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1 Constrained Optimization
Consider the following Utility Max problem:
Max x1,x2

U = U(x1,x2) (1)

Subject to:
B = P1x1 + P2x2 (2)

Re-write Eq. 2

x2 =
B

P2
− P1
P2
x1 (Eq.2‘)

Now x2 = x2(x1) and dx2
dx1

= −P1
P2

Sub into Eq. 1 for x2

U = U(x1, x2(x1)) (3)

Eq. 3 is an unconstrained function of one variable, x1

Differentiate, using the Chain Rule

1



dU

dx1
=
∂U

∂x1
+
∂U

∂x2

dx2
dx1

= 0

From Eq. 2‘we know dx2
dx1

= −P1
P2

Therefore:
dU

dx1
= U1 + U2

(
−P1
P2

)
= 0

OR
U1
U2

=
P1
P2

2



This is our usual condition that MRS(x2, x1) = P1
P2
or the consumer’s

willingness to grade equals his ability to trade.

The More General Constrained Maximum Problem
Max:

y = f(x1, x2) (4)

Subject to:
g(x1, x2) = 0 (5)

Take total differentials of Eq. 4 and Eq. 5

dy = f1dx1 + f2dx2 = 0 (6)

dg = g1dx1 + g2dx2 = 0 (7)
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or Eq.6′

dx1 = −f2
f1
dx2

Eq. 7′

dx1 = −g2
g1
dx2

Subtract 6′ from 7′

dx1 − dx1 =
[
−g2
g1
−
(
−f2
f1

)]
dx2 =

(
f2
f1
− g2

g1

)
dx2 = 0

Therefore
f2
f1

=
g2
g1

Eq. 8: says that the level curves of the objective function must be
tangent to the level curves of the constraint

1.1 Lagrange Multiplier Approach

Create a new function called the Lagrangian:

L = f(x1, x2) + λg (x1, x2)

since g (x1, x2) = 0 when the constraint is satisfied

L = f(x1, x2) + zero

We have created a new independent variable λ (lambda), which is
called the Lagrangian Multiplier.
We now have a function of three variables; x1,x2,and λ
Now we Maximize

L = f(x1, x2) + λg (x1, x2)
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First Order Conditions

Lλ = ∂L
∂λ = g (x1, x2) = 0 Eq. 1

L1 = ∂L
∂x1

= f1 + λg1 = 0 Eq. 2
L2 = ∂L

∂x2
= f2 + λg2 = 0 Eq. 3

From Eq. 2 and 3 we get:

f1
f2

=
−λg1
−λg2

=
g1
g2

From the 3 F.O.C.’s we have 3 equations and 3 unknowns (x1,x2, λ).
In principle we can solve for x∗1, x

∗
2, and λ

∗.

1.1.1 Example 1:

Let:
U = xy

Subject to:
10 = x+ y Px = Py = 1

Lagrange:

L = f(x, y) + λ(g(x, y))

L = xy + λ(10− x− y)

F.O.C.
Lλ = 10− x− y = 0 Eq. 1
Lx = y − λ = 0 Eq. 2
Ly = x− λ = 0 Eq. 3

From (2) and (3) we see that:

y
x = λ

λ = 1 or y = x Eq. 4

From (1) and (4) we get:
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10− x− x = 0 or x∗ = 5 and y∗ = 5

From either (2) or (3) we get:

λ∗ = 5

1.1.2 Example 2: Utility Maximization

Maximize
u = 4x2 + 3xy + 6y2

subject to
x+ y = 56

Set up the Lagrangian Equation:

L = 4x2 + 3xy + 6y2 + λ(56− x− y)

Take the first-order partials and set them to zero

Lx = 8x+ 3y − λ = 0

Ly = 3x+ 12y − λ = 0

Lλ = 56− x− y = 0

From the first two equations we get

8x+ 3y = 3x+ 12y

x = 1.8y

Substitute this result into the third equation

56− 1.8y − y = 0

y = 20

therefore
x = 36 λ = 348
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1.1.3 Example 3: Cost minimization

