
Lecture Notes for Chapter 11

Kevin Wainwright

April 26, 2014

1 Optimization withMore than One Vari-
able

Suppose we want to maximize the following function

z = f(x, y) = 10x+ 10y + xy − x2 − y2

Note that there are two unknowns that must be solved for: x and
y. This function is an example of a three-dimensional dome. (i.e. the
roof of BC Place)
To solve this maximization problem we use partial derivatives.

We take a partial derivative for each of the unknown choice variables
and set them equal to zero

∂z
∂x = fx = 10 + y − 2x = 0 The slope in the ”x”direction = 0
∂z
∂y = fy = 10 + x− 2y = 0 The slope in the ”y”direction = 0

This gives us a set of equations, one equation for each of the un-
known variables. When you have the same number of independent
equations as unknowns, you can solve for each of the unknowns.
rewrite each equation as
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y = 2x− 10

x = 2y − 10

substitute one into the other

x = 2(2x− 10)− 10

x = 4x− 30

3x = 30

x = 10

similarly,
y = 10

REMEMBER: To maximize (minimize) a function of many
variables you use the technique of partial differentiation. This produces
a set of equations, one equation for each of the unknowns. You then
solve the set of equations simulaneously to derive solutions for each of
the unknowns.

1.0.1 Second order Conditions (second derivative Test)

To test for a maximum or minimum we need to check the second partial
derivatives. Since we have two first partial derivative equations (fx,fy)
and two variable in each equation, we will get four second partials
( fxx, fyy, fxy, fyx)
Using our original first order equations and taking the partial deriv-

atives for each of them (a second time) yields:
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fx = 10 + y − 2x = 0 fy = 10 + x− 2y = 0

fxx = −2 fyy = −2
fxy = 1 fyx = 1

The two partials,fxx, and fyy are the direct effects of of a small
change in x and y on the respective slopes in in the x and y direction.
The partials, fxy and fyx are the indirect effects, or the cross effects
of one variable on the slope in the other variable’s direction. For both
Maximums and Minimums, the direct effects must outweigh the cross
effects

1.1 Rules for two variable Maximums and Mini-
mums

1. Maximum

fxx < 0

fyy < 0

fyyfxx − fxyfyx > 0

2. Minimum

fxx > 0

fyy > 0

fyyfxx − fxyfyx > 0

3. Otherwise, we have a Saddle Point

From our second order conditions, above,

fxx = −2 < 0 fyy = −2 < 0
fxy = 1 fyx = 1
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and
fyyfxx − fxyfyx = (−2)(−2)− (1)(1) = 3 > 0

therefore we have a maximum.

1.2 Using Differentials Approach

Given
z = f(x, y)

Then
dz = fxdx+ fydy

if
dx 6= 0, dy 6= 0

and
dz = 0 (critical point)

Then it must be true that

fx = fy = 0 or ∂z
∂x = ∂z

∂y = 0

Fx = 0: Means z is not changing in the x-direction
Fy = 0: Means z is not changing in the y-direction
This is the First Order Necessary Condition for a max or min

1.3 Second Order Conditions

Given
z = f(x, y)

The first derivative (differential) is

dz = fxdx+ fydy
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Take the total differential a second time, treating dx and dy as constants

d2z = fxxdxdx+ fyydydy + fxydxdy + fyxdydx

= fxxdx
2 + fyydy

2 + fxydxdy + fyxdydx

where

fxx = 2nd partial derivative with respect to x
fyy = 2nd partial derivative with respect to y

fxy = Change in
(
∂z
∂x

)
from a ∆ in y

fyx = Change in
(
∂z
∂y

)
from a ∆ in x︸ ︷︷ ︸

fxy,fyx are cross partial derivatives

1.4 Example: Two Market Monopoly with Joint
Costs

A monopolist offers two different products, each having the following
market demand functions

