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1 Constrained Optimization

Consider the following Utility Max problem:

Max x1 2
U= U(CELZCQ) (1)
Subject to:
B = Pl.iCl + PQJ?Q (2)
Re-write Eq. 2
B P
= — — — Eq.2°
) j2) P2$1 (Eq.2°)
Now x9 = x9(x1) and g—if = _?]:1
Sub into Eq. 1 for x
U = U(z1,z2(21)) (3)

Eq. 3 is an unconstrained function of one variable, x;

Differentiate, using the Chain Rule



dU U QU dzs

=0
d.’L‘1 8951 + 8332 dil?l
From Eq. 2° we know g—fgf = —%
Therefore:
dU P
—=U1+4U(——= | =0
drn 1+ Uz ( P2>
OR
UL _~
Uy, P



This is our usual condition that MRS(xs, z1) = % or the consumer’s

willingness to grade equals his ability to trade.

X7 B X7

The More General Constrained Maximum Problem
Max:

y = f(z1,22) (4)
Subject to:

g(x1,22) =0 (5)
Take total differentials of Eq. 4 and Eq. 5

dy = fldl'l + fzdl’g =0 (6)

dg = gldl‘l + gzdl'g =0 (7)



or Eq.6’

dCIZ’l = —f—jdxg
Eq. 7
dl’l = —@d(EQ
g1

Subtract 6’ from 7’
d.Il — d:cl == [—g—i - (—%)} d.IQ == (% - g—i) dxg =0
Therefore

fo_ g

i @
Eq. 8: says that the level curves of the objective function must be
tangent to the level curves of the constraint

1.1 Lagrange Multiplier Approach

Create a new function called the Lagrangian:
L = f(z1,22) + Ag (21, 22)
since g (x1,x9) = 0 when the constraint is satisfied

L = f(x1,29) + zero

We have created a new independent variable A (lambda), which is
called the Lagrangian Multiplier.

We now have a function of three variables; x; x9,and A

Now we Maximize

L = f(x1,22) + Ag (21, 22)



First Order Conditions

L,\:%—;:g(ml,:@):() Eq. 1
Li=35*=fi+A1=0 Eq. 2

Ly=%% = fo4+ A2 =0 Eq. 3
From Eq. 2 and 3 we get:

h_ o

f A2 g
From the 3 F.O.C.’s we have 3 equations and 3 unknowns (z; x2, \).
In principle we can solve for z7j, x5, and \".

1.1.1 Example 1:

Let:
U=uxy
Subject to:
0=2x+y P,=PFP,=1
Lagrange:
L = f(z,y) + Mg(z,y))
L = zy+ A10 —z —y)
F.O.C.
Ly=10—2—y=0 Eq. 1
L,=y—X=0 Eq. 2
Ly=2—-X=0 Eq. 3
From (2) and (3) we see that:
%z%zlgy:x Eq. 4

From (1) and (4) we get:



0—2z—2=0 or =5 and y* =5
From either (2) or (3) we get:

A"=5

1.1.2 Example 2: Utility Maximization

Maximize
u = 42* + 3xy + 6y°

subject to
T+ 1y = 56

Set up the Lagrangian Equation:
L = 42 + 32y + 6y° + A\(56 — = — y)
Take the first-order partials and set them to zero
L, = 8x+3y—\A=0

L, = 3z+12y —A=0
Ly = 56—-2—-y=0

From the first two equations we get

8r+3y = 3x+ 12y
r = 1.8y

Substitute this result into the third equation
56 —18y—y = 0
y = 20

therefore
r = 36 A = 348



1.1.3 Example 3: Cost minimization

A firm produces two goods, x and y. Due to a government quota, the
firm must produce subject to the constraint x + y = 42. The firm’s
cost functions is

clx,y) = 8x* — xy + 12y°

The Lagrangian is
L=28x"—xy+ 122 + \(42 — 2 — y)
The first order conditions are

L, = 16z —y—X=0
L, = —x+24y—A=0
Ly = 42—-x—y=0 (8)

Solving these three equations simultaneously yields

x=25 y=17 \=383

1.1.4 Example 4:

Max:
U= T1T2
Subject to:
B = P1£U1 + PQSCQ

Langrange:

L = T1To + A (B — Plﬂfl — PQSUQ)
F.O0.C.