A firm produces two goods, x and y. Due to a government quota, the
firm must produce subject to the constraint x + y = 42. The firm’s
cost functions is

c(x, y) = 8x2 − xy + 12y2

The Lagrangian is

L = 8x2 − xy + 12y2 + λ(42− x− y)

The first order conditions are

Lx = 16x− y − λ = 0

Ly = −x+ 24y − λ = 0

Lλ = 42− x− y = 0 (8)

Solving these three equations simultaneously yields

x = 25 y = 17 λ = 383

1.1.4 Example 4:

Max:
U = x1x2

Subject to:
B = P1x1 + P2x2

Langrange:

L = x1x2 + λ (B − P1x1 − P2x2)

F.O.C.
Lλ = B − P1x1 − P2x2 = 0 Eq. 1

L1 = x2 − λP1 = 0 Eq. 2
L2 = x1 − λP2 = 0 Eq. 3
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From Eq. (2) and (3)
(
x2
x1

= P1
P2

= MRS
)

Solve for x∗1
From (2) and (3)

x2 =
P1
P2
x1

Sub into (1)

B = P1x1 + P2

(
P1
P2
x1

)
= 2P1x1

x∗1 = B
2P1

and x∗2 = B
2P2

The solution to x∗1and x
∗
2 are the Demand Functions for x1 and x2

1.1.5 Properties of Demand Functions

1. "Homogenous of degree zero" multiply prices and income by α

x∗1 =
αB

2 (αP1)
=

B

2P1

2. "For normal goods demand has a negative slope"

∂x∗1
∂P1

= − B

2P 21
< 0

3. "For normal goods Engel curve positive slope"

∂x∗1
∂B

=
1

2P1
> 0

In this example x∗1 and x
∗
2are both normal goods (rather than

inferior or giffen)
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Given:
U = x1x2

And:
x∗1 = B

2P1
and x∗2 = B

2P2

Substituting into the utility function we get:

U = x∗1, x
∗
2 =

(
B

2P1

)(
B

2P2

)
U =

(
B2

4P1P2

)
Now we have the utility expressed as a function of Prices and In-

come
U ∗ = U(P1P2, B) is "The Indirect Utility Function"
At U = U0 = B2

4P1P2
we can re-arrange to get:

B = 2P
1
2
1 P

1
2
2 U

1
2
0︸ ︷︷ ︸

This is the "Expenditure Function"

1.2 Minimization and Lagrange

Min x, y
PxX + PyY

Subject to
U0 = U(x, y)

Lagrange
L = PxX + PyY + λ(U0 − U(x, y))
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F.O.C.
Lλ = U0 − U(x, y) = 0 Eq. 1
Lx = Px − λ∂U∂x = 0 Eq. 2
Ly = Py − λ∂U∂y = 0 Eq. 3

From (2) and (3) we get

Px
Py

=
λUx
λUy

=
Ux
Uy

= MRS︸ ︷︷ ︸
(The same result as in the MAX problem)

Solving (1), (2), and (3) by Cramer’s Rule, or some other method,
we get:

x∗ = x(Px, Py, U0) y∗ = y(Px, Py, U0) λ∗ = λ(Px, Py, U0)

1.3 Second Order Conditions

1. (a) To determine whether the Lagrangian is at a Max or Min
we use an approach similar to the Hessian in unconstrained
cases.

(b) Second order conditions are determined from the Bordered Hessian

(c) There are two ways of setting up a bordered Hessian

(d) We will look at both ways since both forms are used equally
in economic literature

(e) Both ways are equally good.