q1 = 14− 1
4p1

q2 = 24− 1
2p2

The monopolist’s joint cost function is

C(q1, q2) = q21 + 5q1q2 + q22

The monopolist’s profit function can be written as

π = p1q1 + p2q2 − C(q1, q2) = p1q1 + p2q2 − q21 − 5q1q2 − q22

which is the function of four variables: p1, p2, q1,and q2. Using
the market demand functions, we can eliminate p1and p2 leaving us
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with a two variable maximization problem. First, rewrite the demand
functions to get the inverse functions

p1 = 56− 4q1
p2 = 48− 2q2

Substitute the inverse functions into the profit function

π = (56− 4q1)q1 + (48− 2q2)q2 − q21 − 5q1q2 − q22

The first order conditions for profit maximization are

∂π
∂q1

= 56− 10q1 − 5q2 = 0
∂π
∂q2

= 48− 6q2 − 5q1 = 0

Solve the first order conditions using Cramer’s rule. First, rewrite
in matrix form [

10 5
5 6

] [
q1
q2

]
=

[
56
48

]
where |A| = 35

q∗1 =

∣∣∣∣ 56 5
48 6

∣∣∣∣
35

= 2.75

q∗2 =

∣∣∣∣ 10 56
5 48

∣∣∣∣
35

= 5.7

Using the inverse demand functions to find the respective prices,
we get

p∗1 = 56− 4(2.75) = 45
p∗2 = 48− 2(5.7) = 36.6
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From the profit function, the maximum profit is

π = 213.94

Next, check the second order conditions to verify that the profit
is at a maximum. The various second derivatives can be set up in a
matrix called a Hessian The Hessian for this problem is

H =

[
π11 π12
π21 π22

]
=

[
−10 −5
−5 −6

]
The suffi cient conditions are

|H1| = π11 = −10 < 0 (First Principle Minor of Hessian)
|H2| = π11π22 − π12π21 = (−10)(−6)− (−5)2 = 35 > 0 (determinant)

Therefore the function is at a maximum. Further, since the signs
of |H1| and |H2| are invariant to the values of q1and q2, we know that
the profit function is strictly concave.

1.5 Example: Profit Max Capital and Labour

Suppose we have the following production function

q = Output
q = f(K,L) = L

1
2 +K

1
2 L = Labour

K = Capital

Then the profit function for a competitive firm is

π = Pq − wL− rK P = Market Price
or w = Wage Rate
π = PL

1
2 + PK

1
2 − wL− rK r = Rental Rate
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First order conditions

General Form
1. ∂π

∂L = P
2L

−1
2 − w = 0 PfL − w = 0

2. ∂π
∂k = P

2K
−1
2 − r = 0 PfK − r = 0

Solving (1) and (2), we get

L∗ = (2wP )−2 K∗ = (2rP )−2

Second order conditions (Hessian)

πLL = PfLL = −P
4 L

−3
2 < 0

πKK = PfKK = −P
4 K

−3
2 < 0

πLK = πKL = PfLK = PfKL = 0

or, in matrix form

H =

∣∣∣∣ πLL πLK
πKL πKK

∣∣∣∣ =

∣∣∣∣ −P4 L−3
2 0

0 −P
4 K

−3
2

∣∣∣∣
P
[
fLLfKK − (fLK)2

]
=

(
−P
4
L

−3
2

)(
−P
4
K

−3
2

)
− 0 > 0

Differentiate first order of conditions with respect to capital (K)
and labour (L)

=⇒Therefore profit maximization

Example: If P = 1000, w = 20, and r = 10

1. Find the optimal K, L, and π

2. Check second order conditions
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1.6 Example: Cobb-Douglas production function
and a competitive firm

Consider a competitive firm with the following profit function

π = TR− TC = PQ− wL− rK

where P is price, Q is output, L is labour and K is capital, and
w and r are the input prices for L and K respectively. Since the firm
operates in a competitive market, the exogenous variables are P,w and
r. There are three endogenous variables, K, L and Q. However output,
Q, is in turn a function of K and L via the production function

