CHAPTER

TEN
EXPONENTIAL AND LOGARITHMIC FUNCTIONS

The Nth-derivative test developed in the preceding chapter equips us for the task
of locating the extreme values of any objective function, as long as it involves
only one choice variable, possesses derivatives to the desired order, and sooner or
later yields a nonzero derivative value at the critical value x,. In the examples
cited in Chap. 9, however, we made use only of polynomial and rational
functions, for which we know how to obtain the necessary derivatives. Suppose
that our objective function happened to be an exponential one, such as

y =8N
Then we are still helpless in applying the derivative criterion, because we have yet
to learn how to differentiate such a function. This is what we shall do in the
present chapter.

Exponential functions, as well as the closely related logarithmic functions,
have important applications in economics, especially in connection with growth
problems, and in economic dynamics in general. The particular application
relevant to the present part of the book, however, involves a class of optimization
problems in which the choice variable is time. For example, a certain wine dealer
may have a stock of wine, the market value of which, owing to its vintage year, is
known to increase with time in some prescribed fashion. The problem is to
determine the best time to sell that stock on the basis of the wine-value function,
after taking into account the interest cost involved in having the money capital
tied up in that stock. Exponential functions may enter into such a problem in two
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ways. In the first place, the value of the wine may increase with time according to
some exponential law of growth. In that event, we would have an exponential
wine-value function. This is only a possibility, of course, and not a certainty.
When we give consideration to the interest cost, however, a sure entry is provided
for an exponential function because of the fact of interest compounding, which
will be explained presently. Thus we must study the nature of exponential
functions before we can discuss this type of optimization problem.

Since our primary purpose is to deal with time as a choice variable, let us now
switch to the symbol 7—in lieu of x—to indicate the independent variable in the
subsequent discussion. (However, this same symbol ¢ can very well represent
variables other than time also.)

10.1 THE NATURE OF EXPONENTIAL FUNCTIONS -

As introduced in connection with polynomial functions, the term exponent means
an indicator of the power to which a variable is to be raised. In power expressions
such as x* or x°, the exponents are constants, but there is no reason why we
cannot also have a variable exponent, such as in 3" or 3’, where the number 3 is to
be raised to varying powers (various values of x). A function whose independent
variable appears in the role of an exponent is called an exponential function.

Simple Exponential Function

In its simple version, the exponential function may be represented in the form

(10.1) y=f(1)=1"" (b>1)

where y and ¢ are the dependent and independent variables, respectively, and &
denotes a fixed base of the exponent. The domain of such a function is the set of
all real numbers. Thus, unlike the exponents in a polynomial function, the
variable exponent 7 in (10.1) is not limited to positive integers—unless we wish to
impose such a restriction.

But why the restriction of » > 1? The explanation is as follows. In view of the
fact that the domain of the function in (10.1) consists of the set of all real
numbers, it is possible for ¢ to take a value such as 3. If b is allowed to be
negative, the half power of & will involve taking the square root of a negative
number., While this is not an impossible task, we would certainly prefer to take
the easy way out by restricting b to be positive. Once we adopt the restriction
b > 0, however, we might as well go all the way to the restriction b > 1: The
restriction b > 1 differs from b > 0 only in the further exclusion of the cases of
(1)0 < b < 1and (2) b = 1; but as will be shown, the first case can be subsumed
under the restriction b > 1, whereas the second case can be dismissed outright.
Consider the first case. If & = £, then we have

N
y = 5 _5,_
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This shows that a function with a fractional base can easily be rewritten into one
with a base greater than 1. As for the second case, the fact that b = | will give us
the function y = 1’ = 1, so that the exponential function actually degenerates into
a constant function; it may therefore be disqualified as a member of the
exponential family.

Graphical Form

The graph of the exponential function in (10.1) takes the general shape of the
curve in Fig. 10.1. The curve drawn is based on the value b = 2; but even for
other values of b, the same general configuration will prevail.

Several salient features of this type of exponential curve may be noted. First,
it is continuous and smooth everywhere; thus the function should be everywhere
differentiable. As a matter of fact. it is continuously differentiable any number of
times. Second, it is monotonically increasing, and in fact y increases at an
increasing rate throughout. Consequently, both the first and second derivatives of
the function y = b’ should be positive—a fact we should be able to confirm after
we have developed the relevant differentiation formulas. Third, we note that, even
though the domain of the function contains negative as well as positive numbers,
the range of the function is limited to the open interval (0, c0). That is, the
dependent variable y is invariably positive, regardless of the sign of the indepen-
dent variable .

| ¢
4 Figure 10.1
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The monotonicity of the exponential function entails at least two interesting
and significant implications. First, we may infer that the exponential function
must have an inverse function, which is itself monotonic. This inverse function.
we shall find. turns out to be a logarithmic function. Second, since monotonicity
means that there is a unique value of 7 for a given value of y and since the range
of the exponential function is the interval (0. o¢), it follows that we should be able
to express any positive number as a unique power of a base b > 1. This can be
seen from Fig. 10.1, where the curve of y = 2’ covers all the positive values of ) in
its range; therefore any positive value of y must be expressible as some unique
power of the number 2. Actually. even if the base is changed to some other real
number greater than 1. the same range holds. so that it is possible to express any
positive number y as a power of any base b > 1.

Generalized Exponential Function

This last point deserves closer scrutiny. If a positive » can indeed be expressed as
powers of various alternative bases, then there must exist a general procedure of
base conversion. In the case of the function v = 97, for instance. we can readily
transform it into p = (3?)" = 3%, thereby converting the base from 9 to 3.
provided the exponent is duly altered from r to 2¢. This change in exponent,
necessitated by the base conversion. does not create any new type of function. for,
if we let w = 27, then y = 3" = 3" is still in the form of (10.1). From the point of
view of the base 3. however, the exponent is now 2r rather than 1. What is the
effect of adding a numerical coefficient (here. 2) to the exponent ¢?

The answer is to be found in Fig. 10.2a. where two curves are drawn —ong
for the function y = /(1) = b and one for another function y = g(t) = h*". Since
the exponent in the latter is exactly twice that of the former. and since the
identical base is adopted for the two functions, the assignment of an arbitrary
value r = 1, in the function g and r = 2¢,, in the function f must yield the same
value:

f(zfu) = g(to) = b0 =W

Thus the distance y,J will be half of y, K. By similar reasoning, for any value of y.
the function g should be exactly halfway between the function f and the vertical
axis. It may be concluded. therefore, that the doubling of the exponent has the
effect of compressing the exponential curve halfway toward the v axis, whercas
halving the exponent will extend the curve away from the y axis to twice the
horizontal distance.

1t is of interest that both functions share the same vertical intercept

£0) = g(0) = # = 1

The change of the exponent ¢ to 2¢, or to any other multiple of 7. will leave the
vertical intercept unaffected. In terms of compressing. this is because compressing
a zero horizontal distance will still yield a zero distance.
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The change of exponent is one way of modifying—and generalizing—the
exponential function of (10.1); another is to attach a coefficient to &', such as 2b%.
[Warning: 2b" #+ (2b)".] The effect of such a coefficient is also to compress or
extend the curve, except that this time the direction is vertical. In Fig. 10.2b, the
higher curve represents y = 25", and the lower one is y = #'. For every value of ¢,
the former must obviously be twice as high, because it has a y value twice as large
as the latter. Thus we have ¢,J’ = J'K’. Note that the vertical intercept, too, is
changed in the present case. We may conclude that doubling the coefficient (here,
from 1 to 2) serves to extend the curve away from the horizontal axis to twice the
vertical distance, whereas halving the coefficient will compress the curve halfway
toward the r axis.

With the knowledge of the two modifications discussed above, the exponen-
tial function y = b’ can now be generalized to the form

(102)  y = ab“

where ¢ and ¢ are “compressing” or “extending” agents. When assigned various
values, they will alter the position of the exponential curve, thus generating a
whole family of exponential curves (functions). If a and ¢ are positive, the general
configuration shown in Fig. 10.2 will prevail; if a or ¢ or both are negative,
however, then fundamental modifications will occur in the configuration of the
curve (see Exercise 10.1-5 below).

A Preferred Base

What prompted the discussion of the change of exponent from ¢ to cr was the
question of base conversion. But, granting the feasibility of base conversion, why

{a) {b)

Figure 10.2
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would one want to do it anyhow? One answer is that some bases are more
convenient than others as far as mathematical manipulations are concerned.

Curiously enough. in calculus, the preferred base happens to be a certain
irrational number denoted by the symbol e:

e=2.71828...

When this base e is used in an exponential function, it is referred to as a narural
exponential function, examples of which are

y = e’ y = e31 y = Ae™
These illustrative functions can also be expressed by the alternative notations

y=exp(r) y=exp(3t) y=4dexp(r)
where the abbreviation exp (for exponential) indicates that e is to have as its
exponent the expression in parentheses.

The choice of such an outlandish number as e = 2.71828... as the preferred
base will no doubt seem bewildering. But there is an excellent reason for this
choice, for the function e’ possesses the remarkable property of being its own
derivative! That 1s,

Let=¢!

dt
a fact which will reduce the work of differentiation to practically no work at all.
Moreover, armed with this differentiation rule—to be proved later in this chapter
—it will also be easy to find the derivative of a more complicated natural
exponential function such as y = Ae”’. To do this, first let w = r1, so that the
function becomes

y = Ae" where w = rr, and A, r are constants

Then, by the chain rule, we can write

dy _ i}’_ d_W _ w _ rt
0 dw di = Ae (r)—rAe
That is,

d re __ rt
(10.3) EAe = rde

The mathematical convenience of the base e should thus be amply clear.

EXERCISE 10.1

1 Plot in a single diagram the graphs of the exponential functions y = 3" and y = 340,
(a) Do the two graphs display the same general positional relationship as shown in Fig,
10.2a?
(b) Do these two curves share the same y intercept? Why?
(¢) Sketch the graph of the function y = 3% in the same diagram.
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2 Plot in a single diagram the graphs of the exponential functions y = 4’ and y = 3(4").
(a) Do the two graphs display the general positional relationship suggested in Fig.
10.25?
(b) Do the two curves have the same y intercept? Why?
(¢) Sketch the graph of the function y = 3(4') in the same diagram.

3 Taking for granted that e’ is its own derivative, use the chain rule to find dy/dt for the
following;:
(a)y y=¢" (b) vy = 4e’’ (¢) y=6e %

4 In view of our discussion about (10.1), do you expect the function y = e’ to be
monotonically increasing at an increasing rate? Verify your answer by determining the
signs of the first and second derivatives of this function. In doing so, remember that the
domain of this function is the set of all real numbers, i.e., the interval (— oc, oc).

5 In (10.2), if negative values are assigned to a and ¢, the general shape of the curves in
Fig. 10.2 will no longer prevail. Examine the change in curve configuration by contrasting
(a) the case of a = — 1 against the case of a = 1, and (b) the case of ¢ = — 1 against the
case of ¢ = 1.

10.2 NATURAL EXPONENTIAL FUNCTIONS
AND THE PROBLEM OF GROWTH

The pertinent questions still unanswered are: How 1s the number e defined? Does
it have any economic meaning in addition to its mathematical significance as a
convenient base? And, in what ways do natural exponential functions apply to
economic analysis?

The Number ¢

Let us consider the following function:

(104)  f(m) = (1 + %)

If larger and larger values are assigned to m, then f(m) will also assume larger
values; specifically, we find that

fy=(+4) =2
f2)=(1+ 1) =225
f(3)=(1+14) =2.37037...
f(@) =0+ =244141 ..