L)\:B—Pl.Il—PQI'QZO qu
L1=ZL‘2—)\P1=0 Eq.2
LQISCl—)\PQ:O Eq3
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From Eq. (2) and (3) (@ = % = MRS)

Solve for x]
From (2) and (3)

Sub into (1)

P
B:P1.I'1+P2 <—1$1> :2P1.I'1
P,

i
2P

B

* ¥ __ D
x] = and 75 = 55

The solution to xjand z5 are the Demand Functions for x; and x

1.1.5 Properties of Demand Functions
1. "Homogenous of degree zero" multiply prices and income by «

. aB B
xl = =

2(04P1) 2P1

2. "For normal goods demand has a negative slope"

3. "For normal goods Engel curve positive slope"

ox] 1
=— >0
0B 2P

In this example z; and xjare both normal goods (rather than
inferior or giffen)



Given:

U:L?flSCQ
And:
« _ B x — B
T =55 and 23 = 55

Substituting into the utility function we get:

U oo (BY(E
- = \9p )\ 2p,

2
U o— B
AP, P,

Now we have the utility expressed as a function of Prices and In-

come

U* = U(P1 P, B) is "The Indirect Utility Function"

At U =Uy = % we can re-arrange to get:

B = 2P PyU;

A\

TV
This is the "Expenditure Function"

1.2 Minimization and Lagrange

Min x, y
P, X+ P)Y
Subject to
UO = U(LU? y)
Lagrange

L=PX+PY +\U—Ulz,y))



F.O0.C.

P, N, U
r_Cr 2 MRS
P, MU, U,

(The same result as in the MAX problem)

Solving (1), (2), and (3) by Cramer’s Rule, or some other method,
we get:

" :l'(Px,Py,U()) y* :y(Pa?aPyvUO) A :A(P£7Py7UO)

1.3 Second Order Conditions

1. (a) To determine whether the Lagrangian is at a Max or Min
we use an approach similar to the Hessian in unconstrained
cases.

(b) Second order conditions are determined from the Bordered Hessian
(¢) There are two ways of setting up a bordered Hessian

(d) We will look at both ways since both forms are used equally
in economic literature

(e) Both ways are equally good.

Given Max:
f(z,y) + AMg(z,y)

F.O.C.’s

10



Ly=g(zr,y)=0 Eq. 1

L,=f,—Xg, =0 Eq. 2

L,=f,—Xgy=0 Eq. 3
For the 2nd order conditions, totally differentiate the F.O.C.’s with
respect to x, y, and A

gzdx + gydy =0 No A in Eq. 1 (1)
(foz + Aguz)dx + (foy + Agay)dy + gzdX =0 (27)
(fyy + )‘gyy>dy + (fyx + )\gyx)dx + gyd>‘ =0 (37)

Matrix From

Bordered Hessian
A\

0 G g ] [ dA
Jx (fw:n + /\gmx) (f:cy + Agxy) dx
Gy (fyw + )‘gya?) (fyy + Agyy) dy

-~

Or written as

0 g gy dA
Gx Lyz Ly dx
L9y Ly, Ly, J dy

(Where Lyp=fre+Agze €te...)

Notice that the Bordered Hessian is the ordinary Hessian bordered by
the first partial derivatives of the constraint.

11



B 0 g gy
Where ‘H‘ = |9gs Luw Luy
9y Lya Ly
H is ordinary (unconstrained) Hessian
H is bordered (constrained) Hessian

me ny

|H‘:L L

yx vy

1.4 Determining Max or Min with a Single Con-
straint

2 Variable Case

~ 0 g gy
‘Ha| = | 9z me L:Ey
9y Lyz Lyy
is Max if ‘ﬁa‘ >0
is Min if |H,| <0
3 Variabl Case

0 g1 92 93
iy = g1 L1 Lia Lag
g2 Loi Loo Lo3
93 L31 L3y L33
is Max if |H,| >0, |Hs| <0
is Min if [H,| <0, [Hs| >0

n-Variable case
Max: |H,| > 0,|Hs| <0, Hy > 0...(=1)" |H,| >0
Min: |H,| <0, |Hs| <0,...|H,| <0

12



1.5 Altrnative form of Bordered Hessian

Given Max x,y
f(@,y) + Ag(z,y)

F.O.C’s
L,=f,—Xg. =0

Ly:fy—)\gy:0
Ly=g(z,y) =0

Bordered Hessian

Jyr + MGy Sfyy + AGyy Gy dy
9z gy 0 d)\

Rules for Max or Min are the same for this form as well.