Q = f(K,L)

which in this case, is the Cobb-Douglas function

Q = LaKb

where a and b are positive parameters. If we further assume de-
creasing returns to scale, then a + b < 1. For simplicity, let’s consider
the symmetric case where a = b = 1

4

Q = L
1
4K

1
4

Substituting Equation 3 into Equation 1 gives us

π(K,L) = PL
1
4K

1
4 − wL− rK

The first order conditions are

∂π
∂L = P

(
1
4

)
L−

3
4K

1
4 − w = 0

∂π
∂K = P

(
1
4

)
L

1
4K−

3
4 − r = 0
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This system of equations define the optimal L and K for profit
maximization. But first, we need to check the second order conditions
to verify that we have a maximum.
The Hessian for this problem is

H =

[
πLL πLK
πKL πKK

]
=

[
P (− 3

16)L
− 74K

1
4 P

(
1
4

)2
L−

3
4K−

3
4

P
(
1
4

)2
L−

3
4K−

3
4 P

(
− 3
16

)
L

1
4K

7
4

]

The suffi cient conditions for a maximum are that |H1| < 0 and
|H| > 0. Therefore, the second order conditions are satisfied.
We can now return to the first order conditions to solve for the

optimal K and L. Rewriting the first equation in Equation 5 to isolate
K

P
(
1
4

)
L−

3
4K

1
4 = w

K = (4wp L
3
4 )4

Substituting into the second equation of Equation 5

P
4L

1
4K−

3
4 =

(
P
4

)
L

1
4

[(
4w
p L

3
4

)4]− 34
= r

= P 4
(
1
4

)4
w−3L−2 = r

Re-arranging to get L by itself gives us

L∗ = (
P

4
w−

3
4r−

1
4 )2

Taking advantage of the symmetry of the model, we can quickly
find the optimal K

K∗ = (
P

4
r−

3
4w−

1
4 )2

L∗ and K∗ are the firm’s factor demand equations.
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1.7 Young’s Theorem

For cross partial "effects" the order of differentiation is immaterial.
Therefore:

fxy = fyx

As long as the cross partials are continuous.

In the case of GENERAL FUNCTIONS , this will always be as-
sumed to be true!

1.7.1 Example:
z = x3 + 5xy = y2

fx = 3x2 + 5y fy = 5x− 2y

fxx = 6x fyy = −2
fxy = 5 fyx = 5︸ ︷︷ ︸

fxy=fyx

1.8 Quadratic Form

The function
q = ax2 + 2bxy + cy2

is a quadratic form. A quadratic can be written in matrix form as:

q
1x1

=
[
x y

]
1x2

[
a b
c d

]
2x2

[
x
y

]
2x1

Det = (ac− b2)
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1.9 Positive and Negative Definiteness

q is said to be

1. (a) i. positive definite
ii. positive semi-definite
iii. negative semi-definite
iv. negative definite

IF q is always > 0,≥ 0,≤ 0, < 0 (for all x, y)

q is
{
positive definite
negative definite

}
if
{
a > 0
a < 0

}
and (ac− b2) > 0

The second order total differential
d2z = (fxx)dx

2+(2fxy)dxdy+(fyy)dy
2 {Y oung′sTheorem fxy = fyx}

Therefore

d2z =
[
dx dy

][fxx fxy
fxy fyy

][
dx
dy

]
The matrix of 2nd partial derivatives is called the Hessian

H =

[
fxx fxy
fxy fyy

]
where |H| = fxxfyy − f 2xy

Second Order Conditions

q is
{
positive definite
negative definite

}
if {fxx > 0, fxx < 0}, and

{
fxzfyy − f 2xy > 0

}
Note: fxzfyy − f 2xy > 0 implies that fyy must have the same sign as

fxx
Therefore if:
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1. fx = fy = 0 (FOC), and if:

2. SOC

d2z is
{
negative definite
positive definite

}
then z is

{
a maximum
a minimum

1.10 n-Variable Case

Given
z = f(x1, x2, ...xn)

For an Extremum (max or min):

f1 = f2 = f3 = ... = fn = 0 (First Order Conditions)

Then d2z in Matrix Form is

[
dx1 dx2 ... dxn

]
(1xn)


f11 f12 f13 ... f1n
f21 f22 ... ... f2n
f31 f33 ... ...
... ... ... ... ...
fn1 ... ... ... fnn


(nxn)


dx1
dx2
dx3
...
dxn


(nx1)

For a Max: (Principal minors alternate signs)
|H1| = f11 < 0, |H2| = f11f22 − f 212 > 0, |H3| < 0, ...(−1)n |Hn| > 0
For a Min: (Principal minors have the same sign)
|H1| > 0, |H2| > 0, ... |Hn| > 0
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1.10.1 Example: Output Maximization

Let
Q = 10L+ 10K + LK − L2 −K2

F.O.C.’s[
∂Q
∂L = 10 +K − 2L = 0
∂Q
∂K = 10 + L− 2K = 0

]
OR

{
2L−K = 10
−L+ 2K = 10

}
2 Equations with 2 unknowns from FOC. Matrix Form:[

2 −1
−1 2

] [
L
K

]
=

[
10
10

] {
Det = 3

}
Cramer’s Rule

L =

∣∣∣∣10 −1
10 2

∣∣∣∣
3

=
20 + 10

3
= 10

K =

∣∣∣∣ 2 10
−1 10

∣∣∣∣
3

=
20 + 10

3
= 10

Now check 2nd order conditions from F.O.C

10 +K − 2L = 0
10 + L− 2K = 0

}
when K,L=10 FOC’s

are identities

S.O.C.

dK − 2dL = 0
dL− 2dK = 0
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Find the Hessian [
−2 1
1 −2

] [
dL
dK

]
=

[
0
0

]

H =

[
QLL QLK

QKL QKK

]
=

[
−2 1
1 −2

]

QLL = −2 < 0 QLLQKK −Q2KL = (−2)(−2)− (1) > 0︸ ︷︷ ︸
Therefore Q is Max at K=10, L=10

1.11 Economic Interpretation of the 2nd Order
Conditions

Given the production function

Q = Q(K,L)

QL > 0, QLL < 0 implies the "Law of Diminishing Returns"

The condition
QLLQKK −Q2KL > 0

1. (a) says that for a Maximum the direct effects (QLL,QKK) must
outweigh the indirect effects (QKLQLK)

(b) a production function can have the properties of "the law
of diminishing returns" and "increasing returns to scale"
at the same time

(c) Therefore Q(K,L) has no unconstrained maximum
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1.12 Profit Maximization and Comparative Stat-
ics

Let q = f(x1, x2)be the production function.
The profit function is

π = pf(x1, x2)− w1x1 − w2x2

where p = output price, w1,w2 = factor prices of x1 and x2 respectively
The FOC‘s for profit max

∂π
∂x1

= pf1 − w1 = 0
∂π2
∂x2

= pf2 − w2 = 0

}
This gives us 2 equations and

2 unknowns, x∗1,x
∗
2
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Solving the F.O.C’s we get:

x∗1 = x∗1(w1, w2, P ) x∗2 = x∗2(w1, w2, P )
{x∗1,x∗2 as functions of exogenous variables}

2nd order conditions
From the F.O.C.’s

pf1 − w1 = 0
pf2 − w2 = 0

}
at x1=x∗1, x2=x

∗
2

Differentiate again for the Hessian[
pf11 pf12
pf21 pf22

](
dx1
dx2

)
=

(
0
0

)
H =

[
pf11 pf12
pf21 pf22

]
= p

[
f11 f12
f21 f22

]
For Maximum

|H1| = f11 < 0 |H2| = f11f22 − f 212 > 0

1.13 Comparative Statics

By substituting

x∗1 = x∗1(w1, w2, P ) x∗2 = x∗2(w1, w2, P )

back into the F.O.C.’s

Pf1 = (x∗1(w1, w2, P ), x∗2(w1, w2, P ))− w1 = 0

Pf2 = (x∗1(w1, w2, P ), x∗2(w1, w2, P ))− w2 = 0

The F.O.C.‘s become identities that implicitly define x1,x2 as functions
of w1,w2,and P. Therefore to find

