
chapter 1
Forces
Maintaining Equilibrium or Changing Motion

objectives
When you finish this chapter, you should be able to do the following:

• Define force

• Classify forces

• Define friction force

• Define weight

• Determine the resultant of two or more forces

• Resolve a force into component forces acting at right angles to each other

• Determine whether an object is in static equilibrium, if the forces acting on the object are known

• Determine an unknown force acting on an object, if all the other forces acting on the object are 
known and the object is in static equilibrium
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A gymnast mainains a precarious position on one foot during a balance beam 
routine. A rock climber clings by his fingertips to the face of a cliff. A cyclist is 
motionless on her bicycle at the start of a race. A diver is supported only by his 
toes on the edge of the diving board before executing a back dive. What are the 
forces that act on each of these athletes? How do the athletes manipulate these 
forces in order to maintain balance? The information presented in this chapter 
provides you with the knowledge you need to answer these questions.

At every instant throughout our lives, 
our bodies are subjected to forces. Forces are important 
for motion because they enable us to start moving, stop 
moving, and change directions. Forces are also important 
even if we aren’t moving. We manipulate the forces acting 
on us to maintain our balance in stationary positions. To 
complete a biomechanical analysis of a human move-
ment, we need a basic understanding of forces: how to 
add them to produce a resultant force, how to resolve 
forces into component forces, and how forces must act 
to maintain equilibrium.

What Are Forces?
Simply defined, a force is a push or a pull. Forces are 
exerted by objects on other objects. Forces come in pairs: 
The force exerted by one object on another is matched 
by an equal but oppositely directed force exerted by the 
second object on the first—action and reaction. A force is 
something that accelerates or deforms an object. In rigid-
body mechanics, we ignore deformations and assume 
that the objects we analyze do not change shape. So, 
in rigid-body mechanics, forces do not deform objects, 
but they do accelerate objects if the force is unopposed. 
Mechanically speaking, something accelerates when it 
starts, stops, speeds up, slows down, or changes direction. 
So a force is something that can cause an object to start, 
stop, speed up, slow down, or change direction.

 ➲ Simply defined, a force is a push or 
a pull.

Our most familiar unit of measurement for force is 
the pound, but the SI unit of measurement for force is 
the newton, named in honor of the English scientist and 
mathematician Isaac Newton (we’ll learn more about him 
in chapter 3). The newton is abbreviated as N. One newton 
of force is defined as the force required to accelerate a  
1 kg mass 1 m/s2, or algebraically as follows:

1.0 N = (1.0 kg)(1.0 m/s2) (1.1)

One newton of force is equal to 0.225 lb of force, or 1 
lb equals 4.448 N. You may remember the story of Isaac 
Newton’s discovery of gravity when an apple fell on his 
head. This story is probably not true, but it provides a 
good way to remember the size of a newton. A typical 
ripe apple weighs about 1 N.

Think about how to describe a force. For instance, sup-
pose you want to describe the force a shot-putter exerted 
on a shot at the instant shown in figure 1.1. Would describ-
ing the size of the force provide enough information about 
it to predict its effect? What else would we want to know 
about the force? Some other important characteristics of 
a force are its point of application, its direction (line of 
action), and its sense (whether it pushes or pulls along 
this line). A force is what is known as a vector quantity. 
A vector is a mathematical representation of anything 
that is defined by its size or magnitude (a number) and 
its direction (its orientation). To fully describe a force, 
you must describe its size and direction.

If we want to represent a force (or any other vector) 
graphically, an arrow makes a good representation. The 
length of the arrow indicates the size of the force, the 
shaft of the arrow indicates its line of application, the 
arrowhead indicates its sense or direction along that line 
of application, and one of the arrow’s ends indicates the 
point of application of the force. This is a good time to 
emphasize that the point of application of the force also 
defines which object the force is acting on (and thus 
defines which of the pair of forces—action or reaction—
we are examining).

In this chapter and the next three chapters, we’ll sim-
plify rigid body mechanics even further by assuming that 
the rigid bodies we analyze are point masses or particles. 
The objects we’ll examine are not really point masses 
or particles—they have a size and occupy space—but in 
analyzing the objects as particles, we’ll assume that all 
the forces acting on these objects have the same point of 
application. Given these assumptions, the dimensions 
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and shape of the objects do not change the effect of the 
forces acting on the object.

Classifying Forces
Now let’s consider the different types of forces and how 
they are classified. Forces can be classified as internal 
or external.

Internal Forces
Internal forces are forces that act within the object or 
system whose motion is being investigated. Remember, 
forces come in pairs—action and reaction. With internal 
forces, the action and reaction forces act on different 
parts of the system (or body). Each of these forces may 
affect the part of the body it acts on, but the two forces 
do not affect the motion of the whole body because the 
forces act in opposition.

 ➲ Internal forces are forces that act 
within the object or system whose 
motion is being investigated.

In sport biomechanics, the objects whose motion we 
are curious about are the athlete’s body and the imple-
ments manipulated by the athlete. The human body is a 
system of structures—organs, bones, muscles, tendons, 
ligaments, cartilage, and other tissues. These structures 
exert forces on one another. Muscles pull on tendons, 
which pull on bones. At joints, bones push on cartilage, 
which pushes on other cartilage and bones. If pulling 
forces act on the ends of an internal structure, the internal 
pulling forces are referred to as tensile forces, and the 
structure is under tension. If pushing forces act on the 
ends of an internal structure, the internal pushing forces 
are referred to as compressive forces, and the structure 
is under compression. Internal forces hold things together 
when the structure is under tension or compression. 
Sometimes the tensile or compressive forces acting on a 
structure are greater than the internal forces the structure 
can withstand. When this happens, the structure fails 
and breaks. Structural failure in the body occurs when 
muscles pull, tendons rupture, ligaments tear, and bones 
break.

We think of muscles as the structures that produce 
the forces that cause us to change our motion. Actually, 
because muscles can produce only internal forces, they 
are incapable of producing changes in the motion of the 
body’s center of mass. It is true that muscle forces can 
produce motions of the body’s limbs, but these motions 
will not produce any change in motion of the body’s 
center of mass unless external forces are acting on the 
system. The body is able to change its motion only if it 
can push or pull against some external object. Imagine a 
defensive player in basketball jumping up to block a shot 
(see figure 1.2). If she has been fooled by the shooter and 
jumps too early, she can’t stop herself in midair to wait 
for the shooter to shoot. The only external force acting on 
her in this case is gravity. She needs to touch something 
to create another external force to counteract the force 
of gravity. So she has to get her feet back on the ground. 
Then she can push against the ground and create an 
external reaction force that causes her to jump up again. 
The ground provides the external force that causes the 
change in motion of the basketball player.