Moreover, if m is increased indefinitely, then f(m) will converge to the number
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2.71828... = e; thus ¢ may be defined as the limit of (10.4) as m — o0:

(10.5) e= lim f(m)= lim (1 +l)
m— o m—oc m |
That the approximate value of e is 2.71828 can be verified by finding the
Maclaurin series of the function ¢(x) = e*—with x used here to facilitate the
application of the expansion formula (9.14). Such a series will give us a poly-
nomial approximation to e*, and thus the value of e (= e') may be approximated
by setting x = 1 in that polynomial. If the remainder term R, approaches zero as
the number of terms in the series is increased indefinitely, 1e., if the series is
convergent to ¢(x), then we can indeed approximate the value of e to any desired
degree of accuracy by making the number of included terms sufficiently large.
To this end, we need to have derivatives of various orders for the function.
Accepting the fact that the first derivative of e* is e itself, we can see that the
derivative of ¢(x) is simply e* and, similarly, that the second, third, or any
higher-order derivatives must be e* as well. Hence, when we evaluate all the
derivatives at the expansion point (x, = 0), we have the gratifyingly neat result

¢$'(0) = ¢"(0) = -+ = ¢(0) = e’ = 1

Consequently, by setting x, = 0 in (9.14), the Maclaurin series of e* is

e*=a¢(x)=¢(0)+¢'(0)x +

1 2 1 3 1 n
=1+x+§x +§x +~--+—!x + R,

The remainder term R, according to (9.15), can be written as

— (i)(n*l)(p) n+1 _ ef xn+l

T (n+ )

[67 D (x) = % .9t N (p) = €]

Inasmuch as the factorial expression (n + 1)! will increase in value more rapidly

than the power expression x" "' (for a finite x) as n increases, it follows that

R, — 0as n — co. Thus the Maclaurin series converges, and the value of e™ may,

as a result, be expressed as an infinite series—an expression involving an infinite

number (n — o) of additive terms which follow a consistent, recognizable

pattern of formation, and in which the remainder term R, disappears (R, — 0):
I 1

X 1 2 3 4 1 5
(10.6) e—l+x+2—!x TR R TE MR 4o
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As a special case, for x = 1, we find that

SRS S U
€—l+ +F+§+E+?+
=2+ 0.5+ 0.1666667 + 0.0416667 + 0.0083333 + 0.0013889

+0.0001984 + 0.0000248 + 0.0000028 + 0.0000003 + - - -
= 2.7182819

Thus, if we want a figure accurate to five decimal places, we can write e = 2.71828.
Note that we need not worry about the subsequent terms in the infinite series,
because they will be of negligible magnitude if we are concerned only with five
decimal places.

An Economic Interpretation of ¢

Mathematically, the number e is the limit expression in (10.5). But does it also
possess some economic meaning? The answer is that it can be interpreted as the
result of a special process of interest compounding.

Suppose that, starting out with a principal (or capital) of $1, we find a
hypothetical banker to offer us the unusual interest rate of 100 percent per annum
($1 interest per year). If interest is to be compounded once a year, the value of
our asset at the end of the year will be $2; we shall denote this value by V(1),
where the number in parentheses indicates the frequency of compounding within
1 year:

V(1) = initial principal (1 + interest rate)
—1(1 + 100%) = {1+ +)' =2

[f interest is compounded semiannually, however, an interest amounting to 50
percent (half of 100 percent) of principal will accrue at the end of 6 months. We
shall therefore have $1.50 as the new principal during the second 6-month period,
in which interest will be calculated at 50 percent of $1.50. Thus our year-end asset
value will be 1.50(1 + 50%); that is,

V(2) = (1 + 50%)(1 + 50%) = (1 +1)°

By analogous reasoning, we can write F(3) = (1 + 1)3, V(4) = (1 + )%, etc.; or,
in general,

(107)  V(m) = (1 +%)

where m represents the frequency of compounding in 1 year.

In the limiting case, when interest is compounded continuously during the
year, 1.e., when m becomes infinite, the value of the asset will grow in a
“snowballing” fashion, becoming at the end of 1 year

lim ¥(m)= lim (1 + %)m = e(dollars) (by (10.5)]

nt—> ¢ nt— o0
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Thus, the number e = 2.71828 can be interpreted as the year-end value to which a
principal of $1 will grow if interest at the rate of 100 percent per annum is
compounded continuously.

Note that the interest rate of 100 percent is only a nominal interest rate, for if
$1 becomes $e = $2.718 after 1 year, the effective interest rate is in this case
approximately 172 percent per annum.

Interest Compounding and the Function Ae”

The continuous interest-compounding process just discussed can be generalized in
three directions, to allow for: (1) more years of compounding, (2) a principal
other than $1, and (3) a nominal interest rate other than 100 percent.

If a principal of $1 becomes $e after 1 year of continuous compounding and
if we let $e be the new principal in the second year (during which every dollar will
again grow into $e), our asset value at the end of 2 years will obviously become
$e(e) = $ e2. By the same token, it will become $¢° at the end of 3 years or, more
generally, will become $e’ after ¢ years.

Next, let us change the principal from $1 to an unspecified amount, $4. This
change is easily taken care of: if $1 will grow into $e’ after 7 years of continuous
compounding at the nominal rate of 100 percent per annum, it stands to reason
that $4 will grow into $A4e’.

How about a nominal interest rate of other than 100 percent, for instance,
r = 0.05 (= 5 percent)? The effect of this rate change is to alter the expression 4e’
to Ae”, as can be verified from the following. With an initial principal of $4, to
be invested for  years at a nominal interest rate r, the compound-interest formula
(10.7) must be modified to the form

(10.8)  V(m) = A(l + é)m[

The insertion of the coefficient A reflects the change of principal from the

previous level of $1. The quotient expression r/m means that, in each of the m

compounding periods in a year, only 1/m of the nominal rate  will actually be

applicable. Finally, the exponent mt tells us that, since interest is to be com-

pounded m times a year, there should be a total of ms compoundings in ¢ years.
The formula (10.8) can be transformed into an alternative form

(108)  V(m) = A[(l + %)mﬁ}"

1 yvw]r
=A[(l+—) ] wherewz—m—
w r
As the frequency of compounding m is increased, the newly created variable w
must increase pari passu; thus, as m — oo, we have w — oo, and the bracketed
expression in (10.8'), by virtue of (10.5), tends to the number e. Consequently, we
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find the asset value in the generalized continuous-compounding process to be

(10.8") V= lim V(m)= Ade"
Ht— oC
as anticipated above,

Note that, in (10.8), 7 is a discrete (as against a continuous) variable: it can
only take values that are integral multiplies of 1/m. For example, if m = 4
(compounding on a quarterly basis), then ¢ can only take the values of 1,1 3 1,
etc., indicating that V(m) will assume a new value only at the end of each new
quarter. When m — o0, as in (10.8”), however, 1/m will become infinitesimal,
and accordingly the variable ¢ will become continuous. In that case, it becomes
legitimate to speak of fractions of a year and to let 1 be, say, 1.2 or 2.35.

The upshot is that the expressions e, e’, Ae’, and Ae” can all be interpreted
economically in connection with continuous interest compounding, as sum-
marized in Table 10.1.

Instantaneous Rate of Growth

It should be pointed out, however, that interest compounding is an illustrative,
but not exclusive, interpretation of the natural exponential function Ae”. Interest
compounding merely exemplifies the general process of exponential growth (here,
the growth of a sum of money capital over time), and we can apply the function
equally well to the growth of population, wealth, or real capital.

Applied to some context other than interest compounding, the coefficient r in
Ae™ no longer denotes the nominal interest rate. What economic meaning does it
then take? The answer is that r can be reinterpreted as the instantaneous rate of
growth of the function Ae”. (In fact, this is why we have adopted the symbol r,
for rate of growth, in the first place.) Given the function V' = Ae”, which gives
the value of V at each point of time ¢, the rate of change of V is to be found in the
derivative

dv

s rde” = rv [see (10.3)]

But the rate of growth of V is simply the rate of change in V expressed in relative
(percentage) terms, i.e., expressed as a ratio to the value of V itself. Thus, for any

Table 10.1 Continuous interest compounding

Years of
Nominal continuous Asset value, at the end of
Principal, $ interest rate compounding compounding process, $
1 100% (= 1) 1 e
1 100% t e’
A 100% t Ae'
A r t

Aei‘[
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given point of time, we have
dVydt  rV

V V

(10.9) Rate of growth of V' =

as was stated above.

Several observations should be made about this rate of growth. But, first, let
us clarify a fundamental point regarding the concept of time, namely, the
distinction between a point of time and a period of time. The variable ' (denoting
a sum of money, or the size of population, etc.) is a stock concept, which is
concerned with the question: How much of it exists at a given moment? As such,
V is related to the point concept of time; at each point of time, V' takes a unique
value. The change in ¥, on the other hand, represents a flow, which involves the
question: How much of it takes place during a given time span? Hence a change
in V and, by the same token, the rate of change of V' must have reference to some
specified peniod of time, say, per year.

With this understanding, let us return to (10.9) for some comments:

1. The rate of growth defined in (10.9) is an instantaneous rate of growth. Since
the derivative dV /dr = rAe” takes a different value at a different point of ¢,
as will V' = Ae”', their ratio must also have reference to a specific point (or
instant ) of t. In this sense, the rate of growth is instantaneous.

2. In the present case, however. the instantaneous rate of growth happens to be
a constant r. with the rate of growth thus remaining uniform at all points of
time. This many not, of course. be true of all growth situations actually
encountered.

3. Even though the rate of growth r is measured instantaneously, as of a
particular point of time, its magnitude nevertheless has the connotation of so
many percent per unit of time, say, per year (if 1 is measured in year units).
Growth, by its very nature. can occur only over a time interval. This is why a
single still picture (recording the situation at one instant) could never portray,
say, the growth of a child, whereas two still pictures taken at different times
—say, a year apart—can accomplish this. To say that V" has a rate of growth
of r at the instant ¢ = 1, therefore, really means that, if the rate r prevailing
at r = 1, is allowed to continue undisturbed for one whole unit of time (1
year), then J will have grown by the amount »}” at the end of the year.

4. For the exponential function V' = Ae™, the percentage rate of growth is
constant at all points of 7, but the absolute amount of increment of V increases
as time goes on, because the percentage rate will be calculated on larger and
larger bases.

Upon interpreting r as the instantaneous rate of growth, it is clear that little
effort will henceforth be required to find the rate of growth of a natural
exponential function of the form y = Ae’. provided r is a constant. Given a
function y = 75¢"%, for instance, we can immediately read off the rate of growth
of y as 0.02 or 2 percent per period.
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Continuous versus Discrete Growth

The above discussion, though analytically interesting, is still open to question
insofar as economic relevance is concerned. because in actuality growth does not
always take place on a continuous basis—not even in interest compounding.
Fortunately, however, even for cases of discrete growth, where changes occur only
once per period rather than from instant to instant, the continuous exponential
growth function can be justifiably used.

For one thing, in cases where the frequency of compounding is relatively
high, though not infinite, the continuous pattern of growth may be regarded as an
approximation to the true growth pattern. But, more importantly, we can show
that a problem of discrete or discontinuous growth can always be transformed
into an equivalent continuous version.