∂x∗1
∂w1

, ∂x
∗
2

∂w1
etc. we can use the implicit

function theorem by finding the Jacobian of the F.O.C.’s
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Find: ∂x∗1
∂w1

, ∂x
∗
2

∂w1
Totally differentiate with respect to w1

Pf11
∂x∗1
∂w1

+ Pf12
∂x∗2
∂w1
− dw1
dw1

= 0

{
dw1
dw1

= 1

}
Pf21

∂x∗1
∂w1

+ Pf22
∂x∗2
∂w1

= 0

Matrix Form: [
Pf11 Pf12
Pf21 Pf22

]( ∂x∗1
∂w1
∂x∗2
∂w1

)
=

(
1
0

)
The Jacobian determinant

|J | = P (f11f22 − f 212) > 0

The Jacobian of the F.O.C.’s is also the Hessian of the S.O.C.’s

1.13.1 Solving by Cramer’s Rule

∂x∗1
∂w1

=

∣∣∣∣1 Pf12
0 Pf22

∣∣∣∣
|H| =

Pf22
P (f11f22 − f 212)

=
f22

f11f22 − f 212
< 0

∂x∗2
∂w1

=

∣∣∣∣Pf11 1
Pf21 0

∣∣∣∣
|H| ==

−f22
f11f22 − f 212

≷ 0?

∂x∗1
∂w1

< 0 implies downward sloping factor demand curve. For ∂x∗2
∂w1

this
sign depends on the relationship in production between x1 and x2
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1.13.2 Example: Profit Maximization

Suppose we have the following production

q = f(K,L) = L
1
2K

1
2

 q = output
L = labour
K = capital


Then the profit function for a competitive firm is

π = Pq − wL− rK

P = market price
w = wage rate
r = rental rate


or π = PL

1
2 + PK

1
2 − wL− rK

First Order Conditions

(1)
∂π

∂L
=

P

2
L

1
2 − w = 0

General Form︷ ︸︸ ︷
{PfL − w = 0}

(2)
∂π

∂K
=

P

2
K

1
2 − r = 0 {PfK − r = 0}

Solving (1) and (2) we get

L∗ =
(
2w
P

)−2
K∗ =

(
2n
P

)−2
Second Order Conditions (Hessian)
Differentiate First Order Conditions with respect to K, L
General

PfLLdL+ PfLKdK = 0

PfKLdL+ PfKKdK = 0
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Hessian (
PfLL PfLK
PfKL PfKK

)(
dL
dK

)
|H1| = PfLL < 0

|H2| = P
[
fLLfKK − (fKK)2

]
> 0

Specific

−P
4
L

−3
2 dL+ (0)dK = 0

−P
4
K

−3
2 dL+ (0)dL = 0

Hessian (
−P
4L

−3
2 0

0 −P
4K

−3
2

)(
dL
dK

)
H1 = −P

4
L

−3
2

|H2| =

(
−P

4
L

−3
2

)(
−P

4
K

−3
2

)
− 0 > 0

|H2| for both general and specific >0, therefore Profit Max
From the FOC’s we know:

L∗ =
(
2w
P

)−2
K∗ =

(
2r
P

)−2
by subbing K∗ and L∗ into the profit function, we get:

π∗ = PL
1
2 + PK

1
2 − wL− rK

π∗ = P

[(
2w

P

)−2] 1
2

+ P

[(
2r

P

)−2] 1
2

− w
(

2w

P

)−2
− r

(
2r

P

)−2
π∗ =

P 2

2w
+
P 2

2r
− P 2

4w
− P 2

4r
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Finally:

π∗ = π∗(w, r, P ) =
P 2

4w
+
P 2

4r

where π∗(w, r, P ) is "Maximum profits as a function of w,r, and P"

1.14 Hotelling’s Lemma

Hotelling’s Lemma states the following conditions about the profit
function:

1.
(
∂π∗(w,r,P )

∂P

)
= q∗

2a. −∂π∗(w,r,P )
∂w = L∗ 2b. −∂π∗(w,r,P )

∂r = K∗

Using the profit function:

π∗(w, r, P ) =
P 2

4w
+
P 2

4r
Condition 1:

∂π∗

∂P
=

2P

4w
+

2P

4r
=

P

2w
+
P

2r

Check:

q = L
1
2K

1
2 =

[(
2w

P

)−2] 1
2

+

[(
2r

P

)−2] 1
2

=

(
2w

P

)−1
+

(
2r

P

)−1
=

P

2w
+
P

2r

Condition 2a

−∂π
∗(w, r, P )

∂w
= − ∂

∂w

[
P 2

4w
+
P 2

4r

]
= −

(
− P 2

4w2

)
=

(
2w

P

)−2
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Therefore −∂π∗

∂w = L∗

Condition 2b

−∂π
∗(w, r, P )

∂r
= −

(
−P

2

4r2

)
=

(
2r

P

)−2
= K∗

1.14.1 Factor Demand Curves

L∗ and K∗ are the firms demand curves for labour and capital

L∗ =
P 2

4w2
=⇒ ∂h∗

∂w
= − P 2

4w3
< 0

K∗ =
P 2

4r2
=⇒ ∂K∗

∂r
− P 2

4r3
< 0

Therefore: Downward sloping factor demand curves

1.15 Iso-Profit Curves (Level Curves)

Take the total differential of π∗(w, r, P ); let dπ∗ = 0

dπ∗ = − P 2

4w2
dw +−P

2

4r2
dr = 0

dr

dw
= −

P 2

4w2

P 2

4r2

= − r
2

w2
< 0 (slope of Iso-Profit Curve)

Concave or Convex?

d

dw

(
dr

dw

)
= −

(
−2

r2

w3

)
= 2

r2

w3
> 0
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Therefore the slope of the Iso-Profit curve is negative
(
dr
dw

)
but the

slope is becoming less negative:
(
d2r
dw2

)
> 0 Therefore: Convex
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1.16 Profit Maximization

Developing the profit function

π = TR− TC
where

π = PQ− C(Q)

Therefore profit max is:

∂π

∂Q
=
∂TR

∂Q
− ∂C

∂Q
= MR−MC = 0 Q is the choice variable

Now suppose
Q = f(K,L)

Then

π = P · f(K,L)− (wL+ rK) where TC=wL+rK

Now profit max is:

(1) ∂π
∂L = PfL − w = 0

(2) ∂π
∂K = PfK − r = 0

Now K,L are the choice variables.

The solution
{
K∗ = K∗(w, r, P )
L∗ = L∗(w, r, P )

}
are demand curves

Now suppose the firm is a monopolist, then he faces a downward
sloping demand curve

P = D(Q)

Profit function is
π = D(Q)Q− wL− rK
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where
Q = f(K,L)

Differentiate using the Chain Rule
F.O.C.