Internal forces may be important in the study of exer-
cise and sport biomechanics if we are concerned about 
the nature and causes of injury, but they cannot produce 
any changes in the motion of the body’s center of mass. 
External forces are solely responsible for that.

External Forces
External forces are those forces that act on an object 
as a result of its interaction with the environment sur-
rounding it. We can classify external forces as contact 
forces or noncontact forces. Most of the forces we think 
about are contact forces. These occur when objects are 

Force acting 
on shot

Force acting 
on shot-putter

E4696/McGinnis/Fig.1.1/410369/JG/R1
Figure 1.1 The forces acting on a shot-putter and a 
shot at the instant before release.
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touching each other. Noncontact forces are forces that 
occur even if the objects are not touching each other. 
The gravitational attraction of the earth is a noncontact 
force. Other noncontact forces include magnetic forces 
and electrical forces.

 ➲ External forces are those forces 
that act on an object as a result of 
its interaction with the environment 
surrounding it.

In sports and exercise, the only noncontact force we 
will concern ourselves with is the force of gravity. The 
force of gravity acting on an object is defined as the 
weight of the object. Remember that we defined 1 N of 
force as the force that would accelerate a 1 kg mass 1 m/s2.  
If the only force acting on an object is the force of the 
earth’s gravity, then the force of gravity will accelerate 
the object. This is the case when we drop something (if 
the force of air resistance can be ignored). Scientists have 

precisely measured this acceleration for various masses 
at various locations around the earth. It turns out to be 
about 9.81 m/s2 (or 32.2 ft/s2) downward no matter how 
large or small the object is. This acceleration is called 
gravitational acceleration or the acceleration due to 
gravity and is abbreviated as g.

 ➲ Weight is the force of gravity acting 
on an object.

Now let’s see if we can figure out the weight of some-
thing if we know its mass. If a 1 N force accelerates a  
1 kg mass 1 m/s2, then how large is the force that would 
accelerate a 1 kg mass 9.81 m/s2? Another way of asking 
this question is, How much does 1 kg weigh?

? N = (1 kg)(9.81 m/s2) = Weight of 1 kg = Force of 
gravity acting on 1 kg

If we solve this equation, we find that 1 kg weighs 
9.81 N. On the earth, mass (measured in kilograms) and 
weight (measured in newtons) are proportional to each 
other by a factor of 9.81. The weight of an object (in 
newtons) is its mass (in kilograms) times the acceleration 
due to gravity (9.81 m/s2), or,

 ➲ W = mg (1.2)

where

W = weight (measured in newtons),
m = mass (measured in kilograms), and
g = acceleration due to gravity = 9.81 m/s2.

To estimate the weight of something, multiplying its 
mass by 9.81 m/s2 may be difficult to do in your head. For 
quick approximations, let’s round 9.81 m/s2 to 10 m/s2  
and use that as our estimate of the acceleration due to 
gravity. This will make things easier, and our approxi-
mation won’t be too far off because our estimate of g is 
only 2% in error. If more accuracy is required, the more 
precise value of 9.81 m/s2 should be used for g.

Contact forces are forces that occur between objects 
in contact with each other. The objects in contact can 
be solid or fluid. Air resistance and water resistance are 
examples of fluid contact forces, which are further dis-
cussed in chapter 8. The most important contact forces 
in sport occur between solid objects, such as the athlete 
and some other object. For a shot-putter to put the shot, 
the athlete must apply a force to it, and the only way 
the athlete can apply a force to the shot is to touch it. To 
jump up in the air, you must be in contact with the ground 
and push down on it. The reaction force from the ground 
pushes up on you and accelerates you up into the air. 
To accelerate yourself forward and upward as you take 
a running step, you must be in contact with the ground 
and push backward and downward against it. The reac-

Figure 1.2 A basketball player cannot change her 
motion once she has jumped into the air.
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tion force from the ground pushes forward and upward 
against you and accelerates you forward and upward.

Contact forces can be resolved into parts or compo-
nents—the component of force that acts perpendicular to 
the surfaces of the objects in contact and the component 
of force that acts parallel to the surfaces in contact. We 
call the first component of contact force a normal contact 
force (or normal reaction force), where normal refers to 
the fact that the line of action of this force is perpendicular 
to the surfaces in contact. During a running step, when 
the runner pushes down and backward on the ground, the 
normal contact force is the component of force that acts 
upward on the runner and downward on the ground. The 
second component of the contact force is called friction. 
The line of action of friction is parallel to the two surfaces 
in contact and opposes motion or sliding between the sur-
faces. So when the runner pushes down and backward on 
the ground during a running step, the frictional force is the 
component of force that acts forward on the runner and 
backward on the ground (see figure 1.3). The frictional 
force is the component of the contact force responsible 
for changes in the runner’s horizontal motion. Frictional 
forces are primarily responsible for human locomotion, 
so an understanding of friction is important.

Friction
The frictional force just described is dry friction, which 
is also referred to as Coulomb friction. Another type of 
friction is fluid friction, which develops between two 
layers of fluid and occurs when dry surfaces are lubri-
cated. The behavior of fluid friction is complicated; and 
because fluid friction occurs less frequently in sport, 
we will limit our discussion to dry friction. Dry friction 
acts between the nonlubricated surfaces of solid objects 

or rigid bodies in contact and acts parallel to the contact 
surfaces. Friction arises as a result of interactions between 
the molecules of the surfaces in contact. When dry friction 
acts between two surfaces that are not moving relative 
to each other, it is referred to as static friction. Static 
friction is also referred to as limiting friction when we 
describe the maximum amount of friction that develops 
just before two surfaces begin to slide. When dry friction 
acts between two surfaces that are moving relative to each 
other, it is referred to as dynamic friction. Other terms for 
dynamic friction are sliding friction and kinetic friction.

Friction and Normal  
Contact Force
Try self-experiment 1.1 to see how friction is affected by 
normal contact force.

Self-Experiment 1.1
Let's do some experimentation to learn more about fric-
tion. Place a book on a flat horizontal surface such as a 
desk or tabletop. Now push sideways against the book and 
feel how much force you can exert before the book begins 
to move. What force resists the force that you exert on the 
book and prevents the book from sliding? The resisting 
force is static friction, which is exerted on the book by 
the table or desk. If the book doesn't slide, then the static 
friction force acting on the book is the same size as the 
force you exert on the book, but in the opposite direction. 
So, the effects of these forces are canceled, and the net 
force acting on the book is zero. Put another book on top 
of the original book and push again (see figure 1.4). Can 
you push with a greater force before the books begin to 
move? Add another book and push again. Can you push 
with an even greater force now? As you add books to the 
pile, the magnitude (size) of the force you exert before 
the books slide becomes bigger, and so does the static 
friction force.