Given Max:
f(x, y) + λ(g(x, y)

F.O.C.’s
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Lλ = g(x, y) = 0 Eq. 1
Lx = fx − λgx = 0 Eq. 2
Ly = fy − λgy = 0 Eq. 3

For the 2nd order conditions, totally differentiate the F.O.C.’s with
respect to x, y, and λ

gxdx+ gydy = 0 No λ in Eq. 1 (1’)

(fxx + λgxx)dx+ (fxy + λgxy)dy + gxdλ = 0 (2’)

(fyy + λgyy)dy + (fyx + λgyx)dx+ gydλ = 0 (3’)

Matrix From

Bordered Hessian︷ ︸︸ ︷ 0 gx gy
gx (fxx + λgxx) (fxy + λgxy)
gy (fyx + λgyx) (fyy + λgyy)

 dλ
dx
dy


Or written as  0 gx gy

gx Lxx Lxy
gy Lyx Lyy


︸ ︷︷ ︸

(Where Lxx=fxx+λgxx etc...)

 dλ
dx
dy



Notice that the Bordered Hessian is the ordinary Hessian bordered by
the first partial derivatives of the constraint.
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|H| =
∣∣∣∣Lxx Lxy
Lyx Lyy

∣∣∣∣ Where ∣∣H̄∣∣ =

 0 gx gy
gx Lxx Lxy
gy Lyx Lyy


H is ordinary (unconstrained) Hessian
H̄ is bordered (constrained) Hessian

1.4 Determining Max or Min with a Single Con-
straint

2 Variable Case

∣∣H̄α

∣∣ =

 0 gx gy
gx Lxx Lxy
gy Lyx Lyy


is Max if

∣∣H̄α

∣∣ > 0
is Min if

∣∣H̄α

∣∣ < 0

3 Variabl Case

H̄3 =

∣∣∣∣∣∣∣∣
0 g1 g2 g3
g1 L11 L12 L13
g2 L21 L22 L23
g3 L31 L32 L33

∣∣∣∣∣∣∣∣
is Max if

∣∣H̄2

∣∣ > 0,
∣∣H̄3

∣∣ < 0
is Min if

∣∣H̄2

∣∣ < 0,
∣∣H̄3

∣∣ > 0

n-Variable case
Max:

∣∣H̄2

∣∣ > 0,
∣∣H̄3

∣∣ < 0, H̄4 > 0... (−1)n
∣∣H̄n

∣∣ > 0

Min:
∣∣H̄2

∣∣ < 0,
∣∣H̄3

∣∣ < 0, ...
∣∣H̄n

∣∣ < 0
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1.5 Altrnative form of Bordered Hessian

Given Max x,y
f(x, y) + λg(x, y)

F.O.C’s
Lx = fx − λgx = 0
Ly = fy − λgy = 0
Lλ = g(x, y) = 0

Bordered Hessian∣∣∣∣∣∣
fxx + λgxx fxy + λgxy gx
fyx + λgyx fyy + λgyy gy

gx gy 0

∣∣∣∣∣∣
 dx
dy
dλ


Rules for Max or Min are the same for this form as well.

1.5.1 Example

Max
xy + λ(B − Pxx− Pyy)

F.O.C.’s
Lx = y − λPx = 0
Ly = x− λPy = 0

Lλ = B − Pxx− Pyy = 0︸ ︷︷ ︸
x∗ = B

2Px
y∗ = B

2Py
λ∗ = B

2PxPy

S.O.C.’s ∣∣H̄2

∣∣ =

∣∣∣∣∣∣
0 1 −Px
1 0 −Py
−Px −Py 0

∣∣∣∣∣∣
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Det = 0 + (−1)

∣∣∣∣ 1 −Px
−Py 0

∣∣∣∣ + −Px
∣∣∣∣1 −Px0 −Py

∣∣∣∣ = PxPy + PxPy =

2PxPy > 0
Therefore L∗ is a Max

1.5.2 Example

Min
Pxx+ Pyy + λ(U0 − xy)