Suppose that we have a geometric pattern of growth (say, the discrete
compounding of interest) as shown by the following sequence:

A AL +0) AL+ ) AL+ i)

where the effective interest rate per period is denoted by / and where the exponent
of the expression (1 + /) denotes the number of periods covered in the com-
pounding. If we consider (1 + /) to be the base b in an exponential expression,
then the above sequence may be summarized by the exponential function
Ab'—except that, because of the discrete nature of the problem, ¢ is restricted to
integer values only. Moreover, b = 1 + i is a positive number (positive even if i is
a negative interest rate, say, —0.04), so that it can always be expressed as a power
of any real number greater than 1, including e. This means that there must exist a
number r such that*

l+i=b=¢"
Thus we can transform 45 into a natural exponential function:

A1 + i} = Ab" = Ae”

For any given value of r—in this context, integer values of /—the function
Ae" will, of course, yield exactly the same value as A(1 + i)', such as A(1 + i) =
Ae" and A(1 + i)> = Ae?’. Consequently, even though a discrete case A(1 + i)' is
being considered, we may still work with the continuous natural exponential
function Ae™. This explains why natural exponential functions are extensively
applied in economic analysis despite the fact that not all growth patterns may
actually be continuous.

Discounting and Negative Growth

Let us now turn briefly from interest compounding to the closely related concept
of discounting. In a compound-interest problem, we seek to compute the future
value V (principal plus interest) from a given present value A (initial principal).

* The method of finding the number 7. given a specific value of b, will be discussed in Sec. 10.4.
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The problem of discounting is the opposite one of finding the present value A of a
given sum ¥ which is to be available ¢ years from now.

Let us take the discrete case first. If the amount of principal 4 will grow into
the future value of A(1 + i)" after ¢ years of annual compounding at the interest
rate { per annum, 1.e., if

V=A(1 + i)

then, by dividing both sides of the equation by the nonzero expression (1 + i),
we can get the discounting formula:

(10.10) R S——T

(1+i)
which involves a negative exponent. It should be realized that in this formula the
roles of V and A have been reversed: 1 is now a given, whereas A4 is the unknown,
to be computed from i (the rate of discount) and 7 (the number of years), as well
as V.
Similarly, for the continuous case, if the principal 4 will grow into Ae’” after ¢
years of continuous compounding at the rate r in accordance with the formula

V= Ae"
then we can derive the corresponding continuous-discounting formula simply by
dividing both sides of the last equation by e’
V
(10.11) A=—=Ve "

erl

Here again, we have A4 (rather than }') as the unknown, to be computed from the
given future value V. the nominal rate of discount r, and the number of years ¢.

Taking (10.11) as an exponential growth function, we can immediately read
—r as the instantaneous rate of growth of A. Being negative, this rate is
sometimes referred to as a rate of decay. Just as interest compounding exemplifies
the process of growth, discounting illustrates negative growth.

EXERCISE 10.2

1 Use the infinite-series form of ¢ in (10.6) to find the approximate value of:

(a) e (b) Ve (=)
{Round off your calculation of each term to 3 decimal places, and continue with the series
till you get a term 0.000.)

2 Given the function ¢(x) = e*:

(a) Write the polynomial part P, of its Maclaurin series.

(h) Write the Lagrange form of the remainder R,. Determine whether R, — 0 as
n — oo, that is, whether the series is convergent to ¢{x).

(¢) If convergent, so that ¢(x) may be expressed as an infinite series, write out this
series,
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3 Write an exponential expression for the value:
(a) $10, compounded continuously at the interest rate of 5% for 3 years
(b) $690, compounded continuously at the interest rate of 4% for 2 years
(These interest rates are nominal rates per annum.)

4 What is the instantaneous rate of growth of y in each of the following?
(a) y = 67()()7{ (() y= Ae()l( v
(h) y=12&"" (d) v =0.03¢’
5 Show that the two functions y, = Ae”’ (interest compounding) and y, = 4e " (dis-

counting) are mirror images of each other with reference to the y axis [cf. Exercise 10.1-5,
part (b)].

10.3 LOGARITHMS

Exponential functions are closely related to logarithmic functions (log functions,
for short). Before we can discuss log functions, we must first understand the
meaning of the term logarithm.

The Meaning of Logarithm

When we have two numbers such as 4 and 16, which can be related to each other
by the equation 47 = 16, we define the exponent 2 to be the logarithm of 16 to the
base of 4, and write

log, 16 = 2

It should be clear from this example that the logarithm is nothing but the power
to which a base (4) must be raised to attain a particular number (16). In general,
we may state that

(10.12) v =2>b = r=log,y

which indicates that the log of y to the base b (denoted by log, y) is the power to
which the base b must be raised in order to attain the value y. For this reason, it is
correct, though tautological, to write

blOgh V = y

In the discussion of exponential functions, we emphasized that the function
y = b’ (with b > 1) is monotonically increasing. This means that, for any positive
value of y, there is a unique exponent 1 (not necessarily positive) such that y = b';
moreover, the larger the value of y, the larger must be ¢, as can be seen from Fig.
10.2. Translated into logarithms, the monotonicity of the exponential function
implies that any positive number y must possess a unique logarithm ¢ to a base
b > 1 such that the larger the y, the larger its logarithm. As Figs. 10.1 and 10.2
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show, y is necessarily positive in the exponential function y = b"; consequently, a
negative number or zero cannot possess a logarithm,

Common Log and Natural Log

The base of the logarithm, b > 1, does not have to be restricted to any particular
number, but in actual log applications two numbers are widely chosen as
bases—the number 10 and the number e. When 10 is the base, the logarithm is
known as common logarithm, symbolized by log,, (or if the context is clear,
simply by log). With e as the base, on the other hand, the logarithm is referred to
as natural logarithm and is denoted either by log, or by In (for natural log). We
may also use the symbol log (without subscript e) if it is not ambiguous in the
particular context.

Common logarithms, used frequently in computarional work, are exemplified
by the following;

log,,1000 = 3 [because 10* = 1000]

log,,100 = 2 [because 10 = 100]
log,, 10 = 1 [because 10" = 10]
log,;1 = 0  [because 10" = 1]
log,,0.1 =-1 [because 10 ' = 0.1]

log,;0.01 =—2  [because 10~ % = 0.01]

Observe the close relation between the set of numbers immediately to the left of
the equals signs and the set of numbers immediately to the right. From these, it
should be apparent that the common logarithm of a number between 10 and 100
must be between 1 and 2 and that the common logarithm of a number between 1
and 10 must be a positive fraction, etc. The exact logarithms can easily be
obtained from a table of common logarithms or electronic calculators with log
capabilities.*

In analyrical work, however, natural logarithms prove vastly more convenient
to use than common logarithms. Since, by the definition of logarithm, we have the
relationship

(10.13)  y=¢' = 1=log,y(orr=1ny)

it is easy to see that the analytical convenience of e in exponential functions will
automatically extend into the realm of logarithms with e as the base.

* More fundamentally, the value of a logarithm, like the value of e, can be calculated (or
approximated) by resorting to a Maclaurin-series expansion of a log function, in a manner similar to
that outlined in (10.6). However, we shall not venture into this matter here.
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The following examples will serve to illustrate natural logarithms:
Ine’ =log, e’ =3
Ine* =log,e* =2

1

Ine' = log, e!
Inl =log, e’ =0

ln% —log, e '= —1
The general principle emerging from these examples is that, given an expression
e”, where n i1s any real number, we can automatically read the exponent n as the
natural log of e”. In general, therefore, we have the result that Ine” = n.*

Common log and natural log are convertible into each other; i.e., the base of
a logarithm can be changed, just as the base of an exponential expression can. A
pair of conversion formulas will be developed after we have studied the basic
rules of logarithms.

Rules of Logarithms

Logarithms are in the nature of exponents; therefore, they obey certain rules
closely related to the rules of exponents introduced in Sec. 2.5. These can be of
great help in simplifying mathematical operations. The first three rules are stated
only in terms of natural log, but they are also valid when the symbol In is
replaced by log,.

Rule I (log of a product) In(uv) =Inu + Ino (u,v > 0)
Example 1 1n(e®*)=1ne® + Ine*=6+4=10
Example 2 In(Ae’)=InA+Ine’=InAd +7

ProoF By definition, In u is the power to which ¢ must be raised to attain the
value of u; thus e™* = u. Similarly, we have e™® = v and ¢™“®) = yp. The latter
is an exponential expression for wv. However, another expression of wv is
obtainable by direct multiplication of » and v:

uo = eln uelnv — e]nu+lnu

Thus. by equating the two expressions for uv, we find

In{ue) elnu+lnu or

e In(uv) =Inu+ Inv

* As a mnemonic device, observe that when the symbol In (or log,) is placed at the left of the
expression e”, the symbol In seems to cancel out the symbol e, leaving n as the answer.

T Note that when e is raised to the power In u, the symbol e and the symbol In again seem 10
cancel out, leaving ¢ as the answer.
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Rule II (log of a quotient) In{u/vy=1Inu —Inv (u, v > 0)
Example 3 In(e’/c)=Ine*—Inc=2—Inc
Example 4 In(e’/e’)=1Inel—lne’=2—-5= -3

The proof of this rule is very similar to that of Rule I and 1s therefore left to you
as an exercise.

Rule III (log of a power) Inu“=alnu (u>0)
Example 5 Ine'”> = 15lne = 15

Example 6 In A> =31In A
PrROOF By definition, "% = u; and similarly, e"“" = y“ However, another
expression for u“ can be formed as follows:

ud = (elnu)a — ealnu

By equating the exponents in the two expressions for u“, we obtain the desired
result, Inu“ = alnu.

These three rules are useful devices for simplifying the mathematical opera-
tions in certain types of problems. Rule I serves to convert, via logarithms, a
multiplicative operation (uv) into an additive one (In u + Inv); Rule II turns a
division (u#/v) into a subtraction {In ¥ — In v); and Rule III enables us to reduce
a power to a multiplicative constant. Moreover, these rules can be used in
combination.

Example 7 In(uv®)=Ilnu+Inv*=Ilnu+ alnv

You are warned, however, that when we have additive expressions to begin
with, logarithms may be of no help at all. In particular, it should be remembered
that

Infu+v)#+Inu+Inov

Let us now introduce two additional rules concerned with changes in the base
of a logarithm.

Rule IV  (conversion of log base) log, u = (log, e)log, u) (u>0)
This rule, which resembles the chain rule in spirit (witness the ‘“chain”

» 7° N, /%), enables us to derive a logarithm log, u (to base e) from the
logarithm log, u (to base b), or vice versa.
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PrOOF Let u = e”, so that p = log, u. Then it follows that

log,, u = log, e = plog, e = (log, u)(log, ¢)

Rule IV can readily be generalized to
log, u = (log, ¢)(log, u)

where ¢ 1s some base other than b.

N 1
Rule V (inversion of log base) log, e = fog, b

This rule, which resembles the inverse-function rule of differentiation, enables
us to obtain the log of b to the base e immediately upon being given the log of e
to the base b, and vice versa. (This rule can also be generalized to the form

log, ¢ = 1/log.b).
PROOF As an application of Rule IV, let u = b; then we have

log, b = (log, e)(log, b)
But the left-side expression is log, # = 1; therefore log, e and log, b must be
reciprocal to each other, as Rule V asserts.

From the last two rules, it is easy to derive the following pair of conversion
formulas between common log and natural log:

log,, N = (log,, e )(log, N) = 0.4343 log, N
log, N = (log, 10)(log,, N ) = 2.3026 log,, N

for N a positive real number. The first equals sign in each formula is easily
justified by Rule 1V. In the first formula, the value 0.4343 (the common log of
2.71828) can be found from a table of common logarithms or an electronic
calculator; in the second, the value 2.3026 (the natural log of 10) is merely the
reciprocal of 0.4343, so calculated because of Rule V.

(10.14)

Example 8 log, 100 = 2.3026(log,, 100) = 2.3026(2) = 4.6052. Conversely. we
have log,, 100 = 0.4343(log, 100) = 0.4343(4.6052) = 2.