How did adding books to the pile cause the static 
friction force to increase? We increased the inertia of the 
pile by increasing its mass. This shouldn’t affect the static 
friction force, though, because there is no apparent way 
an increase in mass could affect the interactions of the 
molecules of the contacting surfaces. It is these interac-
tions that are responsible for friction. We also increased 
the weight of the pile as we added books to it. Could this 
affect the static friction force? Well, increasing the weight 
would increase the normal contact force acting between 
the two surfaces. This would increase the interactions of 
the molecules of the contacting surfaces, because they 
would be pushed together harder. So it is not the weight 
of the books that caused the increased static friction 
force, but the increase in the normal contact force. If 

Normal contact force

Friction force

E4696/McGinnis/Fig.1.3/410371/JG/R1

Figure 1.3 Normal contact force and friction force 
acting on a runner’s foot during push-off.
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we measured this normal contact force and the friction 
force, we would find that the friction force is proportional 
to the normal contact force. As one increases, the other 
increases proportionally. This is true for both static and 
dynamic friction.

In self-experiment 1.1, the friction force was hori-
zontal and the normal contact force was a vertical force 
influenced by the weight of the books. Is friction force 
only a horizontal force? Is the normal contact force 
always vertical and related to the weight of the object 
that friction acts on? Try self-experiment 1.2 to answer 
these questions.

Self-Experiment 1.2
Now try holding the book against a vertical surface, such 
as a wall (see figure 1.5). Can you do this if you push 
against the book only with a horizontal force? How hard 
must you push against the book to keep it from sliding 
down the wall? What force opposes the weight of the 
book and prevents the book from falling? The force of 
your hand pressing against the book is acting horizontally, 
so it can't oppose the vertical force of gravity pulling 
down on the book. The force acting upward on the book 
is friction between the book and the wall (and possibly 
between the book and your hand). The force you exert 
against the book affects friction since the book will slide 
and fall if you don't push hard enough. Again we see 
that friction is affected by the normal contact force—the 
contact force acting perpendicular to the friction force 
and the contact surfaces.

 ➲ Friction force is proportional to the 
normal contact force and acts per-
pendicular to it.

Friction and Surface Area
What else affects friction? What about surface area? Let’s 
try another experiment (self-experiment 1.3) to see if 

increasing or decreasing surface area in contact affects 
friction force.

Self-Experiment 1.3
Does surface area of contact affect friction? Take a hard-
back book and lay it on a table or desk. (It's important 
that you use a hardback book.) Push the book back and 
forth across the table and get a feeling for how large the 
dynamic and static friction forces are. Try to exert only 
horizontal forces on the book. Now, try the same thing 
with the book standing on its end (as in figure 1.6). Use 
a rubber band to hold the book closed, but don't let the 
rubber band touch the table as you're sliding the book. Are 
there any noticeable differences between the frictional 
forces you feel with the book in its different orientations? 
Try it with another hardback book.

With the different orientations in self-experiment 1.3, 
the surface areas in contact between the book and table 
varied dramatically, but friction did not change notice-
ably. In fact, dry friction, both static and dynamic, is not 
affected by the size of the surface area in contact. This 
statement is probably not in agreement with your intu-
itions about friction, but you have just demonstrated it 
to yourself. If that isn’t enough to convince you that dry 
friction is unaffected by surface area, let’s try to explain it.

E4696/McGinnis/Fig.1.4/410372/JG/R1
Figure 1.4 Adding books to the stack increases static 
friction between the bottom book and the table.

E4696/McGinnis/Fig.1.5/410373/JG/R1
Figure 1.5 Friction force between the book and the 
wall and between the book and your hand is enough to 
hold the book up.
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Dry friction arises due to the interaction of the mol-
ecules at the surface areas in contact. We have seen that 
if we press these surfaces together with greater force, the 
interactions of the molecules will be greater and friction 
will increase. It makes sense to say that if we increase 
the area of the surfaces in contact, we also increase the 
number of molecules that can interact with each other, 
and thus we create more friction. But if the force pushing 
the surfaces together remains the same, with the greater 
surface area in contact, this force is spread over a greater 
area, and the pressure between the surfaces will be less 
(pressure is force divided by area). So the individual 
forces pushing each of the molecules together at the con-
tact surfaces will be smaller, thus decreasing the interac-
tions between the molecules and decreasing the friction. 
This looks like a trade-off. The increase in surface area 
increases the number of molecular interactions, but the 
decrease in pressure decreases the magnitude of these 
interactions. So the net effect of increasing surface area 
is zero, and friction is unchanged.

 ➲ Dry friction is not affected by the size 
of the surface area in contact.

Friction and Contacting  
Materials
Friction is affected by the size of the normal contact 
force, but it is unaffected by the area in contact. What 
about the nature of the materials that are in contact? Is 
the friction force on rubber-soled shoes different than 
the friction force on leather-soled shoes? Let’s try one 
more experiment (self-experiment 1.4) to investigate how 
the nature of the materials in contact affects the friction 
force between them.

Self-Experiment 1.4
Let’s observe the difference between the frictions of a 
book on the table and a shoe on the table. Place the book 
on the table and put an athletic shoe on top of it. Push 
the book back and forth across the table and get a feeling 
for how large the dynamic and static friction forces are. 
Now, put the shoe on the table, sole down, and place the 
book on top of it. Push the shoe back and forth across 
the table and get a feeling for how large the dynamic and 
static friction forces are. Which produced larger frictional 
forces with the table, the book or the shoe? What changed 
between the two conditions? In the two conditions, the 
weight and mass of the objects being moved (the shoe 
and book) stayed the same. The surface area of contact 
changed, but we have determined that friction is unaf-
fected by that. The variable that must be responsible for 
the changes in the observed frictional force is the differ-
ence in the type of material that was in contact with the 
table. Greater friction existed between the table and the 
softer and rougher sole of the shoe than between the table 
and the smoother and harder book cover.

One more observation about friction must be made. 
When you moved the book back and forth across the 
table in the self-experiments, was it easier to get the book 
started or to keep the book moving? In other words, was 
static friction larger or smaller than dynamic friction? It 
was easier to keep the book moving than to get it started 
moving, so static friction is larger than dynamic friction.