F.O.C.’s
Lx = Px − λy = 0
Ly = Py − λx = 0
Lλ = U0 − xy = 0

x∗ = P
1
2
y U

1
2
0

P
1
2
x

y∗ = P
1
2
x U

1
2
0

P
1
2
y

λ∗ = U
1
2
0

P
1
2
x P

1
2
y

S.O.C.’s  0 −λ −y
−λ 0 −x
−y −x 0

 dx
dy
dλ


∣∣H̄∣∣ = λ

∣∣∣∣−λ −y−x 0

∣∣∣∣+ (−y)

∣∣∣∣−λ −y0 −x

∣∣∣∣ = −λxy +−λxy∣∣H̄∣∣ = −2λxy < 0
Therefore L∗ is a Min

1.6 Interpreting λ

Given Max
U(x, y) + λ (B − Pxx− Pyy)

By solving the F.O.C.’s we get

x∗ = x(Px, Py, B) y∗ = y(Px, Py, B) λ∗ = λ(Px, Py, B)
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Sub x∗, y∗, λ∗ back into the Lagrange

L∗ = U (x∗, y∗) + λ∗ (B − Pxx∗ − Pyy∗)

Differentiate with respect to the constant,B

∂L∗

∂B
= Ux

dx∗

dB
+Uy

dy∗

dB
−λ∗Px

dx∗

dB
−λ∗Pydy

∗

dB
+λ∗

dB

dB
+(B − Pxx∗ − Pyy∗)

dλ∗

dB

Or

∂L∗

∂B
= (Ux − λ∗Px)︸ ︷︷ ︸

=0

dx∗

dB
+(Uy − λ∗Py)︸ ︷︷ ︸

=0

dy∗

dB
+(B − Pxx∗ − Pyy∗)︸ ︷︷ ︸

=0

dλ∗

dB
+λ∗

∂L∗

∂B = λ∗ = ∆ in utility from ∆ in the constant
= Marginal Utility of Money

2 Extensions and Applications of Constrained
Optimization

2.1 Income and Substitution Effects (The Slutsky
Equation)

Consider:
Max

U = U(x1, x2)

Subject to
B = Pλx1 + P2x2

The FOC’s
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L1 = U1 − λP1 = 0

L2 = U2 − λP2 = 0

L3 = B − P1x1 − P2x2 = 0

Solving the FOC’s gives x*1, x
*
2, λ

∗

⇒ Totally differentiate the FOC‘s with respect to EVERY variable

U̇11dx
∗
1 + U12dx

∗
2 − P1dλ− λdP1 = 0

U̇21dx
∗
1 + U22dx

∗
2 − P2dλ− λdP2 = 0

P1dx
∗
1 − P2dx∗2 − x∗1dP1 − x∗2dP2 + dβ = 0

Take exogenous differentials (dP1, dP2,dβ) to the other side and set
up matrix

U11 U12 −P1
U21 U22 −P2
−P1 −P2 0

dx∗1dx∗2
dλ∗

 =

 λdP1
λdP2

−dβ + x1dP1 + x2dP2


{
Where H̄ > 0

}
Set dP1 = dP2 = 0 find dx1

dβ

dx∗1
dβ

=

∣∣∣∣∣∣
0 U12 −P1
0 U22 −P2
−1 −P2 0

∣∣∣∣∣∣∣∣H̄∣∣ = (−1)

∣∣∣∣U12 −P1U22 −P2

∣∣∣∣∣∣H̄∣∣ =

∣∣H31

∣∣∣∣H̄∣∣
Where ∣∣H31

∣∣ =

∣∣∣∣U12 −P1U22 −P2

∣∣∣∣ = (−U12P1 + U22P1)
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Therefore
dx∗1
dβ

=

∣∣H̄31

∣∣∣∣H̄∣∣ ≷ 0 (?)