An Application

The above rules of logarithms enable us to solve with ease certain simple
exponential equations (exponential functions set equal to zero). For instance, if we
seck to find the value of x that satisfies the equation

ab* — ¢ =0 (a.b,c>0)

we can first try to transform this exponential equation, by the use of logarithms,
into a linear equation and then solve it as such. For this purpose, the ¢ term
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should first be transposed to the right side:
ab™ = ¢

Whereas we do not have a simple log expression for the additive expression
(ab* — ¢). we do have convenient log expressions for the multiplicative term ab*®
and for ¢ individually. Thus, after the transposition of ¢ and upon taking the log
{(say. to base 10) of both sides, we have

loga + xlogb = log ¢
which is a linear equation in the vanable x, with the solution

_logc—loga
B log b

EXERCISE 10.3

1 What are the values of the following logarithms?
{a) log,, 10,000 (¢) log,8i
(b) log,, 0.0001 (d) log3125

2 Evaluate the following;:
(¢) Ine’ (¢) In(1/¢e*) (e) (")
(b)log,e ®  (d)log.(l/e’) (f)yIne' —e™

3 Evaluate the following by application of the rules of logarithms:
(a) log,,(100)" (d) In Ae-

(b) log,, o (e) In ABe *
(¢) In(3/B) (f) (log, e)log, 64)
4 Which of the following are valid?
(a)lnuf2zlnl1 (©) lnu-‘rlnv—lan:ln@
e w
3
(b)3+1nv=ln% (d) In3 +In5=1n8

5 Prove that In(u/c)=Inu — Inc.

10.4 LOGARITHMIC FUNCTIONS

When a variable is expressed as a function of the logarithm of another variable,
the function 1s referred to as a logarithmic function. We have already seen two
versions of this type of function in (10.12) and (10.13), namely,

r=1log,y and r=log,y(=1Iny)

which differ from each other only in regard to the base of the logarithm.
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Log Functions and Exponential Functions

As we stated earlier, log functions are inverse functions of certain exponential
functions. An examination of the above two log functions will confirm that they
are indeed the respective inverse functions of the exponential functions

y=2>b and y=c¢e'

because the log functions cited are the results of reversing the roles of the
dependent and independent variables of the corresponding exponential functions.
You should realize, of course, that the symbol 7 is being used here as a general
symbol, and it does not necessarily stand for time. Even when it does, its
appearance as a dependent variable does not mean that time is determined by
some variable y; it means only that a given value of y is associated with a unique
point of time.

As inverse functions of monotonically increasing (exponential) functions,
logarithmic functions must also be monotonically increasing, which is consistent
with our earlier statement that the larger a number, the larger is its logarithm to
any given base. This property may be expressed symbolically in terms of the
following two propositions: For two positive values of y (y, and y,),

Iny =1Iny, And Yi=M»n
Iny, > In y, And Yt =¥

These propositions are also valid, of course, if we replace In by log,.

(10.15)

The Graphical Form

The monotonicity and other general properties of logarithmic functions can be
clearly observed from their graphs. Given the graph of the exponential function
y = e, we can obtain the graph of the corresponding log function by replotting
the original graph with the two axes transposed. The result of such replotting is
illustrated in Fig. 10.3. Note that if diagram b were laid over diagram a, with y
axis on y axis and 7 axis on ¢ axis, the two curves should coincide exactly. As they
actually appear in Fig. 10.3—with interchanged axes—on the other hand, the two
curves are seen to be mirror images of each other (as the graphs of any pair of
inverse functions must be) with reference to the 45° line drawn through the
origin.

This mirror-image relationship has several noteworthy implications. For one,
although both are monotonically increasing, the log curve increases at a decreas-
ing rate (second derivative negative), in contradistinction to the exponential curve,
which increases at an increasing rate. Another interesting contrast is that, while
the exponential function has a positive range, the log function has a positive
domain instead. (This latter restriction on the domain of the log function is, of
course, merely another way of stating that only positive numbers possess loga-
rithms.) A third consequence of the mirror-image relationship is that, just as
y = e’ has a vertical intercept at 1, the log function ¢ = log, y must cross the
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t

Figure 10.3

horizontal axis at y = 1, indicating that log,1 = 0. Inasmuch as this horizontal
intercept is unaffected by the base of the logarithm—for instance, log,, 1 = 0 also
—we may infer from the general shape of the log curve in Fig. 10.3b that, for any
base,

0<y<1 logy <0
(10.16) y=1 < log y =0
y>1 logy >0

For verification, we can check the two sets of examples of common and natural
logarithms given in Sec. 10.3. Furthermore, we may note that

(10.16") logy—>{ _i} asy—>{80+

The graphical comparison of the logarithmic function and the exponential
function in Fig. 10.3 is based on the simple functions y = e¢” and t = In y. The
same general result will prevail if we compare the generalized exponential
function y = Ae’" with its corresponding log function. With the (positive) con-
stants A and r to compress or extend the exponential curve, it will nevertheless
resemble the general shape of Fig. 10.3a, except that its vertical intercept will be
at y = A rather than at y = 1 (when 1 = 0, we have y = Ae” = A). Its inverse
function, accordingly, must have a horizontal intercept at y = A. In general, with
reference to the 45° line, the corresponding log curve will be a mirror image of the
exponential curve.

If the specific algebraic expression of the inverse of y = Ae” is desired, it can
be obtained by taking the natural log of both sides of this exponential function
[which, according to the first proposition in (10.15), will leave the equation
undisturbed] and then solving for r:

Iny=1In(4e”")=1InA+ rilne=1n A + rt
hence
_Iny—In4

(10.17) ¢ -

(r+0)
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This result, a log function, constitutes the inverse of the exponential function
y = Ae”. As claimed earlier, the function in (10.17) has a horizontal intercept at
v = A, because when y = A4, we have In y = In A4, and therefore t = 0.

Base Conversion

In Sec. 10.2, it was stated that the exponential function y = Ab' can always be
converted into a narural exponential function y = Ae”", We are now ready to
derive a conversion formula. Instead of Ab’, however, let us consider the conver-
sion of the more general expression 45" into Ae’”’. Since the essence of the
problem is to find an r from given values of b and ¢ such that

e’ = b
all that is necessary is to express r as a function of 4 and ¢. Such a task is casily
accomplished by taking the natural log of both sides of the last equation:

Ine” = In b
The left side can immediately be read as equal to r, so that the desired function
(conversion formula) emerges as
(10.18) r=Inp‘=clnb

This indicates that the function y = 45’ can always be rewritten in the natural-
base form, y = Ae'<nP

Example 1 Convert y = 2 to a natural exponential function. Here, we have
A=1,b=2 and c=1. Hence r = clnb = 1n2, and the desired exponential
function is

y = Ae’l = e(lnz)x

If we like, we can also calculate the numerical value of (In 2) by use of (10.14) and
a table of common logarithms as follows:

(10.19)  In2 = 2.3026log,,2 = 2.3026(0.3010) = 0.6931

Then we may express the earlier result alternatively as y = %",

Example 2 Convert y = 3(5)* to a natural exponential function. In this exam-
ple, 4 =3, b =235 and ¢ = 2, and formula (10.18) gives us r = 2In 5. Therefore
the desired function is

y = Ae’ = 3e(21n5)l
Again, if we like, we can calculate that

2In5 = In25 = 2.3026 log , 25 = 2.3026(1.3979) = 3.2188

so the earlier result can be alternatively expressed as y = 3218

It is also possible, of course, to convert log functions of the form ¢ = log, y
into equivalent natural log functions. To that end, it is sufficient to apply Rule IV
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of logarithms, which may be expressed as

log, vy = (log, e)(log, y)

The direct substitution of this result into the given log function will immediately
give us the desired natural log function:

t =log, y = (log, e)(log, v)

1 : ~
= Tog b log, v [by Rule V of logarithms]

€

_Iny
In b

By the same procedure, we can transform the more general log function ¢ =
alog,(cy) into the equivalent form
a d
t = a(log, e)(log, cv) = log blog(,(c_») = mln(q«)

€

Example 3 Convert the function 1 = log, y into the natural log form. Since in
this example we have b = 2 and @ = ¢ = 1. the desired function is

AL,
"z ™

By (10.19), however, we may also express it as t = (1,/0.6931)In y.

Example 4 Convert the function r = 7log,; 2y into a natural logarithmic func-
tion. The values of the constants are in this case ¢ = 7. b =10, and ¢ = 2;
consequently, the desired function is
7
In 10

But since In 10 = 2.3026, as (10.14) indicates, the above function can be rewritten
ast = (7/2.3026)In2y = 3.0400In2y.

= In2y

In the above discussion, we have followed the practice of expressing ¢ as a
function of y when the function is logarithmic. The only reason for doing so 1s our
desire to stress the inverse-function relationship between the exponential and
logarithmic functions. When a log function is studied by itself, we shall write
y = Int (rather than ¢ = In y). as is customary. Naturally, nothing in the analyti-
cal aspect of the discussion will be affected by such an interchange of symbols.

EXERCISE 10.4

1 The form of the inverse function of y = Ae”’ in (10.17) requires r to be nonzero. What is
the meaning of this requirement when viewed in reference to the original exponential
function y = Ae’"?
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2 (a) Sketch a graph of the exponential function y = Ae'’; indicate the value of the
vertical intercept.

, and indicate the value

Iny—1InA
(b) Then sketch the graph of the log function ¢ = —nlr—m‘

of the horizontal intercept.
3 Find the inverse function of y = ap“’.

4 Transform the following functions to their natural exponential forms:
(a) y=38" (c) y = 55
(b) y=2AN" (d) y =2(15"

5 Transform the following functions to their natural logarithmic forms:
(a) 1t =log-y {¢) t=3log,s 9%
(b) t = log,3y (d) t=2log,,»

6 Find the continuous-compounding nominal interest rate per annum (r) that is equiva-
lent to a discrete-compounding interest rate (1) of

(a) S5 percent per annum, compounded annually

(b) S percent per annum, compounded semiannually

(c¢) 6 percent per annum, compounded semiannually

(d) 6 percent per annum, compounded quarterly

10.5 DERIVATIVES OF EXPONENTIAL AND LOGARITHMIC
FUNCTIONS

Earlier it was claimed that the function e’ 1s its own derivative. As it turns out, the
natural log function, In 7, possesses a rather convenient derivative also, namely,
d(Int)/dr = 1/t This fact reinforces our preference for the base e. Let us now
prove the validity of these two derivative formulas, and then we shall deduce the
derivative formulas for certain variants of the exponential and log expressions e’
and In ¢.

Log-Function Rule

The derivative of the log function y = In ¢ is

ilntzl
!

dt
To prove this. we recall that, by definition, the derivative of y = f(¢) = Inr has
the following value at t = N:
, . fl)=f(N) . Int—InN . In(t/N)
f(N)_,anl r—N ~,1Ln,l\r 1— N _,lin}v t— N
[by Rule II of logarithms]

: N :
Now let us introduce a shorthand symbol m = TN .Then we can write TN
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m { t— N 1 . .
R and also N 1 + N~ 1+ ot Thus the expression to the right of the

limit sign above can be converted to the form

1 t m 1 1 1\"
P Nlnﬁ = Nln(l + ;) = Nln(l + ;)

[by Rule I11 of logarithms]

Note that, when ¢ tends to N, m will tend to infinity. Thus, to find the desired
derivative value, we may take the limit of the last expression above as m — oo:

(N) = lim 2 LI R U
f(N) = mlfnx Nln(l + m) = ylhne= [by (10.5)]
Since N can be any number for which a logarithm is defined, however, we can
generalize this result, and write f'(t) = d(Int)/dt = 1/r. This proves the log-

function rule.