Let’s summarize what we now know about dry fric-
tion. Friction is a contact force that acts between and 
parallel to the two surfaces in contact. Friction opposes 
relative motion (or impending relative motion) between 
the surfaces in contact. Friction is proportional to the 
normal contact force pushing the two surfaces together. 
This means that as the normal contact force increases, the 
frictional force increases as well. If the normal contact 
force doubles in size, the frictional force will double in 
size also. Friction is affected by the characteristics of the 
surfaces in contact. Greater friction can be developed 
between softer and rougher surfaces than between harder 
and smoother surfaces. Finally, static friction is greater 
than dynamic friction. Mathematically, we can express 
static and dynamic friction as

 ➲ Fs = μsR (1.3)

 ➲ Fd = μdR (1.4)

where

Fs = static friction force,
Fd = dynamic friction force,
μs = coefficient of static friction,
μd = coefficient of dynamic friction, and
R = normal contact force.

E4696/McGinnis/Fig.1.6/410374/JG/R1
Figure 1.6 A book on its end has a smaller area of 
contact with the table. Does this reduced area of contact 
affect the frictional force between the book and the table?
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The coefficient of friction is a number that accounts 
for the different effects that materials have on friction. 
Mathematically, the coefficient of friction, abbreviated 
with the Greek letter mu, is just the ratio of friction force 
to normal contact force.

 ➲ Mathematically, the coefficient of fric-
tion is the ratio of friction force over 
normal contact force.

Friction in Sport and Human 
Movement
Friction is an important force in every sport and human 
movement. Locomotion requires frictional forces, so the 
shoes we wear are designed to provide proper frictional 
forces between our feet and the supporting surface. In 
most athletic shoes, we want large frictional forces, so 
the materials used for the soles have large coefficients of 
friction. In some activities, such as dancing or bowling, 
sliding is desirable, so the soles of the shoes used for these 
activities have smaller coefficients of friction. In snow 
skiing, we also want small frictional forces, so we wax the 
bottoms of our skis to decrease the coefficient of friction. 
In racket sports and other sports involving implements, 
large frictional forces are desirable so that we don’t lose 
hold of the implement. The grips are made of material 
such as leather or rubber, which have large coefficients 
of friction. We may even alter the grips to increase their 
coefficients of friction by wrapping athletic tape on them, 
spraying them with tacky substances, or using chalk on 
our hands. Think about the variety of sports you have been 
involved in and how friction affects performance in them. 
In everyday activities, the friction between footwear and 
floors is important in preventing slips and falls.

We now know about several of the various external 
forces that can act on us in sport activities; gravity, fric-
tion, and contact forces are the major ones. In most sport 
and exercise situations, more than one of these external 
forces will act on the individual. How do we add up these 
forces to determine their effect on the person? What is a 
net force or a resultant force?

Addition of Forces:  
Force Composition
The net force acting on an object is the sum of all the 
external forces acting on it. This sum is not an algebraic 
sum; that is, we can’t just add up the numbers that repre-
sent the sizes of the forces. The net force is the vector sum 
of all the external forces. Remember that we define a force 
as a push or pull, and that forces are vector quantities. 
This means that the full description of a force includes its 
magnitude (how large is it?) and its direction (which way 

does it act?). Visually, we can think of forces as arrows, 
with the length of the shaft representing the magnitude of 
the force, the orientation of the arrow representing its line 
of application, and the arrowhead indicating its direction 
of action along that line. When we add vectors such as 
forces, we can’t just add up the numbers representing 
their sizes. We must also consider the directions of the 
forces. Forces are added using the process of vector addi-
tion. The result of vector addition of two or more forces 
is called a resultant force. The vector addition of all the 
external forces acting on an object is the net force. It is 
also referred to as the resultant force, because it results 
from the addition of all the external forces. Now we will 
learn how to carry out vector addition of forces.

 ➲ The vector addition of all the external 
forces acting on an object is the net 
force.

Colinear Forces
To begin our discussion of vector addition, let’s start with 
a simple case that involves colinear forces. If you look 
closely at the word colinear, you may notice that the word 
line appears in it. Colinear forces are forces that have 
the same line of action. The forces may act in the same 
direction or in opposite directions along that line. Now 
here’s the situation. You are on a tug-of-war team with 
two others. You pull on the rope with a force of 100 N, 
and your teammates pull with forces of 200 N and 400 
N. You are all pulling along the same line—the line of 
the rope. To find out the resultant of these three forces, 
we begin by graphically representing each force as an 
arrow, with the length of each arrow scaled to the size 
of the force. First, draw the 100 N force that you exerted 
on the rope. If you were pulling to the right, the force 
you exerted on the rope might be represented like this:

 100 N

Now draw an arrow representing the 200 N force. Put 
the tail of this force at the arrowhead of the 100 N force. 
If it is scaled correctly, this arrow should be twice as long 
as the arrow representing the 100 N force.

 100 N 200 N

Now draw the arrow representing the 400 N force. 
Put the tail of this force at the arrowhead of the 200 N 
force. This arrow should be four times as long as the 
arrow representing the 100 N force and twice as long as 
the arrow representing the 200 N force. Your drawing 
should look something like this:
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 100 N 200 N 400 N

An arrow drawn from the tail of the 100 N force to the 
tip of the 400 N force represents the resultant force, or 
the vector sum of the 100 N, 200 N, and 400 N forces, if 
we put the arrowhead on the end where it meets the tip 
of the 400 N force.

 700 N

If we measure the length of this arrow, it turns out to 
be seven times as long as the 100 N force. The resultant 
force must be a 700 N force acting to the right. But this 
is what we would have found if we added the magnitudes 
of the three forces algebraically:

100 N + 200 N + 400 N = 700 N

Does that mean that vector addition and algebraic addi-
tion are the same? No! This is true only when the forces 
all act along the same line and in the same direction.

 ➲ When forces act along the same line 
and in the same direction, they can 
be added using regular algebraic 
addition.

Now let’s consider the forces the opposing team exerts 
on the rope. That team also consists of three members. 
The forces they exert on the rope are to the left and are 200 
N, 200 N, and 200 N, respectively. What is the resultant 
of these three forces?

 200 N 200 N 200 N

 600 N

We can determine the resultant by graphically repre-
senting the three forces as arrows and connecting the tail 
of the first arrow with the tip of the last arrow, as we did 
previously. We could also have added the magnitudes of 
the forces algebraically, because all three forces acted 
along the same line in the same direction.