1.5.1 Example

Max
ry + AN(B — Pyx — Pyy)
F.O.C.’s
L,=y— AP, =0
Ly=x— AP, =0
Ly=B—-Px—-FPy=0
x _ B x _ B * _ B
L = 3p Y = 3p, A= 2P, P,
S.0.C.s
) 0 1 P,
|Ho=| 1 0 =P,
P, —P, 0

13



Det = 0+ (—1) ‘—le éD“”” + =P, é _%‘ = PP, + P,P, =
2P, P, >0
Therefore L* is a Max
1.5.2 Example
Min
Pyx + Py + MUy — zy)
F.O0.C.’s
L,=FP,— X y=0
Ly=P,—Xx =0
L)\ = U() — XY = 0
503 3173 3
ot = 2 Y= A=
P2 P} P2P?
S.0.C.’s
0 =X —y d,
A 0 —z dy
—y —x 0 dy
L A Bl i B S

‘ﬁ ‘ = —2\ry <0
Therefore L* is a Min

1.6 Interpreting \

Given Max
U(z,y) + A(B — P,z — Pyy)

By solving the F.O.C.’s we get
" = x(P, Py, B) vy =y(Py, Py, B) N = NPy, Py, B)

14



Sub z*, y*, \* back into the Lagrange
L*=U (" y")+ X (B—-Px" — Py")
Differentiate with respect to the constant,B

oL* dz* dy* dz* dy* dB o AN

_ NP \p 82 (B— Pt — Py
o5~ VraptUaB dB vag T ap T T =By
Or
OL* dz* dy* AN
AP, NPYY_ (B - Pat — Py A*
OB (L,_ldB udB { v byt

—O

% = A" = A in utility from A in the constant
= Marginal Utility of Money

2 Extensions and Applications of Constrained
Optimization

2.1 Income and Substitution Effects (The Slutsky

Equation)
Consider:
Max
U = U(.Il, CL’Q)
Subject to
B = P)\SCl + PQSCQ
The FOC’s

15



Li = U —AP =0
Uy — AP, =0
L3 = B—Plxl—PQZEQ:O

Ny
I

Solving the FOC’s gives x;, X,, \*
= Totally differentiate the FOC‘s with respect to EVERY variable

Undz + Upaday — Prd\ — X\dPy = 0
Updat + Usydal — Pod\ — AdPy = 0
Pidxt — Pydxl — 2id Py — 25d Py 4 df = 0

Take exogenous differentials (dP;, dP; df) to the other side and set
up matrix

U11 U12 —Pl dfl?f )\dpl
U21 UQQ —P2 d$§ = )\dPQ
—Pl _P2 0 d\* —dﬁ + xldPl + ZEQdPQ

{Where H > O}
Set dP, = dP, = 0 find %

0 Up —P
0 U22 _P2 U12 _Pl
dey |1 - 0 (1) U —5f _ | Ha |
dp || || ||
Where .
|Hsy | = g;z :P; = (=UpP + UxP)

16



Therefore

dei _ |Ha|_
dﬁ _ ’[f]‘ io ()

Now set dP, = df =0

Un U —P % A
Un Ux —P % =10
—P1 —PQ 0 % I

Cramer’s Rule
Expand Column 1

f)\ Uio —P1\ (Hy1) (Hs1)
0 Uxp —P Uy —P U —P
dey o1 =P 0 :)\—P2 0 ., Us —P
dPy H]| |H| L
dZCT . H11 H31
ap, A\Hﬁxl\m
Hy=-P2<0
Hs = —Ua P + U Py
But
dep _ |Hs
dp ||
So
dv;  Hy  de}  da] N
d_Pl_A\H\ wgg = ap T g

U held constant

17



2.2 The Slutsky Equation

dei | [Hy | H31 |
an ~ A T
dzi dx*

= ap UM s
= {Pure Substitution Effect} + {Income Effect}

X2

Income and Substitution Effect

X7

A toB = )\%"Substitution Effect"

B to C = Xl%"hmome Effect"