Now set dP2 = dβ = 0U11 U12 −P1
U21 U22 −P2
−P1 −P2 0




dx∗1
dP1
dx∗2
dP1
dλ∗

dP1

 =

 λ
0
x1



dx∗1
dP1

=

Cramer’s Rule
Expand Column 1︷ ︸︸ ︷∣∣∣∣∣∣
λ U12 −P1
0 U22 −P2
x1 −P2 0

∣∣∣∣∣∣∣∣H̄∣∣ = λ

(H11)∣∣∣∣U22 −P2−P2 0

∣∣∣∣∣∣H̄∣∣ + x1

(H31)∣∣∣∣U12 −P1U22 −P2

∣∣∣∣∣∣H̄∣∣
dx∗1
dP1

= λ
H11∣∣H̄∣∣ + x1

H31∣∣H̄∣∣
H11 = −P 22 < 0
H31 = −U12P2 + U22P1

But
dx∗1
dβ

= −
∣∣H31

∣∣∣∣H̄∣∣
So

dx∗1
dP1

= λ
H11∣∣H̄∣∣ − x1dx∗1dβ =

dx∗1
dP1

U held constant

+ (−x1)
dx∗1
dβ
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2.2 The Slutsky Equation

dx∗1
dP1

= λ
|H11|∣∣H̄∣∣ + x1

|H31|∣∣H̄∣∣
=

dx∗1
dP1

+ (−x1)
dx∗

dβ
= {Pure Substitution Effect}+ {Income Effect}

A to B = λ |H11|
|H| "Substitution Effect"

B to C = x1
|H31|
|H| "Income Effect"

3 Homogenous Functions

3.1 Constant Returns to Scale

=⇒ Given
y = f(x1, x2, ...xn)

if we change all the inputs by a factor of t, then
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f(tx1, tx2, ...txn) = tf(x1, x2, ...xn) = tY

ie. if we double inputs, we double output
=⇒ A constant returns to scale production function is said to be:
HOMOGENOUS of DEGREE ONE or LINEARLY HO-

MOGENOUS

3.2 Homogenous of Degree r

A function, Y = f(x1, ..., xn) is said to be Homogenous of Degree r if

f(tx1, tx2, ...txn) = trf(x1, x2, ...xn)

Example
Let f(x1, x2) = x1x2
change all x′is by t

f(tx1, tx2) = (tx1)(tx2)

= t2(x1x2)

= t2f(x1x2)

Therefore f(x1, x2) = x1x2 is homogenous of degree 2

3.3 Cobb-Douglas

Let output, Y = f(K,L) = LαK1−α {where 0 ≤ 1}

Multiply K, L by t
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f(tL, tK) = (tL)α(tK)1−α

= tα+1−αLαK1−α

tLαK1−α

Therefore LαK1−αis H.O.D one.
General Cobb-Douglas: y=LαKβ

f(tL, tK) = (tL)α(tK)β

= tα+βLαKβ

LαKβ is homogenous of degree α + β

3.4 Further properties of Cobb-Douglas

Given
y = LαK1−α

MPL =
dY

dL
= dLα−1K1−α = α

(
K

L

)1−α
MPK =

dY

dK
= (1− α)LαK−α = (1− α)

(
K

L

)−α
MPL and MPK are homogenous of degree zero

MPL(tL, tK) = α

(
tK

tL

)1−α
= α

(
K

L

)1−α
MPL and MPK depend only on the K

L ratio
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3.5 The Marginal Rate of Technical Substitution

MRTS =
MPL
MPK

=
α(KL )1−α

(1− α)(KL )−α
=

(
α

1− α

)(
K

L

)
MRTS is homogenous of degree zero
The slope of the isoquant (MRTS) depends only on the K

L ratio,
not the absolute levels of K and L

Along any ray from the origin the isoquants are parallel. This is
true for all homogenous functions regardless of the degree.