200 N + 200 N + 200 N = 600 N

Now what is the resultant force acting on the rope as a 
result of your team pulling to the right and the opposing 
team pulling to the left? In this case, we have the three 
forces from your team pulling to the right

 100 N 200 N 400 N

and the three forces from the opposing team pulling to 
the left:

 200 N 200 N 200 N

These forces are all still colinear because they act 
along the same line, the line of the rope in this case. If we 
follow the procedure we used before, we add the forces 
graphically by lining the vectors up tip to tail. We have 
done this for the three forces from your team. The tail 
of the 200 N force is lined up with the tip of the 100 N 
force, and the tail of the 400 N force is lined up with the 
tip of the 200 N force. We have done this for the opposing 
team’s forces as well. Now, to add up all of these forces, 
we line up the tail of the 200 N force of the opposing 
team with the tip of the 400 N force of your team (we also 
could have lined up the tail of your 100 N force with the 
tip of the 200 N force from the opposing team):

 100 N 200 N 400 N

 

 
 200 N 200 N 200 N

We find the resultant force by drawing an arrow from 
the tail of the 100 N force to the tip of the last 200 N 
force, with the tip of the arrow at the end lined up with 
the tip of the 200 N force and the tail at the end lined up 
with the tail of the 100 N force:

 100 N 200 N 400 N

 

 
 Resultant 200 N 200 N 200 N

If we measure the length of this resultant vector, we 
see that it is the same length as the 100 N force. The 
resultant force is 100 N to the right.

We could have arrived at the same resultant if we 
replaced the forces exerted by your team with its 700 N 
resultant force to the right and the forces by the opposing 
team with its 600 N resultant force to the left.

 700 N

 

 
 Resultant 600 N

Because all of the forces are acting along the same line, 
the resultant force could also be found through algebraic 
means. Now, rather than just adding up the forces as we 
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did for each team, we must also consider the direction 
in which the forces act. Let’s arbitrarily say that forces 
acting to the right are positive. Then forces acting to the 
left must be considered negative. So the resultant force 
acting on the rope as a result of your team pulling on it 
to the right and the opposing team pulling on it to the left 
can now be determined algebraically by adding up the 
positive forces from your team and the negative forces 
from the opposing team.

100 N + 200 N + 400 N + 
(−200 N) + (−200 N) + (−200 N) = +100 N

Adding a negative number is just like subtracting it, 
so we could also write this as

100 N + 200 N + 400 N − 
200 N − 200 N − 200 N = +100 N.

The positive sign associated with our answer of 100 
N indicates that the resultant force acts in the positive 
direction. We set up our positive direction to the right, so 
the resultant force is a force of 100 N to the right.

If forces are colinear, we may add them using vector 
addition by graphically representing each force as an 
arrow and arranging the force arrows tip to tail. We 
determine the resultant force by drawing an arrow from 
the tail of the first force to the tip of the last force. This 
arrow has its tip at the tip of the last force, and it represents 
the resultant force. We may also add colinear forces alge-
braically if we take into account the senses of the forces 
on the line along which they act by assigning positive or 
negative signs to the magnitudes of the forces. Positive 
forces act in one direction along the line, and negative 
forces act in the opposite direction along the line.

Concurrent Forces
If forces do not act along the same line but do act through 
the same point, the forces are concurrent forces. As long 
as we model objects as point masses, the forces acting on 

these objects will be considered colinear forces if they 
act along the same line, and concurrent forces if they 
do not act along the same line. It is not until chapter 5, 
when we begin modeling objects as true rigid bodies 
and not point masses, that the forces we consider can be 
nonconcurrent forces.

Now let’s consider a situation in which the external 
forces are not colinear but are concurrent. A gymnast is 
about to begin his routine on the high bar. He jumps up 
and grasps the bar, and his coach stops his swinging by 
exerting forces on the front and back of the gymnast’s 
torso. The external forces acting on the gymnast are the 
force of gravity acting on the mass of the gymnast, a 
horizontal force of 20 N exerted by the coach pushing 
on the front of the gymnast, a horizontal force of 30 N 
exerted by the coach pushing on the back of the gymnast, 
and an upward vertical reaction force of 550 N exerted by 
the bar on the gymnast’s hands. The gymnast’s mass is 50 
kg. What is the net external force acting on the gymnast?

First, how large is the force of gravity that acts on the 
gymnast? If you remember, earlier in this chapter we 
said that the force of gravity acting on an object is the 
object’s weight. What is the gymnast’s weight? Weight 
is defined with equation 1.2

W = mg

where W represents weight in newtons, m represents mass 
in kilograms, and g represents the acceleration due to 
gravity, or 9.81 m/s2. For a good approximation, we can 
round 9.81 m/s2 to 10 m/s2 and make our computations 
easier. If we want more accuracy, we should use 9.81 m/s2 
rather than 10 m/s2. So, using the rougher approximation 
for g, the gymnast weighs

W = mg = (50 kg)(10 m/s2) = 500 kg m/s2 = 500 N.

This weight is a downward force of 500 N. We now 
have all the external forces that act on the gymnast. A 
drawing of the gymnast and all the external forces that 
act on him is shown in figure 1.7.

SAMPLE PROBLEM 1.1
A spotter assists a weightlifter who is attempting to lift a 1000 N barbell. The spotter exerts an 80 N upward 
force on the barbell, while the weightlifter exerts a 980 N upward force on the barbell. What is the net 
vertical force exerted on the barbell?

Solution
Assume that upward is the positive direction. The 80 N force and the 980 N force are positive, and the 1000 
N weight of the barbell is negative. Adding these up gives us the following:

ȈF = (+80 N) + (+980 N) + (−1000 N) = 80 N + 980 N − 1000 N = +60 N

The symbol, Ȉ, that appears before the F in the above equation is the Greek letter sigma. In mathematics 
it is the summation symbol. It means to sum or add up all items indicated by the variable following the Ȉ. 
In this case, ȈF means sum all of the forces or add up all of the forces.

The net vertical force acting on the barbell is a 60 N force acting upward.
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Now we can begin the process of determining the 
resultant of these forces. Just as we did with the colinear 
forces, we can represent each force graphically with an 
arrow, scaling the length of the arrow to represent the 
magnitude of the force, orienting the arrow to show its 
line of application, and using an arrowhead to show its 
sense or direction. As with the colinear forces, if we line 
up the forces tip to tail, we can find the resultant. Let’s 
do that. First, draw the 20 N horizontal force acting to 
the right. Now draw the 550 N upward force so that its 
tail begins at the head of the 20 N force. Draw the 30 N 
horizontal force to the left so that the tail of this force 
begins at the head of the 550 N force. Draw the 500 N 
downward force of gravity so that the tail of this force 
begins at the head of the 30 N force. You should now have 
a drawing that looks something like figure 1.8.