Exponential-Function Rule

The derivative of the function y = e’ is

d
Lot = !

dt
This result follows easily from the log-function rule. We know that the inverse
function of the function y = e¢'is t = In y, with derivative dt /dy = 1/y. Thus, by
the inverse-function rule, we may write immediately

d ,_dy 1 1

! —— =y =c

&’ T @ T dgdy T 1y

i3

The Rules Generalized

The above two rules can be generalized to cases where the variable ¢ in the
expression e’ and In ¢ is replaced by some function of t, say, f(¢). The generalized
versions of the two rules are

d d du

T — fio 2 oou . put?

1020 P f'(1)e [orde e a’t}
T - L0 [y o L]
ar T Tt T v

The proofs for (10.20) involve nothing more than the straightforward applica-
tion of the chain rule. Given a function y = ¢/("), we can first let u = f(1), so that

y = e* Then, by the chain rule, the derivative emerges as
d d d du du
Lol = Zou = o ult _ Lult L flng
ar dr€ du @ " S dr ¢ )

Similarly, given a function y = In f(z), we can first let v = f(¢), so as to form a
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chain: y = In v, where v = f(r). Then, by the chain rule, we have

d d d dv 1 dv | B
Elnf(t) = Elnv = %lnv;ﬁ = o= f——(t)f(t)

Note that the only real modification introduced in (10.20) beyond the simpler
rules de‘/dt = ¢’ and d(In ¢)/dt = 1 /1 is the multiplicative factor f'(z).

Example 1 Find the derivative of the function y = ¢”. Here, the exponent is
rt = f(t), with f'(t) = r; thus
dy _d .
i~ ar® T
Example 2 Find dy/dt from the function y = e ‘. In this case, f(1) = —1, so
that f'(+) = — 1. As a result,
dy d
di ~ di

!

Example 3 Find dy/dr from the function y = In gr. Since in this case /(1) = at,
with f'(¢) = a, the derivative is
a 1

ilnat = — = —
dt at t

which is, interestingly enough, identical with the derivative of y = In 1.

This example illustrates the fact that a multiplicative constant for ¢ within a
log expression drops out in the process of derivation. But note that, for a constant
k, we have

d d k
—klnt=k—Int = —
dr dt ¢
thus a multiplicative constant withour the log expression is still retained in

derivation.

Example 4 Find the derivative of the function y = Inz¢. With f(r) = ¢t and
f(t) = ct*"', the formula in (10.20) yields

go— 1

Int = < =
dr L€

c
7

Example 5 Find dy/dt from y = ¢’In ¢%. Because this function is a product of
two terms /° and In 72, the product rule should be used:

dy_ 3d 2 2d3
dt-rdtlnt + In¢ dtt

= z3(%[) + (In %)(3:%)

=22+ 3t*(2In¢)  [Rule II of logarithms]
= 22(1 + 31n+)
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The Case of Base b

For exponential and log functions with base b, the derivatives are

ditbr =blnb [Warm’ng: %b’ # b
(10.21)
1
8T b

Note that in the special case of base e (when b = ¢), we have Inb = Ine = 1, so
that these two derivatives will reduce to (d/dt)e’ = ¢’ and (d/dt)lnt = 1/1,
respectively.

The proofs for (10.21) are not difficult. For the case of b, the proof is based
on the identity b = e ” which enables us to write

bl — e(]n byt — etlnb

(We write rIn b, instead of In b ¢, in order to emphasize that ¢ is not a part of the
log expression.) Hence

i [ i tinbh _ tln b
b= e = (Inb)(e™") [by (10.20)]

= (Inb)(b')=5b'Inb

To prove the second part of (10.21), on the other hand, we rely on the basic log
property that

1
log, ¢ = (log, e)(log, 1) = E_bln[
which leads us to the derivative
dr B T \me M T b T lnb(t

The more general versions of these two formulas are

( ) %bﬂr) — f’(l)bf“)ln b
10.21"
d _ S0 1
Elflogbf([) - f(f) In b

Again, it 1s seen that if b = ¢, then In b = 1, and these formulas will reduce to
(10.20).

Example 6 Find the derivative of the function y = 12' . Here, b = 12, f(1) = |
—t.and f'(z) = —1; thus

d}’ _ 1—¢
= -2 m
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Higher Derivatives

Higher derivatives of exponential and log functions, like those of other types of
functions, are merely the results of repeated differentiation.

Example 7 Find the second derivative of y = b' (with b > 1), The first derivative,
by (10.21), is y’(¢) = b'In b (where In b is, of course, a constant); thus, by
differentiating once more with respect to ¢, we have

i) = Loy = (ib')ln b= (bInb)nb = b(Inb)
dt dt

Note that y = 5" is always positive and In b (for b > 1) is also positive [by

(10.16)]; thus p’(¢) = b'In b must be positive. And y”(¢), being a product of b’

and a squared number, is also positive. These facts confirm our previous state-

ment that the exponential function y = b increases monotonically at an increas-

Ing rate.

Example 8 Find the second derivative of y = In . The first derivative is y’ = 1 /1
= ¢t '; hence, the second derivative is

2 1

Inasmuch as the domain of this function consists of the open interval (0, o0),
y" =1/t must be a positive number. On the other hand, y” is always negative.
Together, these conclusions serve to confirm our earlier allegation that the log
function y = In ¢ increases monotonically at a decreasing rate.

An Application

One of the prime virtues of the logarithm is its ability to convert a multiplication
into an addition, and a division into a subtraction. This property can be exploited
when we are differentiating a complicated product or quotient of any type of
functions (not necessarily exponential or logarithmic).

Example 9 Find dy/dx from

xz

(x+3)2x+1)

),! =
Instead of applying the product and quotient rules, we may first take the natural
log of both sides of the equation to reduce the function to the form

Iny=Inx*—In(x+3)—In(2x + 1)

According to (10.20), the derivative of the left side with respect to x is

d o Lay
e (left side) = Vi
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whereas the right side gives
1 2 Tx + 6

x+3 2x+1  x(x+3)2x+1)
When the two results are equated and both sides are multiplied by y, we get the
desired derivative as follows:

dy _ Ix + 6
dx x(x+3)(2x + 1

d . . 2x
p (right side) = =

)

Tx + 6 x? _ x(7x + 6)
X(x+3)2x+ D) (x+3)2x+ 1) (x+3)%2x + 1)

Example 10 Find dy /dx from y = x“**~<. Taking the natural log of both sides,
we have

Iny=alnx+Ine¥ “=alnx+kx—c¢

Differentiating both sides with respect to x, and using (10.20), we then get

1 dy a
— = = — +
y dx X k

Q E_ = E_ akx—c¢
and i (x+k)y——(x+k)xe

EXERCISE 10.5

1 Find the derivatives of:

(a) y = el2r+74 (e) y = ea,\’%+b,\'*(
(byy=e"" (f)y=xe'
()y=e""! (g) y = x%e®

(d) y=f$e’2”2 (h) y = axe™

2 (a) Verify the derivative in Example 3 by utilizing the equation Inaz = Ina + In «.
(b) Verify the result in Example 4 by utilizing the equation In 1 = ¢In r.

3 Find the derivatives of:

(a) y=In8t (e) v=1Inx — In(l + x)
(b) y=1Inar (f) y =1In[x(1 — x)]
(@y=m+9 ()=l 2]

(d) y=5In(t + D*  (h) p =5x*Inx’
4 Find the derivatives of:
(a) y=75' (d) y = log; x>
(b) y =log,(t + 1) (e) y = log5(8x* + 3)
(¢) y=132"3 (f) v = x*logyx
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5 Prove the two formulas in (10.21").

6 Show that the function V = Ae” (with A, r > 0) and the function 4 = Ve ' (with
V,r > 0) are both monotonic, but in opposite directions, and that they are both strictly
convex in shape (cf. Exercise 10.2-5).
7 Find the derivati}ves of the following by first taking the natural log of both sides:

x Rl

(D= ey s R

10.6 OPTIMAL TIMING

What we have learned about exponential and log functions can now be applied to
some simple problems of optimal timing.

A Problem of Wine Storage

Suppose that a certain wine dealer ts in possession of a particular quantity (say. a
case) of wine, which he can either sell at the present time (¢ = 0) for a sum of $K
or ¢lse store for a vartable length of time and then sell at a higher value. The
growing value (V') of the wine is known to be the following function of time:

(1022) V=K' [=Kexp(:'/?)]

so that if £ =0 (sell now), then V' = K. The problem is to ascertain when he
should sell it in order to maximize profit, assuming the storage cost to be nil.*

Since the cost of wine is a “sunk” cost—the wine 1s already paid for by the
dealer—and since storage cost is assumed to be nonexistent, to maximize profit is
the same as maximizing the sales revenue, or the value of V. There is one catch,
however. Each value of ¥V corresponding to a specific point of ¢ represents a dollar
sum receivable at a different date and, because of the interest element involved. is
not directly comparable with the V' value of another date. The way out of this
difficulty is to discount each V figure to its present-value equivalent (the value at
time ¢ = 0), for then all the }” values will be on a comparable footing.

Let us assume that the interest rate on the continuous-compounding basis is
at the level of r. Then, according to (10.11), the present value of ¥ can be
expressed as

(10.22) A1) = Ve " = KEV/'e o Ke\/z —r

where A4, denoting the present value of V. Is itself a function of r. Therefore our
problem amounts to finding the value of ¢ that maximizes 4.

* The consideration of storage cost will entail a difficulty we are not vet equipped to handle. Later,
in Chap. 13, we shall return to this problem.
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Maximization Conditions

The first-order condition for maximizing A is to have dA4/dt = 0. To find this
derivative, we can either differentiate (10.22) directly with respect to ¢. or do it
indirectly by first taking the natural log of both sides of (10.22") and then
differentiating with respect to ¢. Let us illustrate the latter procedure.

First, we obtain from (10.22") the equation

mA(t)=InK+Ine’ " =InK+ ({1~ rt)

Upon differentiating both sides with respect to ¢, we then get

ldd 1 _,,
Aa 2! 4
d4 1 0, 0
or d[—A(Zt r)

Since A4 # 0. the condition d4 /dr = 0 can be satisfied if and only if
L
Wi

This implies that the optimum length of storage time is

(-
L2 4r’

If » = 0.10, for instance, then 7 = 25, and the dealer should store the case of wine
for 25 years. Note that the higher the rate of interest (rate of discount) is, the
shorter the optimum storage period will be.

The first-order condition, 1/(2y7) = r. admits of an easy economic interpre-
tation. The left-hand expression merely represents the rate of growth of wine
value V', because from (10.22)

1
¥ or 5;—\5

av. _ d 2y = kL exo(1172

= deeXp([ )= K— exp(t'/) [ K constant]
= K(%r ‘/2)exp(z’/3) [by (10.20)]
= (%r ‘/2)1/ [by (10.22)]

so that the rate of growth of ¥ is indeed the left-hand expression in the first-order
condition:

_dv/de 1,1

V 2 2We

The right-hand expression r is. in contrast, the rate of interest or the rate of
compound-interest growth of the cash fund receivable if the wine is sold right
away—an opportunity-cost aspect of storing the wine. Thus, the equating of the
two instantaneous rates, as illustrated in Fig. 10.4, is an attempt to hold onto the

ry
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rate

1
—— (rate of growth of wine value)

2Vt

r (rate of interest on sales receipts)

Figure 10.4

wine until the advantage of storage is completely wiped out, ie., to wait till
the moment when the (declining) rate of growth of wine value is just matched by
the (constant) interest rate on cash sales receipts.

