratio 
and deinterlace options, do so now by following the instructions in exercise 1. You should see the 
author standing on a ladder against the wall of a building. The bricks of the wall are about 1 ft 
square, and horizontal white strips of tape are spaced vertically on the wall 1 m apart to the left 
of the ladder. Make sure the scaling/calibration tool is activated by clicking View on the menu 
bar, then selecting Tools from the drop down menu, and then making sure that Show Scale is 
checked. Open the scaling tool by clicking on Tools on the menu bar and selecting Scale. In the 
Scaling Tool window that opens, set the gauge length to 500 cm, then click OK. Now place the 
cursor over the left upper corner of the highest strip of tape and click the left mouse button once 
(nothing will appear on screen yet); then place the cursor over the left upper corner of the lowest 
strip of tape and click the left mouse button a second time. The scale should appear in the video 
window. Hide the scale by selecting View in the menu bar, then click Tools, and uncheck Show 
Scale. What is the vertical displacement of the ball 1 s (60 frames) after it was dropped? The ball 
was released in the first frame of video. Theoretically, what should the vertical displacement be?
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8. Open the Ball Toss Up video in MaxTRAQ. If you have not previously set the video aspect ratio 
and deinterlace options, do so now by following the instructions in exercise 1. Set up the scal-
ing/calibration tool as you did with the Ball Drop video using the 500 cm distance between the 
uppermost and lowermost strips of tape on the wall.

a. If the ball reaches peak height between frames 47 and 48, or about 0.79 seconds into the 
video, what is the vertical displacement of the ball during the 0.75 s (45 frames) before peak 
height (from frame 2 to frame 47)?

b. The ball reaches peak height between frames 47 and 48 or about 0.79 seconds into the video. 
What is the vertical displacement of the ball during the 0.75 s (45 frames) after peak height 
(from frame 48 to frame 93)?

c. Is the upward displacement of the ball during the 0.75 s before it reaches peak height similar 
to the downward displacement of the ball during the 0.75 s after it reaches peak height? 
Should it be?

9. Open the Ball Toss video in MaxTRAQ. If you have not previously set the video aspect ratio and 
deinterlace options, do so now by following the instructions in exercise 1. Set up the scaling/
calibration tool as you did with the Ball Drop and Ball Toss Up videos using the 500 cm distance 
between the uppermost and lowermost strips of tape on the wall.

a. Determine the horizontal displacement of the ball over every 9-frame interval starting at frame 
5 and ending at frame 86. Are these nine displacements similar to each other? Should they be?

b. Determine the vertical displacement of the ball over every 9-frame interval starting at frame 
5 and ending at frame 86. Are any of the first four displacements similar to any of the last 
four displacements? Should there be similarities?

c. The ball reaches peak height between frames 45 and 46 or about 0.76 seconds into the video. 
What are the horizontal and vertical displacements of the ball during the 0.67 s (40 frames) 
before peak height (from frame 5 to frame 45)?

d. The ball reaches peak height between frames 45 and 46 or about 0.76 seconds into the video. 
What are the horizontal and vertical displacements of the ball during the 0.67 s (40 frames) 
after peak height (from frame 46 to frame 86)?

e. Are the answers to question c similar to the answers to question d? Should they be similar?