20 N 30 N

W = 500 N

550 N

E4696/McGinnis/Fig.1.7/410375/JG/R2

Figure 1.7 Free-body diagram showing the external 
forces acting on a gymnast hanging from the horizontal 
bar.
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Figure 1.8 Graphic representation of all forces acting 
on the gymnast.
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Figure 1.9 Graphic determination of resultant force 
acting on the gymnast.
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The head of the 500 N downward force and the tail of 
the 20 N horizontal force do not connect. The resultant of 
the four forces can be represented by an arrow connect-
ing the tail of the 20 N horizontal force (the first force 
in our drawing) with the head of the 500 N downward 
force (the last force in our drawing). Figure 1.9 shows the 
construction of the resultant force. This resultant force 
is directed from the tail of the 20 N horizontal force to 
the head of the 500 N downward force. The resultant is 
thus directed upward and slightly to the left. The size of 
the resultant force is indicated by the length of its arrow. 
Using the same scale that was used to construct the other 
forces in figure 1.9, we can estimate that the magnitude 
of the resultant force is about 51 N.

If we describe the direction of the resultant force as 
“upward and slightly to the left,” we haven’t provided a 
very precise description. Can the direction of the force 
be described with more precision than that? We could 
describe the angle that the force makes with a vertical line 
or a horizontal line. Measuring clockwise from a vertical 
line, this force is about 11° from vertical. This angular 
description is much more precise than the description of 
the force as “upward and slightly to the left.”

If vertical and horizontal forces act on a body, we 
can add forces graphically, as we did to determine the 
resultant force. Is there any way we can determine the 
resultant force without using graphical means? Is there a 
mathematical technique we can use? Let’s again consider 
the four forces acting on the gymnast. Horizontally, there 
are two forces acting: a 20 N force to the right and a 30 
N force to the left. Vertically, there are also two forces 
acting: a 500 N force downward and a 550 N force 
upward. Can we just add up all of these forces algebra-
ically? If we did, we would have

20 N + 30 N + 500 N + 550 N = 1100 N.

This is much different than what we determined 
graphically. Maybe we need to consider the downward 
forces as negative and the forces to the left as negative. 
Using this method, we have

20 N + (−30 N) + (−500 N) + 550 N = 
20 N − 30 N − 500 N + 550 N = 40 N.

This is much closer to the graphical result, but it still 
is not correct. We also don’t know in which direction the 
resultant acts. Let’s try one more method. Consider the 
horizontal and vertical forces separately and determine 
what the horizontal resultant force is and what the verti-
cal resultant force is. Now the problem is similar to the 
colinear force problems we solved earlier.

Horizontally, we have a 20 N force acting to the right 
and a 30 N force acting to the left. Previously, we arbi-
trarily decided that forces to the right were positive, and 
we assigned a negative value to forces that acted to the 
left, so the resultant horizontal force is
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20 N + (−30 N) = 20 N − 30 N = −10 N.

The negative sign associated with this force indicates 
that it acts to the left. The resultant horizontal force is 10 
N acting to the left.

Vertically, we have a 500 N force acting downward 
and a 550 N force acting upward. Let’s call upward our 
positive direction and assign a negative value to the 
downward force. The resultant vertical force is

(−500 N) + 550 N = +50 N.

The positive sign associated with this force indicates 
that it acts in an upward direction. The resultant vertical 
force is 50 N acting upward.

Using this method, the resultant force can be expressed 
as a 10 N horizontal force acting to the left and a 50 N 
vertical force acting upward. Is this equivalent to the 51 
N resultant force that acts upward and slightly to the left 
at 11° from vertical? How can a 51 N force be equivalent 
to a 50 N force and a 10 N force? Add the horizontal 
resultant force of 10 N and the vertical force of 50 N 
graphically to determine their resultant force. Draw the 
forces tip to tail, as shown in figure 1.10.

Now draw the resultant by connecting the tail of the 
10 N horizontal force with the tip of the 50 N vertical 
force. How does this force compare to the resultant shown 
in figure 1.9? They look identical. Measure the resultant 
in figure 1.10, and measure the angle it makes with the 
vertical. The resultant force is about 51 N and makes an 
angle of 11° with vertical. It is identical to the resultant 
force shown in figure 1.9. Apparently, a 50 N force and 
a 10 N force can be equivalent to a 51 N force.

Trigonometric Technique
Take a closer look at the shape created by the three 
forces in figure 1.10. It’s a triangle. In fact, it’s a right 
triangle—one of the angles in the triangle is a 90° angle. 
The 90° angle is formed between the sides of the triangle 
representing the horizontal resultant force and the vertical 
resultant force. There are special relationships among the 
sides of a right triangle. One of these relates the lengths 
of the two sides that make the right angle to the length of 
the side opposite the right angle. If A and B represent the 
two sides that make up the right angle and C represents 
the hypotenuse (the side opposite the right angle), then

A2 + B2 = C2. (1.5)

This relationship is called the Pythagorean theorem. 
For our force triangle, then, we can substitute 10 N for 
A and 50 N for B and then solve for C, which represents 
the resultant force.

(10 N)2 + (50 N)2 = C2

100 N2 + 2500 N2 = C2

2600 N2 = C2

C = 51 N

This gives us an answer identical to what we got when 
we actually measured the graphical representation of 
the force.

Let’s take another look at the right triangle we ended 
up with in figure 1.10. Besides the Pythagorean theorem, 
there are other relationships between the sides and the 
angles of a right triangle. If we know the lengths of any 
two sides of a right triangle, we can determine the length 
of the other side and the size of the angle between the 
sides as well. Conversely, if we know the length of one 
side of a right triangle and the measurement of one of 
the angles other than the right angle, we can determine 
the lengths of the other sides and the measurement of the 
other angle using trigonometry. Trigonometry was not 
a prerequisite for using this book, and the intent of this 
book is not to teach you trigonometry, but a knowledge 
of some of the tools of trigonometry will assist you in 
the study of biomechanics.

Basically, what trigonometry tells us is that a ratio 
exists among the lengths of the sides of right triangles 
that have similar angles. Look at the right triangles in 
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Figure 1.10 Vector sum of the net horizontal force and 
net vertical force acting on the gymnast.
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figure 1.11. They are all different sizes, but the angles 
are all the same, and the sides all change proportionally. 
If you lengthened one side of any of these triangles, you 
would have to lengthen the other sides as well to keep the 
angles of the triangle unchanged. So relationships exist 
between the lengths of the sides of a right triangle and 
the angles in a right triangle.