The next order of business is to check whether the value of ¢ satisfies the
second-order condition for maximization of 4. The second derivative of A4 is

d*4 d (1 _, d(l 1 dA
et 2 — 4| =12 + =2 il
P dzA(z’ ’) Adz(?.’ ’) (2’ ’) di
But, since the final term drops out when we evaluate it at the equilibrium
(optimum) point, where d4 /dr = 0, we are left with

S =gl o) al-bo)
dr 4 4 4\/73

In view that 4 > 0, this second derivative is negative when evaluated at t>0,
thereby ensuring that the solution value ¢ is indeed profit-maximizing.

A Problem of Timber Cutting

A similar problem, which involves a choice of the best time to take action, is that
of timber cutting.

Suppose the value of timber (already planted on some given land) is the
following increasing function of time:

v =2V
expressed in units of $1000. Assuming a discount rate of » (on the continuous

basis) and also assuming zero upkeep cost during the period of timber growth,
what is the optimal time to cut the timber for sale?
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As in the wine problem, we should first convert V into its present value:
A(t)=Ve " = et

thus nA=m2" +Ine " = Viln2 — rt = t2n2 — rt

To maximize A, we must set dA /dt = 0. The first derivative is obtainable by
differentiating In 4 with respect to ¢ and then multiplying by A4:

1 dA 1

X - 4210 —
Ad — 2l meTT
thus i A ( In2 _ r)
dr 2/t
Since A # 0, the condition d4 /dr = 0 can be met if and only if
n2 _, o Ji=Dh2
W/t 2r
Consequently, the optimum number of years of growth is
(2
o\ 2r

It is evident from this solution that, the higher the rate of discount, the earlier the
timber should be cut.

To make sure that ¢ is a maximizing (instead of minimizing) solution, the
second-order condition should be checked. But this will be left to you as an
exercise.

In this example, we have abstracted from planting cost by assuming that the
trees are already planted, in which case the (sunk) planting cost is legitimately
excludable from consideration in the optimization decision. If the decision is not
one of when to harvest but one of whether or not to plant at all, then the planting
cost (incurred at the present) must be duly compared with the present value of the
timber output, computed with 7 set at the optimum value 7. For instance, if
r = 0.05, then we have

Qe (0.6931
— 1 0.10

and A = 26970050 — (122 0222) " 240
122.0222(0.0907) = $11.0674 (in thousands)

So only a planting cost lower than 4 will make the venture worthwhile—again,
provided that upkeep cost is nil.

2
) = (6.931)" = 48.0 years

~" EXERCISE 10.6

I If the value of wine grows according to the function V = Kez‘ﬂ, instead of as in (10.22),
how long should the dealer store the wine?
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2 Check the second-order condition for the timber-cutting problem.

3 As a generalization of the optimization problem illustrated in the present section, show
that:

(a) With any value function V = f(r) and a given continuous rate of discount r, the
first-order condition for the present value A4 of ¥ to reach a maximum is that the rate of
growth of }" be equal to r.

(b) The second-order sufficient condition for maximum really amounts to the stipula-
tion that the rate of growth of V be decreasing with time.

10.7 FURTHER APPLICATIONS OF EXPONENTIAL AND
LOGARITHMIC DERIVATIVES

Aside from their use in optimization problems, the derivative formulas of Sec.
10.5 have further useful economic applications.

Finding the Rate of Growth

When a variable y is a function of time, y = f(1), its instantaneous rate of growth
1s defined as*

_ dy/dr _ f'(+) _ marginal function

¥ y f(t) total function

(10.23)

But, from (10.20), we see that this ratio is precisely the derivative of In f(¢) = In y.
Thus, to find the instantaneous rate of growth of a function of time f(¢), we can
—instead of differentiating it with respect to ¢, and then dividing by f(¢)—simply
take its natural log and then differentiate In f(7) with respect to time.¥ This
alternative method may turn out to be the simpler approach, if f(f) is a
multiplicative or divisional expression which, upon logarithm-taking, will reduce
to a sum or difference of additive terms.

Example 1 Find the rate of growth of V' = Ae’’, where ¢ denotes time. It is
already known to us that the rate of growth of V' is r, but let us check it by finding
the derivative of In}V:

InV=1InA+ rtlne=1InA4 + rr [ A constant]

Therefore,

ry= %an=O+ %r!=r

as was to be demonstrated.

* If the variable 1 docs nor denote time, the expression (dyv /dt)/y is referred to as the proportional
rute gﬁ/hange of 1 with respect to r.

# If we plot the natural log of a function f(r) against 7 in a two-dimensional diagram, the slope of
the curve, accordingly, will tell us the rate of growth of f(z). This provides the rationale for the
so-called **semilog scale”™ charts.
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Example 2 Find the rate of growth of y = 4°. In this case, we have

In y =1n4" = tIn4

d
Hence r = Eln y=1n4

This is as it should be, because e¢™* =4, and consequently, y = 4' can be
rewritten as y = ¢™%’, which would immediately enable us to read (In4) as the
rate of growth of y.

Rate of Growth of a Combination of Functions

To carry this discussion a step further, let us examine the instantaneous rate of
growth of a product of two functions of time:

u=f(r)
v=gl)
Taking the natural log of y, we obtain

V= uv where

Iny=Inu+Inv

Thus the desired rate of growth is

But the two terms on the right side are the rates of growth of uw and v,
respectively. Thus we have the rule

(10.24)

ey =Tt T
Expressed in words, the instantaneous rate of growth of a product is the sum of
the instantaneous rates of growth of the components.

By a similar procedure, the rate of growth of a quotient can be shown to be
the difference between the rates of growth of the components (see Exercise

10.7-4):
(10.25) ewrey="Tu = F

Example 3 If consumption C is growing at the rate «, and if population H (for
“heads™) is growing at the rate 3, what is the rate of growth of per capita
consumption? Since per capita consumption is equal to C/H, its rate of growth
should be

Koy = Te — Ty = a— B

‘Now consider the instantaneous rate of growth of a sum of two functions of
time:
u=f(r)
v =g(r)
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This time, the natural log will be
Inz=1In(u+v) [#Ilnu+Inov]
Thus

d d
= Eln(u +v)

d

= - l - E(u +v)  [by(10.20)]

L[ + g'(0)]

U+t v

But from (10.23) we have r, = f'(¢)/f(¢). so that f'(¢) = f(¢)r, = ur,. Similarly.
we have g’(r) = vr,. As a result, we can write the rule

u v
(10.26) Turer = T 5ht T gl
which states that the rate of growth of a sum is a weighted average of the rates of
growth of the components.

By the same token, we have (see Exercise 10.7.5)
u v

(10.27) ey = =gt ™ gl

7

Example 4 The exports of goods of a country, G = G(¢), has a growth rate of
a/t, and its exports of services, S = S(¢), has a growth rate of b/¢. What is the
growth rate of its total exports? Since total exports is X(¢) = G () + S(¢), a sum,
its rate of growth should be

G
ry = -)?rc + X,rs
=%ﬂ+%ﬂ=@i&
X\t X\r Xt

Finding the Point Elasticity

We have seen that, given y = f(¢), the derivative of In y measures the instanta-
neous rate of growth of y. Now let us see what happens when, given a function
y = f(x), we differentiate (In ) with respect to (In x), rather than to x.

To begin with, let us define ¥ = In y and v = In x. Then we can observe a
chain of relationship linking u to y, and thence to x and v as follows:

uslny y=f(x) x=e"v=e"

Accordingly, the derivative of (In y) with respect to (In x) is
dliny) _ du _ du dy dx

dlnx) dv  dvdx dv

- d
T (R e e g

dy dx y dx y dx dx y
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But this expression is precisely that of the point elasticity of the function. Hence
we have established the general principle that, for a function y = f(x), the point
elasticity of y with respect to x is

d(In y)
(10.28) €.y d(In x)
It should be noted that the subscript yx in this symbol is an indicator that y and x
are the two variables involved and does not imply the multiplication of y and x.
This is unlike the case of r,,,, where the subscript does denote a product. Again,
we now have an alternative way of finding the point elasticity of a function by use
of logarithms, which may often prove to be an easier approach, if the given
function comes in the form of a multiplicative or divisional expression.

Example 5 Find the point elasticity of demand, given that Q = k/P, where k is
a positive constant. This is the equation of a rectangular hyperbola (see Fig.
2.84); and, as is well known, a demand function of this form has a unitary point
elasticity at all points. To show this, we shall apply (10.28). Since the natural log
of the demand function 1s

InQ@=Ink-InP
the elasticity of demand (Q with respect to P) is indeed

d(l
E‘JZCIIE—]E%Z-Z_] or le,| =1

The result in (10.28) was derived by use of the chain rule of derivatives. It is
of interest that a similar chain rule holds for elasticities; i.e., given a function
y = g(w), where w = h(x), we have

(1029) e =¢, ¢

VY VMW OTWY

The proof is as follows:

dy w )( dw x ) dy dw w x dv x
€ == __||l——"]= ="—-== - = =g
(a’w A :

7\"4'8‘1'\

dx w

EXERCISE 10.7

1 Find the instantaneous rate of growth:
(a) y =30 (¢) y =ab' (e) vy =1/3
(h) y = ar (d) y =217

2 If population grows according to the function H = H,(2)"" and consumption by the
—function C = C,e, find the rates of growth of population, of consumption, and of per
capita consumption by using natural log.

3 If y is related to x by y = x*, how will the rates of growth r, and r, be related?
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4 Prove that if y = u/v, where u = f(r) and v = g{(1), then the rate of growth of y will be
v =r,—r.,as ShOWn in (1025)

5 Prove the rate-of-growth rule (10.27).

6 Given the demand function Q, = k/P", where k and r are positive constants, find the
point elasticity of demand &, by using (10.28) (cf. Exercise 8.1-5).

7 (a) Given y = wz, where w = g(x) and z = /si(x), establish that

8\‘\' = EH‘.\ + E:.\

(b) Given y = u/v, where u = G(1) and v = H(x), establish that

Eiv T Euv T &y

8 Given y = f(x), show that the derivative d(log, y)/d(log,x)—Ilog to base b rather than
e—also measures the point elasticity ¢ ..

9 Show that, if the demand for money M, is a function of the national income Y = Y(1)
and the interest rate i = i(¢), the rate of growth of M, can be expressed as a weighted sum
of ry and r,,

P, = Ea Ty + Ear,il;
where the weights are the elasticities of M, with respect to ¥ and /, respectively.

10 Given the production function Q¢ = F(K, L), find a general expression for the rate of
growth of Q in terms of the rates of growth of K and L.




CHAPTER

ELEVEN

THE CASE OF MORE
THAN ONE CHOICE VARIABLE

The problem of optimization was discussed in Chap. 9 within the framework of
an objective function with a single choice variable. In the last chapter. the
discussion was extended to exponential objective functions, but we still dealt with
one choice variable only. Now we must develop a way of finding the extreme
values of an objective function that involves two or more choice variables. Only
then will we be able to tackle the type of problem confronting, say, a multiprod-
uct firm, where the profit-maximizing decision consists of the choice of optimal
output levels for several commodities and the optimal combination of several
different inputs.

We shall discuss first the case of an objective function of two choice variables,
z = f(x, y), in order to take advantage of its graphability. Later the analytical
results can be generalized to the nongraphable #-variable case. Regardless of the
number of variables, however, we shall assume in general that, when written in a
general form, our objective function possesses continuous partial derivatives to
any desired order. This will ensure the smoothness and differentiability of the
objective function as well as its partial derivatives.

For functions of several variables, extreme values are again of two kinds: (1)
absolute or global and (2) relative or local. As before, our attention will be
focused heavily on relative extrema, and for this reason we shall often drop the
adjective “relative,” with the understanding that, unless otherwise specified, the
extrema referred to are relative. However, in Sec. 11.5, conditions for absolute
extrema will be given due consideration.