3 Homogenous Functions

3.1 Constant Returns to Scale

— Given
y = f(x1,29,...24)
if we change all the inputs by a factor of t, then

18



f(tzy, tag, .. txy) = tf(xy, 29, ... x,) = tY

ie. if we double inputs, we double output

— A constant returns to scale production function is said to be:
HOMOGENOUS of DEGREE ONE or LINEARLY HO-
MOGENOQOUS

3.2 Homogenous of Degree r

A function, Y = f(xy,...,2,) is said to be Homogenous of Degree r if

f(tey, tag, .. txy) =t f(x1, 29, ...1p)

Example
Let f(x1,x0) = w129
change all s by t

f(th‘l,tZEQ) = (tﬂ]l)(tﬂfg)
t2(I1£IZ2>
=t f(x122)

Therefore f(x1,x2) = 129 is homogenous of degree 2

3.3 Cobb-Douglas
Let output, Y = f(K,L) = L*K'~*{where 0 < 1}
Multiply K, L by t

19



FULK) = (L) (K"
— ta—|—1—aLaK1—oz
tLozKl—oz

Therefore L*K'~%is H.O.D one.
General Cobb-Douglas: y=L*K"
LK) = (D)(tK)’
= "L KP

L*K” is homogenous of degree o + 3

3.4 Further properties of Cobb-Douglas

Given
y:LozKlfoz
dY_ a—1lr1—-a __ K e
4y e K\

MP; and MPj are homogenous of degree zero

tK 11—« K -«
MPr(tL,tK) = — = —
ek =a(ip) o ()

MP; and MPg depend only on the %ratio

20



3.5 The Marginal Rate of Technical Substitution

Mrrs = MP _ o) ( o ) (fi)

MP; ~ (1-a)(E)yo \1-a)\L

MRTS is homogenous of degree zero
The slope of the isoquant (MRTS) depends only on the % ratio,
not the absolute levels of K and L

K

Homothetic Production Function

:k1

~|x

P
I
&

e Isoquants

L

Along any ray from the origin the isoquants are parallel. This is
true for all homogenous functions regardless of the degree.

Given:
f(tzy, .. txy) =t" f(xq, ...xn)
Differentiate both sides with respect to x;

df dtz) _ . df
d(tz) dr,  dx;

21



But

d(tl‘l) —
dl‘l -
df o df
t =
d(tl’l) dl’l
G A
d(tz)) tdv, dny

Therefore: For any function homogenous of degree r, that function’s
first partial derivatives are homogenous of degree r — 1.

3.6 Monotonic Transformations and Homothetic
Functions
Let y = f(x1,7z2)and Let z = g(y)

{where ¢‘(y) > 0 and f(x1,22) is H.O.D. r}
g(y) is a monotonic transformation of y

We know:
Si o dw

frda
Totally differentiate z = g(y) and set dz = 0

MRTS =

dg dy dg dy
d —d —dzy =10
° dyda:l e dydxg 2=

e (8@ -(8)_
nTE ) @

22
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The slope of the level curves (isoquants) are invariant to monotonic
transformations.

A monotonic transformation of a homogenous function creates a
homothetic function

Homothetic functions have the same slope properties along a ray
from the origin as the homogenous function.

However, homothetic functions are NOT homogenous.
Example: Let f(z1,x2) = x1, 29 {where r = 2}
Let:

z = g(y) = In(z1, 22)
Inz; 4+ Inxs

g(f(tzy,txe)) = In(tzy) + In(tas)
= 2Int+Inx; +1Inzy

# t"In(xq, z9)

Properties of Homothetic Functions

1. A homothetic function has the same shaped level curves as the
homogenous function that was transformed to create it.

2. Homogenous production functions cannot produce U-shaped av-
erage cost curves, but a homothetic function can.
3. Slopes of Level Curves (ie. Indifference Curves)

For homothetic functions the slope of their level curves only de-
pend on the ratio of quantities.

ie. If: y = f(z1,x2) is homothetic
S (22
Then.f2 =g (ﬁ)

23



3.7 Euler’s Theorem

Let f(z1,x2) be homogenous of degree r
Then f(tz1,txs) = 1" f(z1, 22)
Differentiate with respect to t

df d(t371)+ df d(tﬂ?g)

= rtr_lf(t:vl, txo)

Since: dfifi = x; for all ¢
daf df 1
=rt" try,t
T R A
This is true for all values of ¢, so let ¢t =1
df

—T1+ X2 = [1X1 + Joxa =T [(T1,2X
glﬂﬁll da:22 iz + foro f(@1,22)