These relationships can be expressed as ratios of 
one side to another for each size of angle that may exist 
between two sides of a right triangle. Here are the rela-
tionships that may be helpful:

sin ! = opposite side
hypotenuse  (1.6)

cos ! = adjacent side
hypotenuse  (1.7)

tan ! = opposite side
adjacent side  (1.8)

In these equations, ș, which is pronounced “theta,” 
represents the angle; opposite refers to the length of the 
side of the triangle opposite the angle theta; adjacent 
refers to the length of the side of the triangle adjacent 
to the angle theta; and hypotenuse refers to the length 
of the side of the triangle opposite the right angle. The 
term sin refers to the word sine; cos refers to the word 
cosine; and tan refers to the word tangent. Any modern 
scientific calculator includes the functions for sine, cosine 
and tangent. The right triangle in figure 1.12 has these 
three sides labeled for you.

An easy technique for remembering these trigonomet-
ric relationships is the following sentence:

Some Of His sin! = opposite side
hypotenuse

Children Are Having cos! = adjacent side
hypotenuse

Trouble Over Algebra. tan! = opposite side
adjacent side

The first letter of each of these words matches the first 
letter in each of the trigonometric variables listed in the 
equations. You may know of other mnemonic devices for 
memorizing these relationships.

Equations 1.6, 1.7, and 1.8 can be used to determine 
the length of an unknown side of a right triangle if the 
length of another side is known and one of the two angles 
other than the 90° angle is known. If the angle and the 
hypotenuse are known, the opposite side could be deter-
mined using equation 1.6, and the adjacent side could be 
determined using equation 1.7.

If the sides of the right triangle are known, then the 
inverse of the trigonometric function is used to compute 
the angle:

! = arcsin 
opposite side
hypotenuse

�
��

�
��

 (1.9)

! = arccos 
adjacent side
hypotenuse

�
��

�
��

 (1.10)

! = arctan 
opposite side
adjacent side

�
��

�
��

 (1.11)

The arcsine, arccosine, and arctangent functions are 
used to compute one of the angles in a right triangle if 
the lengths of any two sides are known.

Now let’s go back to the resultant forces acting on the 
gymnast in figure 1.10. We used the Pythagorean theorem 

E4696/McGinnis/Fig.1.11/410379/JG/R1

Figure 1.11 Similar right triangles. The triangles are 
different sizes, but the corresponding angles of each 
triangle are the same.
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to compute the size of the resultant force, 51 N. But in 
what direction is it acting? Let’s determine the angle 
between the 51 N resultant force (the hypotenuse of the 
triangle) and the 10 N horizontal force (the adjacent side). 
The 50 N vertical force is the side opposite the angle. 
Using equation 1.11 gives the following:

! = arctan 
opposite side
adjacent side

�
��

�
��

! = arctan
50 N
10 N

�
��

�
��  = arctan (5)

To determine the angle ș, we use inverse of the tangent 
function or the arctangent. On most scientific calculators, 
the arctangent function is the second function for the tan-
gent key and is usually abbreviated as tan−1 or atan. Using 
a calculator (make sure its angle measure is programmed 
for degrees rather than radians), we find that

ș = arctan (5) = 78.7°.

The angles in a triangle add up to 180°. In a right 
triangle, one angle is 90°, so the sum of the other two 
angles is 90°. The other angle in this case is thus 11.3° 
(i.e., 90° − 78.7°). This is pretty close to the value we 
arrived at earlier using the graphical method when we 
measured the angle directly with a protractor.

If forces are concurrent but not colinear, we can add 
the forces to determine their resultant by graphically 

representing the forces as arrows and arranging them tip 
to tail. The resultant force will be represented by an arrow 
drawn from the tail of the first force to the tip of the last 
force represented. Alternatively, if the forces are directed 
only horizontally or vertically, we can algebraically add 
up all the horizontal forces to determine the resultant 
horizontal force, then add up all the vertical forces and 
determine the resultant vertical force. The size of the 
resultant of these two forces can be determined using the 
Pythagorean theorem, and its direction can be determined 
using trigonometry.

Resolution of Forces
What if the external forces acting on the object are not 
colinear and do not act in a vertical or horizontal direc-
tion? Look back at figure 1.1 and consider the forces 
acting on a shot during the putting action. Imagine that 
at the instant shown, the athlete exerts a 100 N force on 
the shot at an angle of 60° above horizontal. The mass 
of the shot is 4 kg. What is the net force acting on the 
shot? First, we need to determine the weight of the shot. 
Using the rough approximation for g, the shot weighs

W = mg = (4 kg)(10 m/s2) = 40 N.

Now we can determine the net external force by graph-
ically adding the 40 N weight of the shot to the 100 N 
force exerted by the athlete. Try doing this. Your graphic 
solution should be similar to figure 1.13. If we measure 
the resultant force, it appears to be about 68 N. It acts 
upward and to the right at an angle a little less than 45°.

Is there another method we could use to determine this 
resultant, as we did with the gymnast problem earlier? 
Recall that the external forces acting on the gymnast 
were all horizontal or vertical forces. In that problem, 
we could just sum the horizontal forces and the vertical 
forces algebraically to find the resultant horizontal and 
vertical forces. In the shot-putting problem, we have 
one vertical force, the shot’s weight, but the force from 
the athlete is acting both horizontally and vertically. It is 
pushing upward and forward on the shot. Because this 
100 N force acts to push the shot both horizontally and 
vertically, perhaps it can be represented by two different 
forces: a horizontal force and a vertical force.

Graphical Technique
Let’s start by looking at the problem graphically. We want 
to represent the 100 N force that acts forward and upward 
at 60° above horizontal as a pair of forces. The pair of 
forces we are trying to find are called the horizontal and 
vertical components of this 100 N force. You are probably 
familiar with the word component. Components are the 
parts that make up a system. The horizontal and vertical 
force components of the 100 N force are the parts that 
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Figure 1.12 Parts of a right triangle.
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SAMPLE PROBLEM 1.2
The vertical ground reaction force (normal contact force) acting under a runner’s foot is 2000 N, while the 
frictional force is 600 N acting forward. What is the resultant of these two forces?

Solution:
Step 1: Draw the forces.

600 N
2000 N

E4696/McGinnis/Fig.1.2.1/410381/JG/R2

Step 2: Draw the resultant force. Let the two known forces represent two sides 
of a box. Draw the other two sides of the box. The resultant force is the diagonal 
of this box, with one end at the point of application of the other two forces.

Step 3: Use the Pythagorean theorem (equation 1.5) to compute the size of the resultant force:

A2 + B2 = C2

(2000 N)2 + (600 N)2 = C2

4,000,000 N2 + 360,000 N2 = C2

4,360,000 N2 = C2

2088 N = C

Step 4: Use the arctangent function (equation 1.11) to determine the 
angle of the resultant force with horizontal:

! = arctan 
opposite side
adjacent side

�
��

�
��

! = arctan
2000 N
600 N

�
��

�
�� = arctan

ș = 73.3°
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make up or have the same effect as the 100 N force. We 
can think of the 100 N force as the resultant of adding the 
horizontal and vertical components of this force. Let’s 
draw the 100 N force as a vector, as shown in figure 1.14a.