307



308 OPTIMIZATION PROBLEMS

11.1 THE DIFFERENTIAL VERSION OF OPTIMIZATION
CONDITIONS

The discussion in Chap. 9 of optimization conditions for problems with a singlc
choice variable was couched entirely in terms of derivatives, as against differen-
tials. To prepare for the discussion of problems with two or more choice variables.
it would be helpful also to know how those conditions can equivalently be
expressed in terms of differentials.

First-Order Condition

Consider the function z = f(x), as depicted in Fig. 11.1. At the maximum point A
as well as the minimum pomt B, the value of z must be stationary. In other words.
it is a necessary condition for an extremum of z that ¢z = 0 instantaneously as x
varies. This condition constitutes the differential version of the first-order condi-
tion for an extremum. While the condition dz = 0 is necessary, it is clearly nor
sufficient for either a maximum or a minimum, for the inflection point C in Fig.
11.1 also shares the property that dz = 0.

To see that the above condition is equivalent to the derivative version of the
first-order condition dz /dx = 0 or f'(x) = 0. recall that the differ¢ntial of z = f(x)
1$
(11.1) dz = f'(x) dx

We note that when there is no change in x (dx = 0), dz will automatically be zero.
But this, of course. 1s not what the first-order condition 1s all about. What the
first-order condition requires is that dz be zero as x is varied, that is, as arbitrary
(positive or negative, but not zero) infinitesimal changes of x occur. In such a
context, with dx # 0, dz can be zero if and only if f’(x) = 0. Thus the derivative
condition f’(x) = 0 and the differential condition “dz = 0 for arbitrary nonzero
values of dx " aic indeed equivalent.

{dz =0) z2 = flx)

0

Figure 11.1
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Second-Order Condition

A maximum point, such as point 4 in Fig. 11.1, has the graphical property that as
we slide along the curve infinitesimally toward the left (dx < 0) and the right
(dx > 0) of A, we are descending in borh directions. A sufficient condition for
achieving this is that dz < 0 on both sides of A in the immediate neighborhood of
that point.* The fact that dz = 0 at point 4, but dz < 0 at points on the two sides
of A, means that dz is invariably decreasing as we move away from A in either
direction. In other words, the condition amounts to d(dz) < 0—or, in a simpler
notation, 4%z < 0—for arbitrary nonzero values of dx. The symbol d°z = d(dz),
denoting the differential of a differential, 1s known as the second-order differential
of z. And the above condition on d*z constitutes the differential version of the
second-order sufficient condition for a maximum.

Note that the negativity of d°z is sufficient. but not necessary, for a maximum
of z. The reason is that, in certain cases, @z may happen to be zero (rather than
negative) at a maximum of z. This possibility is, of course, strongly reminiscent of
the cases under the Nth-derivative test where a maximum may be characterized
by a zero second-derivative value. Indeed, in the case of a function of a single
variable, there exists a very close relationship between the sign of the second-order
differential ¢°z and that of the second-order derivative d°z/dx> or f"(x), as we
shall presently show.

Given that dz = f'(x) dx, we can obtain d?z merely by further differentiation
of dz. In so doing, however, we should bear in mind that dx, representing in this
context an arbitrary or given nonzero change in x, is to be treated as a constant
during dlfferentlatlon Consequemly dz can vary only with f'(x), but since f'(x)
1s in turn a funcuong,f X, dz can in the final analysis vary only with x. In view of
thls we have

(112) %

1

d(dz) = d[ f(x) dx] [by (11.1)]
[df'(x)] dx [ dx is constant]
= [f"(x) dx]dx = f"(x) ax*

Note that the exponent 2 appears in (11.2) in two fundamentally different ways.
In the symbol d°z, the exponent 2 indicates the second-order differential of z; but
in the symbol dx? = (dx)?, the exponent 2 denotes the squaring of the first-order
differential dx. The result in (11.2) provides a direct link between 42z and f"'( x).
Inasmuch as we are considering nonzero values of dx only, the dx? term is always
positive; thus ¢’z and f”(x) must take the same algebraic sign.

This fact serves to confirm our earlier claim that the differential condition
“d*z < 0 for arbitrary nonzero values of dx” is equivalent to the derivative
c_ondition f"(x) < 0 as a sufficient condition for a maximum of z. But, turning to

* This can be clarified by referring to (11.1). Let dz < 0 on both sides of point 4. Then /'(x) and
dx must be opposite in sign. This means that to the left of point 4 (letting dx < 0), f'(x) must be
positive, so_the f curve must be upward-sloping. Similarly, to the right of 4 (letting dx > 0), /(x)
must be negative, so the f curve must be downward-sloping. Hence, point 4 is the peak of a hill.
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the case of a minimum of z, we can also see from (11.2) that the sufficient
derivative condition f”(x) > 0 can be equivalently stated as “d?z > 0 for arbi-
trary nonzero values of dx.” Finally, we may infer from (11.2) that the second-order
necessary conditions

For maximumof z:  f”(x) <0
For minimum of z:  f’(x) =2 0
can be translated, respectively, into

For maximumof z: d?: < 0 _
for arbitrary nonzero values of dx
For minimum of z:  d?z = 0

Differential Conditions versus Derivative Conditions

Now that we have demonstrated the possibility of expressing the derivative
version of first- and second-order conditions in terms of dz and d°z, you may very
well ask why we bothered to develop a new set of differential conditions when
derivative conditions were already available. The answer is that differential
conditions—but not derivative conditions—are stated in forms that can be
directly generalized from the one-variable case to cases with two or more choice
variables. To be more specific, the first-order condition (zero value for dz) and the
second-order condition (negativity or positivity for ¢2z) are applicable with equal
validity to all cases, provided the phrase “for arbitrary nonzero values of dx” is
duly modified to reflect the change in the number of choice variables.

" This does not mean, however, that derivative conditions will have no further
role to play. To the contrary. since derivative conditions are operationally more
convenient to apply, we shall—after the generalization process is carried out by
means of the differential conditions to cases with more choice variables— still
attempt to develop and make use of derivative conditions appropriate to those
cases.

11.2  EXTREME VALUES OF A FUNCTION OF TWO VARIABLES

For a function of one choice variable, an extreme value is represented graphically
by the peak of a hill or the bottom of a valley in a two-dimensional graph. With
two choice variables, the graph of the function—:z = f(x. y)—becomes a surface
in a 3-space, and while the extreme values are still to be associated with peaks and
bottoms, these “hills” and * valleys™ themselves now take on a three-dimensional
character. They will, in this new context, be shaped like domes and bowls,
respectively. The two diagrams in Fig. 11.2 serve to illustrate. Point 4 in diagram
a. the peak of a dome. constitutes a maximum; the value of z at this point is
larger than at any other point in its immediate neighborhood. Similarly, point B
in diagram b, the bottom of a bowl, represents a minimum; everywhere in its
immediate neighborhood the value of the function exceeds that at point B.
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(a) (b)

Figure 11.2

First-Order Condition
For the function

= =1{(x.y)

the first-order necessary condition for an extremum (either maximum or mini-
mum) again involves dz = 0. But since there are two independent variables here,
dz is now a toral differential; thus the first-order condition should be modified to
the form

(11.3) dz = 0 for arbitrary values of dx and dv. not both zero

The rationale behind (11.3) is similar to the explanation of the condition dz = 0
for the one-variable case: an extremum point must be a stationary point, and at a
stationary point, z must be constant for arbitrary infinitesimal changes of the two

In the present two-variable case, the total differential is
(11.4) dz = fodx + f dy

In order to satisfy condition (11.3), it is necessary-and-sufficient that the two
partial derivatives f, and f. be simultaneously equal to zero. Thus the equivalent
derivative version of the first-order condition (11.3) 1s

(115)  fi=f=0 Frﬂ= ::}

dx dy

There 1s a simple graphical interpretation of this condition. With reference to
point A4 in Fig. 11.24, to have f = 0 at that point means that the tangent line 7,
drawn through A4 and parallel to the xz plane (holding y constant), must have a
zero slope. By the same token. to have f, = 0 at point 4 means that the tangent
line T, drawn through 4 and parallel to the yz plane (holding x constant), must
also have a zero slope. You can readily verify that these tangent-line requirements
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(a) (b)

Figure 11.3

actually also apply to the minimum point B in Fig. 11.2h. This 1s because
condition (11.5), like condition (11.3), is a necessary condition for both a maxi-
mum and a minimum.

As in the earlier discussion, the first-order condition is necessary, but nor
sufficient. That it is not sufficient to establish an extremum can be seen from the
two diagrams in Fig. 11.3. At point C in diagram a, both T, and T, have zero
slopes, but this point does not qualify as an extremum: Whereas it is a minimum
when viewed against the background of the yz plane, 1t turns out to be a
maximum when looked at against the xz plane! A point with such a “dual
personality™ is referred to, for graphical reasons, as a saddle point. Similarly, point
D in Fig. 11.3b, while characterized by flat T and 7 . is no extremum. either; its
location on the twisted surface makes it an inflection point, whether viewed against
the xz or the yz plane. These counterexamples decidedly rule out the first-order
condition as a sufficient condition for an extremum.

To develop a sufficient condition, we must look to the second-order total
differential, which is related to second-order partial derivatives.

Second-Order Partial Derivatives
The function z = f(x, y) can give rise to two first-order partial derivatives,
_ 0z 0z
< ox ay

and [ =

Since f, is itself a function of x (as well as of y), we can measure the rate of

change of f, with respect to x, while y remains fixed, by a particular second-order
(or second) partial derivative denoted by either £, _or 9°z/dx%

9’z 8(32)

gx?  ox\dx

fo= A=) or

The notation f,  has a double subscript signifying that the primitive function.f has
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been differentiated partially with respect to x twice, whereas the notation 9%z /dx?
resembles that of d%z/dx?® except for the use of the partial symbol. In a perfectly
analogous manner, we can use the second partial derivative

d 9%z d (’8:)

f”‘ = a—y(f\) or 8},»2 = 8—) (9)”'_

to denote the rate of change of /. with respect to y, while x 1s held constant.
Recall, however, that f_is also a function of y and that /| is also a function of
x. Hence, there can be written two more second partial derivatives:

R R L 92 _ 0 (d

These are called cross (or mixed) partial derivatives because each measures the
rate of change of one first-order partial derivative with respect to the “other”
variable.

It bears repeating that the second-order partial derivatives of z = f(x, y), like
z and the first derivatives f, and f,. are also functions of the variables x and y.
When that fact requires emphasis. we can write f . as f  (x,y), and f,  as
[ (x.»), etc. And, along the same line, we can use the notation f,.(1,2) to
denote the value of f evaluated at x = 1 and y = 2, etc.

Even though /,, and f,  have been separately defined, they will—according to
a proposition known as Young s theorem—be identical with each other, as long as
the two cross partial derivatives are both continuous. In that case, the sequential
order in which partial differentiation is undertaken becomes immaterial, because
f., = f... For the ordinary types of specific functions with which we work, this
continuity condition is usually met; for general functions. as mentioned earlier,
we always assume the continuity condition to hold. Hence, we may in general
expect to find identical cross partial derivatives. In fact, the theorem applies also
to functions of three or more variables. Given z = g(u, v, w), for instance, the
mixed partial derivatives will be characterized by g,. = g..» o = &uv» CtC.
provided these partial derivatives are all continuous. '

Example 1 Find the four second-order partial derivatives of
z=x+5xy —y?

The first partial derivatives of this function are
fi=3x"+5y and f =5x-2y

Therefore, upon further differentiation, we get
fo=6x  f=5 fu=5 f,=-2

As expected, f,, and f, are identical.