πL : [D(Q) +QD′(Q)] fL − w = 0

πK : [D(Q) +QD′(Q)] fK − r = 0

OR

MR ·MPL − w = 0

MR ·MPL − r = 0

OR

[D(f(K,L)) + f(K,L)D′(f(K,L))] fL − w = 0

[D(f(K,L)) + f(K,L)D′(f(K,L))] fK − r = 0

Giving
K∗ = K∗(w, r) L∗ = L∗(w, r)

2 Chapter 11: Part 2 - Price Disc.
2.0.1 Example

Let

P1 = 100− q1 P2 = 150− 2q2 Mkt. AR Functions

Let

TC = 100 + (q1 + q2)
2

π = P1q1 + P2q2 − 100− (q1 + q2)
2

π = 100q1 − q21 + 150q2 − 2q22 − 100− (q1 + q2)
2
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FOC‘s

π1 = 100− 2q1 − 2(q1 + q2) = 100− 4q1 − 2q2 = 0

π2 = 150− 4q2 − 2((q1 + q2) = 150− 2q1 − 6q2 = 0

q1 =

∣∣∣∣100 2
150 6

∣∣∣∣∣∣∣∣4 2
2 6

∣∣∣∣ =
600− 300

20
= 15

q2 =

∣∣∣∣4 100
2 150

∣∣∣∣
20

=
600− 200

20
= 20

P ∗1 = 85 P ∗2 = 110

SOC’s

|H| =
∣∣∣∣−4 −2
−2 −6

∣∣∣∣ H1 = −4 < 0 H2 = 20 > 0

Therefore a Max
**At home, verify that the Inverse Elasticity Rule holds here!

2.1 Concavity and Convexity

Let
y = f(x̄)

where
x̄ = [x̄1, ...x̄n] and let x̂ = [x̂1, ...x̂n]

such that x̄ 6= x̂
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Definition 1:
y=f(x̄) is a concave function if

f (k · x̄+ (1− k) · x̂)︸ ︷︷ ︸
Point on Dome

≥ kf(x̄) + (1− k)f(x̂)︸ ︷︷ ︸
Line Segment

Definition 2:
y=f(x̄) is convex if

f(kx̄+ (1− k)x̂) ≤ kf(x̄) + (1− k)f(x̂)

for strict concavity/convexity replace the weak inequalities with strict
inequalities.

If the function y=f(x̄) is twice differentiable, then the following
holds:

Theorem 1: y=f(x̄) is concave/convex if and only the Hessian, |H|
is negative/positive semidefinite

Theorem 2: If the Hessian is negative definite/positive definiate for
all x, then y=f(x) is concave/convex
NOTE: Theorem 2 is a suffi cient condition for strict concavity/convexity

but it is not a necessary condition

2.2 Limit Output Model

Suppose a monopolist faces the following demand curve

p = a− q a is a constant > 0

His cost function is

TC = k + cq where K = set up costs, cq = variable costs
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Therefore

ATC =
k

q
+ c {= AFC + AV C}

The profit function is

π = pq − (K + cq)

Maximize

∂π

∂q
= a− 2q − c = 0 −→ q =

a− c
2

p = a− 1 = a−
(
a− c

2

)
=
a+ c

2

Set MR=MC

a− 2q = c

q =
a− c

2

Monopolists profit max graphically
1

Now consider a potential entrant to the monopolist‘s market
Assumption: Entrant takes monopolist‘s output as given
Let

qe = Entrant′s Output

qm = Monopolist′s Output

1Graph - page 5 Cha. 11 part 2
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If entrant does enter, market price will be:

p = a− (qm − qe)

Entrant’s profits

π = pqe − k − cqe
πe = (a− qe − qm)qe − k − cqe

∂πe
∂qe

= a− qm − 2qe − c = 0

qe =
a− c− qm

2
Entrant’s output is a function of the monopolist’s output.

Entrant’s output

qe =
a− c− qm

2
Sub into profit function

πe = (a− qe − qm)qe − k − cqe

πe = (a− qm)

(
a− c− qm

2

)
−
(
a− c− qm

2

)2
− k − c

(
a− c− qm

2

)
Entrant’s profit function is a function of a, c, k, and qm
He will enter if: πe > 0 OR if: (a− qm − qe)qe − cqe > k
Which says: If an entrant’s profits (gross) can cover fixed costs (k)

then he will enter the market of the monopolist.