Think about how we graphically determined the resul-
tant of two forces—we lined up the arrows representing 

these forces end to end and then drew an arrow from the 
tail of the first force arrow to the tip of the last force arrow 
in the sequence. This last force arrow we drew was the 
resultant. Now we want to work that process in reverse. 
We know what the resultant force is, but we want to know 
what horizontal and vertical forces can be added together 
to produce this resultant.

Draw a box around the 100 N force so that the sides 
of the box align vertically or horizontally and so that the 
100 N force runs diagonally through the box from corner 
to corner (see figure 1.14b). Notice that the box is actu-
ally two triangles with the 100 N force as the common 
side. In each triangle, the other two sides represent the 
horizontal and vertical components of the 100 N force. 
In the upper triangle, the 100 N resultant force is the 
outcome when we start with a vertical force and add a 
horizontal force to it. The tail of the vertical force is the 
point of application of forces, and we add the horizontal 
force to it by aligning the tail of the horizontal force to the 
tip of the vertical force. In the lower triangle, the 100 N 
force is the outcome when we start with a horizontal force 
and add a vertical force to it. The tail of the horizontal 
force is the point of application of the forces, and we add 
the vertical force to it by aligning the tail of the vertical 
force to the tip of the horizontal force. The triangles are 
identical, so we can use either one. Let’s choose the lower 
triangle. Put arrowheads on the horizontal and vertical 
force components in this triangle (see figure 1.14c). Now 
measure the lengths of these force vectors. The horizontal 
force component is about 50 N, and the vertical force 
component is about 87 N.

Res
ult

an
t fo

rce
 ≈ 68

 N

40
 N

W
ei

gh
t o

f s
ho

t

Fo
rc

e 
fro

m
 s

ho
t-p

ut
te

r

10
0 

N

E4696/McGinnis/Fig.1.13/410384/JG/R2

Figure 1.13 Graphic determination of resultant force 
acting on the shot.

10
0 

N

E4696/McGinnis/Fig.1.14a/410385/JG/R1

10
0 

N

E4696/McGinnis/Fig.1.14b/410386/JG/R1

Ve
rt

ic
al

 c
om

po
ne

nt
 ≈

 8
7 

N

Horizontal component ≈ 50 N

10
0 

N
R

es
ul

ta
nt

 fo
rc

e

E4696/McGinnis/Fig.1.14c/410387/JG/R2

a b c

Figure 1.14 Resolution of force exerted by shot-putter. (a) Resultant force. (b) Construction of force triangle. (c) 
Resolution into component forces.
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Since we are working with a right triangle, the 
Pythagorean theorem (equation 1.5) must apply.

A2 + B2 = C2

For our force triangle, then, we can substitute 50 N for A, 
87 N for B, and 100 N for C. Let’s check to see if it works.

(50 N)2 + (87 N)2 = (100 N)2

2500 N2 + 7569 N2 = 10,000 N2

10,069 N2 ≈ 10,000 N2

Although 10,069 doesn’t exactly equal 10,000, the dif-
ference is less than 1%. That’s pretty close, especially 
considering our accuracy in measuring the length of 
the force arrows. If the measurement accuracy were 
increased, the difference between the two numbers would 
become closer to zero.

To complete the original problem, we would include 
the 40 N weight of the shot as a downward force. This 
would be subtracted algebraically from the 87 N upward 
component of the force exerted by the athlete. The result-
ing vertical force acting on the shot would be

(−40 N) + 87 N = +47 N.

A 47 N force acts upward on the shot. We still have the 
50 N horizontal component of the force exerted by the 
athlete. If we add this to the 47 N vertical force, using the 
Pythagorean theorem (equation 1.5), we get

A2 + B2 = C2

(50 N)2 + (47 N)2 = C2

2500 N2 + 2209 N2 = C2

4709 N2 = C2

C = 68.6 N

This is close to the answer we got when we used the 
graphical technique to solve for the resultant force acting 
on the shot in figure 1.13. In this problem, we actually 
resolved a force into components, added these compo-
nents to other forces along the same lines, and then added 
the resultant component forces back together to find the 
net resultant force.

The process of determining what two force compo-
nents add together to make a resultant force is called force 
resolution. We resolved a force into its components. The 
word resolve sounds like re-solve, which is what we did. 
We had the resultant force, and we solved the problem 
backward—we re-solved it—to determine the forces 
that added together to yield this resultant. But it was all 
done graphically. We want a nongraphical technique for 
doing this.

Trigonometric Technique
The force triangle we ended up with in figure 1.14c is 
a right triangle. Besides the Pythagorean theorem, there 
are other relationships between the sides and the angles 
of a right triangle. Some of these relationships can be 
described by the sine, cosine, and tangent functions, 
which were defined by equations 1.6, 1.7, and 1.8. Let’s 
see if we can use any of these relationships to resolve the 
100 N force that the shot-putter exerts on the shot into 
horizontal and vertical components.

First, draw the 100 N force as an arrow acting upward 
and to the right 60° above horizontal, as we did in figure 
1.14a. Now, just as we did in figure 1.14b, draw a box 
around this force so that the sides of the box are horizontal 
or vertical and the 100 N force runs diagonally through 
the box from corner to corner. Let’s consider the lower 
of the two triangles formed by the box and the 100 N 
diagonal of the box (see figure 1.15). The 100 N force is 
the hypotenuse of this right triangle. The horizontal side 
of the triangle is the side adjacent to the 60° angle. The 
length of this side can be found using the cosine function 
defined by equation 1.7:

cos ! = adjacent side
hypotenuse

cos 60° =
adjacent side

100 N

(100 N) cos 60° = adjacent side 
 = horizontal force component

Using a scientific calculator (make sure its angle 
measure is programmed for degrees rather than radians), 
we find that the cosine of 60° is 0.500. Substitute this 
number for cos 60° in the previous equation:

(100 N) cos 60° = (100 N)(0.500)  
 = adjacent side = 50 N

The horizontal component of the 100 N force is 50 N. 
Now find the vertical component of the 100 N force. The 
side of the triangle opposite the 60° angle represents the 
vertical component of the 100 N force. We can find the 
length of this side by using the sine function defined by 
equation 1.6:

sin ! = opposite side
hypotenuse

sin 60° 
opposite side

100 N

(100 N) sin 60° = opposite side  
 = vertical force component