Given:
f(tx1, ...txn) = trf(x1, ...xn)

Differentiate both sides with respect to x1

df

d(tx)

d(tx1)

dx1
= tr

df

dx1
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But

d(tx1)

dx1
= t

df

d(tx1)
t = tr

df

dx1

df

d(tx1)
=
tr

t

df

dx1
= tr−1

df

dx1

Therefore: For any function homogenous of degree r, that function’s
first partial derivatives are homogenous of degree r − 1.

3.6 Monotonic Transformations and Homothetic
Functions

Let y = f(x1, x2)and Let z = g(y)
{where g‘(y) > 0 and f(x1, x2) is H.O.D. r}
g(y) is a monotonic transformation of y

We know:

MRTS = − f1
fx

=
dx2
dx1

Totally differentiate z = g(y) and set dz = 0

dz =
dg

dy

dy

dx1
dx1 +

dg

dy

dy

dx2
dx2 = 0

or

dx2
dx1

=
−
(
dg
dy1

)(
dy
dx1

)
(
dg
dy1

)(
dy
dx2

) =
−
(
dy
dx1

)
(
dy
dx2

) =
−f1
f2
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The slope of the level curves (isoquants) are invariant to monotonic
transformations.

A monotonic transformation of a homogenous function creates a
homothetic function

Homothetic functions have the same slope properties along a ray
from the origin as the homogenous function.

However, homothetic functions are NOT homogenous.

Example: Let f(x1, x2) = x1, x2 {where r = 2}

Let:

z = g(y) = ln(x1, x2)

= ln x1 + lnx2
g(f(tx1, tx2)) = ln(tx1) + ln(tx2)

= 2 ln t+ lnx1 + lnx2
6= tr ln(x1, x2)

Properties of Homothetic Functions

1. A homothetic function has the same shaped level curves as the
homogenous function that was transformed to create it.

2. Homogenous production functions cannot produce U-shaped av-
erage cost curves, but a homothetic function can.

3. Slopes of Level Curves (ie. Indifference Curves)

For homothetic functions the slope of their level curves only de-
pend on the ratio of quantities.

ie. If: y = f(x1, x2) is homothetic

Then:f1f2 = g
(
x2
x1

)
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3.7 Euler’s Theorem

Let f(x1, x2) be homogenous of degree r
Then f(tx1, tx2) = trf(x1, x2)
Differentiate with respect to t

df

d(tx1)

d (tx1)

dt
+

df

d(tx2)

d(tx2)

dt
= rtr−1f(tx1, tx2)

Since: dtxi
dt = xi for all i

df

d(tx1)
x1 +

df

d(tx2)
x2 = rtr−1f(tx1, tx2)

This is true for all values of t, so let t = 1

df

dx1
x1 +

df

dx2
x2 = f1x1 + f2x2 = rf(x1, x2)︸ ︷︷ ︸
"Euler’s Theorm"

If y = f(L,K) is constant returns to scale
Then y=MPLL+MPKK (Euler’s Theorm)
Example: Let

y = LαK1−α

Where:
MPL = αLα−1K1−α

MPK = (1− α)LαK−α

From Euler’s Theorm
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y = MPLL+MPKK =
(
αLα−1K1−α)L+

(
(1− α)LαK−α

)
K

= αLα−1K1−α + (1− α)LαK−α

= [d+ (1− α)]LαK1−α

= LαK1−α

= y

3.7.1 Euler’s Theorm and Long Run Equilibrium

Suppose q = f(K,L) is H.O.D 1
Then the profit function for a perfectly competitive firm is

π = pq − rK − wL
π = pf(K,L)− rK − wL

F.O.C’s

dπ

dL
= pfL − w = 0

dπ

dK
= pfK − r = 0

{fL = MPL fK = MPK}
or MPL = w

p ,MPK = r
p are necessary conditions for Profit Maxi-

mization
Therefore, at the optimum

π∗ = pf(K∗L∗)− wL∗ − rK∗

From Euler‘s Theorem

f(K∗L∗) = MPKK
∗ +MPLL

∗
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Substitute into π∗

π∗ = P [MPKK
∗ +MPLL

∗]− wL∗ − rK∗

OR
π∗ = [wL∗ + rK∗]− wL∗ − rK∗ = 0

Long Run π=0

3.7.2
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Concavity and Quasiconcavity