Graphically:
· Entrant takes monopolist’s qm as given
· Entrant maximizes profits off the residual demand curve
MONOPOLIST’S DEMAND CURVE
2

2 insert first graph on page 8 chap 11 part 2
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· B=Entrants profit above variable costs
· if B>k then the entrant will enter
· if B<k then there will be no entry
RESIDUAL DEMAND CURVE
3

The monopolist knows that

q∗e =
a− c− qm

2

or generallyq∗e = f(qm)Therefore the monopolist can effect the en-
trant’s choice q∗e
The monopolist can choose qm such that when the entrant chooses

the optimal q∗e he will not earn any profits
Therefore the monopolists maximization problem is:
MAX:

πm = (a− qm)− qm − k − cqm
Subject to:

πe = (a− qm − qe)qe − cqe ≤ k

Substitute
qe =

a− c− qm
2

into the monopolist’s max problem, Max

aqm − q2m − cqm − k

subject to

(a− qm)

[
a− c− qm

2

]
−
[
a− c− qm

2

]2
− c

[
a− c− qm

2

]
= K

Notice that there is now only one choice variable, qm.
3 insert second graph page 8 ch. 11 part 2
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There q∗m is determined by the constant
Without differentiating solve the constraint for q∗m

Answer:
q∗m = a− c− 2

√
k

4

2.3 Cournot Duopoly

Suppose the monopolist decides to allow entry. The result: Duopoly
Assumption: Each firm takes the other firms output as exongenous

and chooses the output to maximize its own profits
Market Demand:

P = a− bq
or P = a− b(q1 + q2) {q1 + q2 = q}

where qi is firm i’s output {i = 1, 2}
Each firm faces the same cost function

TC = K + cqi {i = 1, 2}

Each firm’s profit function is:

πi = pqi − cqi −K

Firm 1:

π1 = pq1 − cq1 −K
π1 = (a− bq1 − bq2)q1 − cq1 −K

4GRAPH page 11
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Max π1, treating q2 as a constant

∂π1
∂q1

= a− bq2 − 2bq1 − c = 0

2bq1 = a− c− bq2
q1 =

a− c
2b
− q2

2
−→ "Best Response Function"

Best Response Function: Tells firm 1 the profit maximizing q1 for
any level of q2
For Firm 2:

π2 = (a− bq1 − bq2)q2 − cq2 −K

Max π2 (treating q1 as a constant) gives

q2 =
a− c

2b
− q1

2
Firm 2’s Best Response Function

The two "Best Response" Functions

(1) q1 = a−c
2b −

q2
2

(2) q2 = a−c
2b −

q1
2

gives us two equations and two unknowns.
The solution to this system of equations is the equilibrium to the

"Cournot Duopoly" game
Using Cramer’s Rule:

(1) q∗1 = a−c
3b

(2) q∗2 = a−c
3b

Market Output : q∗1 + q∗2 =
2(a− c)

3b

Best Response Functions Graphically
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2.4 Stackelberg Duopoly

In the Cournot Duopoly , 2 firms picked output simultaneously. Sup-
pose firm 1 was able to choose output first, knowing how firm 2‘s output
would vary with firm 1‘s output.

2.4.1 Firm 1‘s Max Problem

Max q1 : (a− bq1 − bq2)q1 − cq1 −K
Subject to:

q2 =
a− c

2b
− q1

2
{2’s Response Function}
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Sub in for q2

Max q1 : aq1 − bq21 − bq1
(
a− c

2b
− q1

2

)
− cq1 −K

∂π1
∂q1

= a− 2bq1 −
(
a− c

2b

)
+ bq1 − c = 0

q∗1 =
a− c

2b

Firm 2:

q2 =
a− c

2b
− q1

2
Sub in

q1 =
a− c

2b

q∗2 =
a− c

2b
− 1

2

(
a− c

2b

)
=
a− c

4b
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Graphically: Stackelberg and Cournot Equilibrium
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