7

TV
"Euler’s Theorm"

If y = f(L, K) is constant returns to scale
Then y=MP;L + M Pg K (Euler’s Theorm)
Example: Let
y = LOéKlfoz
Where:
MPp=alL* 'K

MPy = (1—a)L°K ™

From Euler’s Theorm

24



y = MP,L+MPxK = (aL* "K' )L+ (1 - a)L°K ) K
= al* 'K+ (1—a)LK™®

[d+ (1 —a)] LK™

R

=Y

3.7.1 Euler’s Theorm and Long Run Equilibrium

Suppose ¢ = f(K, L) is HO.D 1
Then the profit function for a perfectly competitive firm is

™ = pqg—rK —wlL
m = pf(K,L)—rK —wL

F.O0.C’s
dm
ar, = Plimw=0
dm
g~ Premr=0

{fr=MP,  fx=MPg}

or MP; = %, M Py = % are necessary conditions for Profit Maxi-

mization
Therefore, at the optimum

™ =pf(K'L") —wL* — rK~
From Euler‘s Theorem

FIK*L*) = MPxK* + MP,L*

25



Substitute into 7*
7 =P[MPxkK"+ MP,L"| —wL* — rK*
OR

™ =wLl+rK] —wl*—rK*=0
Long Run 7=0

3.7.2
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Concavity and Quasiconcavity

Quasiconcave function

<

=

X

z Strictly concave function

/D

3.7.3 Concavity:

- Convex level curves and concave in scale
- Necessary for unconstrained optimum

3.7.4 Quasi-Concavity:

- Only has convex level curves
- Necessary for constrained optimum

Example:

27



1
1. Concave: y = zix; is H.O.D. 2/3 (diminishing returns)

MRTS = =
I
2. Quasi -Concave: y = x3r3 is H.O.D. 4 (increasing returns)
MRTS = =
T

REVIEW: When to use the Implicit Function Theorem (Jacobian)

GENERAL FORM:
Max

U(aj>y> + A(ﬂ — Pyx — Pyy)
F.O.C.
L,=U,— AP, =0 (Eql)

L,=U,—APy=0 (Eq2)
Lx=f—Pux— Py (Eq3)

Equations 1, 2, and 3 IMPLICITLY DEFINE

z* = x*(B, Py, Py)
vy =y"(B, P, Py)
N =XN(B, P, Py)
S.0.C.
|0 -pP -P,
|H | =|—P, Uy Ug| >0 (by assumption)
_Py ny Uyy

Find %: use Implicit Function Theorem
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SPECIFIC FORM:
Max
Yy + A8 — Pyx — Pyy)

F.O0.C

Lx:y_)\PxZO (qu)

Ly=x—-XPy=0 (Eq2)

Ly=p—Px— Py (Eq3)
Equations 1, 2, and 3 EXPLICITLY DEFINE

T =9pz Y = aPy ~ aPzPy
S.0.C.
) 0 —-P, =P
|H|=|-P. 0 1 |=2PzPy>0
-P, 1 0

To find: % Differentiate x* directly

dx* 15

= — <0
dPx aPx?

3.8 Review: When to use the Implicit Function
Theorem (Jacobian)??

3.8.1 General Form

Max
U(z,y) + AN(B — Pyx + Py)
F.O.C.
L,:U,—AP,=0 Eq. 1
L,:U,—AP,=0 Eq. 2
Ly:B—-Px+FPy=0 Eq.3
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Equations 1, 2, and 3 IMPLICITY define

v* = 2*(B, Py, P))
y =y (B, P, P)
\* = \(B, P,, P,)
S.0.C.
. 0 —-P, —P,
|H| = =P, Upe Uy >0

(By Assumption)
—F, Yy U yz Uyy

Find % : use Implicit Function Theorem

3.8.2 Specific Form

Max
zy + AN(B — Pyx + Pyy)
F.0.C
L,:y— AP, =0 Eq. 1
Ly:x— AP, =0 Eq. 2

Ly:B—-Pax+Py=0 Eq.3
Equations 1, 2, and 3 EXPLICITLY define

¥ B
Yy = ng
A= 2P, P,
S.0.C.
B 0 —-FP, —PF,
|[H|=|-P. 0 1 |=2PP,>0
-P, 1 0
Find % : Differentiate z* directly
de — _ B
P, 2P2
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