3.7.3 Concavity:

· Convex level curves and concave in scale
· Necessary for unconstrained optimum

3.7.4 Quasi-Concavity:

· Only has convex level curves
· Necessary for constrained optimum

Example:
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1. Concave: y = x
1
3
1x

1
3
2 is H.O.D. 2/3 (diminishing returns)

MRTS =
x2
x1

2. Quasi -Concave: y = x21x
2
2 is H.O.D. 4 (increasing returns)

MRTS =
x2
x1

REVIEW: When to use the Implicit Function Theorem (Jacobian)

GENERAL FORM:
Max

U(x, y) + λ(β − Pxx− Pyy)

F.O.C.

Lx = Ux − λPx = 0 (Eq 1)
Ly = Uy − λPy = 0 (Eq 2)
Lλ = β − Pxx− Pyy (Eq 3)

Equations 1, 2, and 3 IMPLICITLY DEFINE

x∗ = x∗(β, Px, Py)
y∗ = y∗(β, Px, Py)
λ∗ = λ∗(β, Px, Py)

S.O.C.

∣∣H̄∣∣ =

∣∣∣∣∣∣
0 −Px −Py
−Px Uxx Uxy
−Py Uyx Uyy

∣∣∣∣∣∣ > 0 (by assumption)

Find dx∗

dPx: use Implicit Function Theorem
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SPECIFIC FORM:

Max
xy + λ(β − Pxx− Pyy)

F.O.C

Lx = y − λPx = 0 (Eq 1)
Ly = x− λPy = 0 (Eq 2)
Lλ = β − Pxx− Pyy (Eq 3)

Equations 1, 2, and 3 EXPLICITLY DEFINE

x∗ = β
αPx y∗ = β

αPy λ∗ = β
αPxPy

S.O.C.∣∣H̄∣∣ =

∣∣∣∣∣∣
0 −Px −Py
−Px 0 1
−Py 1 0

∣∣∣∣∣∣ = 2PxPy > 0

To find: dx∗

dPx Differentiate x
∗ directly

dx∗

dPx
= − β

αPx2
< 0

3.8 Review: When to use the Implicit Function
Theorem (Jacobian)??

3.8.1 General Form

Max
U(x, y) + λ(B − Pxx+ Pyy)

F.O.C.

Lx : Ux − λPx = 0 Eq. 1
Ly : Uy − λPy = 0 Eq. 2

Lλ : B − Pxx+ Pyy = 0 Eq. 3
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Equations 1, 2, and 3 IMPLICITY define

x∗ = x∗(B,Px, Py)
y∗ = y∗(B,Px, Py)
λ∗ = λ∗(B,Px, Py)

S.O.C.

∣∣H̄∣∣ =

∣∣∣∣∣∣
0 −Px −Py
−Px Uxx Uxy
−Py Uyx Uyy

∣∣∣∣∣∣ > 0
(By Assumption)

Find dx∗

dPx
: use Implicit Function Theorem

3.8.2 Specific Form

Max
xy + λ(B − Pxx+ Pyy)

F.O.C
Lx : y − λPx = 0 Eq. 1
Ly : x− λPy = 0 Eq. 2

Lλ : B − Pxx+ Pyy = 0 Eq. 3
Equations 1, 2, and 3 EXPLICITLY define

x∗ = B
2Px

y∗ = B
2Py

λ∗ = B
2PxPy

S.O.C. ∣∣H̄∣∣ =

∣∣∣∣∣∣
0 −Px −Py
−Px 0 1
−Py 1 0

∣∣∣∣∣∣ = 2PxPy > 0

Find dx∗

dPx
: Differentiate x∗ directly

dx∗

dPx
= − B

2P 2x
< 0
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