Example 2 Find all the second partial derivatives of z = x”¢ . In this case, the
first partial derivatives are

T fe=2xer  and  f. = -xPe?
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Thus we have
f\'\' =2e fy\ = —2xe¢ ' /‘\ = - 2ye " f”‘ — Xze v

Again, we see that /= f,

-

Note that the second partial derivatives are all functions of the origina.
variables x and y. This fact is clear enough in Example 2, but it is true even fut
Example 1. although some second partial derivatives happen to be consian:
functions in that case.

Second-Order Total Differential

Given the total differential dz in (11.4). and with the concept of second-order
partial derivatives at our command. we can derive an expression for the second-
order total differential d*z by further differentiation of dz. In so doing. we should
remember that in the equation dz = f_dx + f dv. the symbols dx and dy repre-
sent arbitrary or given changes in x and y: so they must be treated as constants
during differentiation. As a result, dz depends only on /, and f,. and since f,_and
/. are themselves functions of x and y. dz. like z itself, is a function of x and y.
~ To obtain d”z. we merely apply the definition of a differential —as shown in
(11.4)—to d: itself. Thus,

d(dz) = a((;]\_:)dx + iad;:ldy [cf. (11.4)]

1

(11.6) d*z

. )
(vt fdv) dx + (?(T( fodx + f dv) dy

9

a

(fovdx +f dv)dy+ (f dx+f dv)d

= [ dx? + f dvdx + f dedy + [ b7

= foodx?+2f dedv +f [/ =1.]

Note. again. that the exponent 2 appears in (11.6) in two different ways. In the
symbol d°z, the exponent 2 indicates the second-order total differential of z; but in
the symbol dx* = (dx)’, the exponent denotes the squaring of the first-order
differential dx.

The result in (11.6) shows the magnitude of ¢~z (the change in dz) in terms of
given values of dx and dy. measured from some point (x,. y,) in the domain. In
order to calculate d?z, however, we also need to know the second-order partial
derivatives f . f ., and f . all evaluated at (x,.y,)-just as we need the
first-order partial derwatlves to calculate dz from (11.4).

Example 3 Given z = x* + 5xy — v find ¢z and d°z. This function is the same
as-the one in Example 1. Thus, substituting the various derivatives already
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obtained there into (11.4) and (11.6). we find*
dz = (3x” + 5y)dx + (5x — 2y) dy
and
d?z = 6xdx?® + 10dx dy — 2dv”
At the point x = 1 and y = 2, for instance. we have
;= 13dx +dy and  d°z = 6dx? + 10dxdy — 2dv’

And for given dx and dy from the point x = 1 and y = 2 in the domain. the sign
of dz tells the direction of change of z. whereas the sign of d*z reveals whether dz
is increasing (d*z > 0) or decreasing (d*z < 0).

Second-Order Condition

Using the concept of d*z. we can state the second-order sufficient condition for a
maximum of z = f(x, y) as follows:

(11.7) d?z < 0 for arbitrary values of dx and dv, not both zero

The rationale behind (11.7) is very similar to that of the ¢z condition for the
one-variable case, and it can be explained by means of Fig. 11.4, which depicts
the bird’s-eye view of a surface. Let point 4 on the surface—the point lying
directly above the point (x,. 1,) in the domain—satisfy the first-order condition
(11.3). Then point 4 is a prospective candidate for a maximum. Whether it in fact
qualifies depends on the surface configuration in the neighborhood of 4. If an
infinitesimal movement away from A in any direction along the surface (see the
arrows in Fig. 11.4) invariably results in a decrease in z—that is, if dz < 0 for
arbitrary values of dx and dy, not both zero—A is a peak of a dome. Given that
- = 0 at point A, however. the condition dz < § at other points in the neighbor-
hood of A amounts to the stipulation that dz 1s decreasing, that s, dz=d(dz) <
0. for arbitrary values of dx and dy, not both zero. Thus (11.7) constitutes a
sufficient condition for identifying a stationary value as a maximum of :z.
Analogous reasoning would show that a counterpart second-order sufficient
condition for identifying a stationary value as a minimum of z = f(x, y)is

(11.8) d?z > 0 for arbitrary values of dx and dy, not both zero

* An alternative way of rcaching these results is by direct differentiation of the function:
d-=d(xYy +d(5x)  d(y7)
= 3x7dx + Sydy 4 Sxdv - 2vdy
Further differentiation of d- (bearing in mind that dx and ¢ are constants) will then vield
APz =d(3x Yy dy + d(3vYydy ~ d(3x) v — d(2y) dv
= (6xdy) dy + (5dv) dy +~ (ddx)ydv - (2dv) dv
=6rdet + W0dvdy — 2’
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The reason why (11.7) and (11.8) are only sufficient, but not necessary,
conditions is that it is again possible for ¢z to take a zero value at a maximum or
a minimum, For this reason. second-order necessary conditions must be stated
with weak inequalities as follows:

A

For maximum of z: d-z <0 \ for arbitrary values of dx and dy,

(11.9) | not both zero

For minimum of z: d°z > 0

In the following. however, we shall pay more attention to the second-order
sufficient conditions.

For operational convenience. second-order differential conditions can be
translated into equivalent conditions on second-order derivatives. In the two-vari-
able case, (11.6) shows that this would entail restrictions on the signs of the
second-order partial derivatives f_ .. f.,. and f... The actual translation would
require a knowledge of quadratic forms. which will be discussed in the next
section. But we may first introduce the main result here: For any values of dx and
dy, not both zero,

(<0 it f <0 f, <0 and [, >/

Xy

| >0 iff f,>0: f,>00 and £ f, > f2

Note that the sign of d°z hinges not only on f, and f, ., which have to do with the
surface configuration around point 4 (Fig. 11.4) in the two basic directions shown
by T (east-west) and T (north-south), but also on the cross partial derivative £, .
The role played by this latter partial derivative is to ensure that the surface in
question will yield (two-dimensional) cross sections with the same type of

Yo

0

Figure 114
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Table 11.1 Conditions for relative extremum: - = f(x. 1)
Condition Maximum Minimum
First-order necessary condition fo=f =0 fi=f=90
Second-order sufficient
condition* [, <0 fooofo >0
and and
fofoe = A St = 15

*Applicable only after the first-order necessary condition has been saustied,

configuration (hill or valley, as the case may be) not only in the two basic
directions (east-west and north-south). but in all other possible directions (such as
northeast-southwest) as well.

The above result, together with the first-order condition (11.5), enables us to
construct Table 11.1. It should be understood that all the second partial deriva-
tives therein are to be evaluated at the stationary point where f. = f = 0. It
should also be stressed that the second-order sufficient condition is nor necessary

for an extremum. In particular, if a stationary value is characterized by / /., = [,
in violation of that condition, that stationary value may nevertheless turn out to
be an extremum. On the other hand, in the case of another type of violation, with
a stationary point characterized by f“fw < fj,, we can identify that point as a
saddle point, because the sign of d”z will in that case be indefinite (positive for
some values of dx and dy. but negative for others).

Example 4 TFind the extreme value(s) of - = 8x* + 2xy — 3x* + 3 + 1. First
let us find all the first and second partial derivatives:

fi=24x*+ 2y —6x f =2x+2y
fox=48x —6 fm:z S =12

The first-order condition calls for satsfaction of the simultaneous equations
f.=0and f = 0; that is,
24x*+ 2y —6x =0
2y +2x =0

The second equation implies that v = —x, and when this information is sub-

stituted into the first equation, we get 24x* — 8x = 0, which vields the pair of
solutions

=|

=0 [implying 7, = — &, = 0]

X, =3 [implyintc:z)‘*2 = - z]

To apply the second-order condition, we note that, when

x=v=90
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f.. turns out to be —6, while f__is 2, so that f_ f,, 1s negative and is necessarily
less than a squared value f2.. This fails the second-order condition. The fact that
/.. and /. have opposite signs suggests, of course, that the surface in question will
curl upward in one direction but downward in another, thereby giving rise to a
saddle point.

What about the other solution? When evaluated at X, = 1, we find that
fv. = 10, which, together with the fact that f, . = f, . = 2, meets all three parts of
the second-order sufficient condition for a minimum. Therefore, by setting x = 4
and y = — % in the given function, we can obtain as a minimum of z the value
7 = 3. In the present example, there thus exists only one relative extremum (a
minimum), which can be represented by the ordered triple

1 -1 23

(15 2)

Example 5 Find the extreme value(s) of z = x + 2ey — e* — e, The relevant
derivatives of this function are
fi=1—-¢" [, =2e—2e"

f\',\' = —e' fw = _4€2y f,\j\ =0

To satisfy the necessary condition, we must have
]l —e*=20

2e — 2e? =
which has only one solution, namely, ¥ = 0 and y = 1. To ascertain the status of
the value of z corresponding to this solution (the stationary value), we evaluate
the second-order derivatives at x = 0 and y = 1, and find that /, = —1.f =
—4e. and f,. = 0. Since f,, and f,. are both negative and since, in addition,
(— 1)(—4e) > 0, we may conclude that the z value in question, namely,

f=0+e—e"—e' = -1
is a maximum value of the function. This maximum point on the given surface
can be denoted by the ordered triple (%, 7. 7) = (0, %, — 1).

Again, note that, to evaluate the second partial derivatives at x and v,

differentiation must be undertaken first, and then the specific values of X and v
are to be substituted into the derivatives as the final step.

EXERCISE 11.2

Use Table 11.1 to find the extreme value(s) of cach of the following four functions, and
determine whether they arc maxima or minima:

1z=x"+xy+2y +3

2= —x"+ Xy *_1'2 +2x +y
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3 z =ax’ + by’ + ¢; consider each of the three subcases:
(¢) a>0,b>0 (b)Y u<0,b<0 (¢) a and b opposite in sign

2

4z=¢—2x+2y +3

5 Consider the function z = (x — 2)* + (v — 3)™.

(a) Establish by intuitive reasoning that z attains a minimum (Z = 0) at X = 2 and
y =3

(b) Is the first-order necessary condition in Table 11.1 satisfied?

(¢) Is the second-order sufficient condition in Table 11.1 satisfied?

(d) Find the value of d-z. Does it satisfy the second-order necessary condition for a
minimum in (11.9)?

11.3 QUADRATIC FORMS—AN EXCURSION

The expression for d?z on the last line of (11.6) exemplifies what are known as
quadratic forms, for which there exist established criteria for determining whether
their signs are always positive, negative, nonpositive, or nonnegative, for arbitrary
values of dx and dv. not both zero. Since the second-order condition for
extremum hinges directly on the sign of d’z. those criteria are of direct interest.

To begin with, we define a form as a polynomial expression in which each
component term has a uniform degree. Our earlier encounter with polynomials
was confined to the case of a single variable: ¢, + a,x + --- + a,x". When more
variables are involved. each term of a polynomial may contain either one variable
or several variables, each raised to a nonnegative integer power, such as 3x +
4xy? — 2yz. In the special case where each term has a uniform degree—i.e.,
where the sum of exponents in each term is uniform—the polynomial is called a
form. For example, 4x — 9y + = is a linear form in three variables, because each
of its terms is of the first degree. On the other hand. the polynomial 4x* — xy +
3y, in which each term is of the second degree (sum of integer exponents = 2),
constitutes a quadratic form in two variables. We may also encounter quadratic
forms in three variables, such as x* + 2xy — yw + Tw?, or indeed in n variables.

Second-Order Total Differential as a Quadratic Form

If we consider the differentials dx and dv in (11.6) as variables and the partial
derivatives as coefficients, i.e.. if we let

u = dx v =dy
a=f. b=f, h=f]=1.]
then the second-order total differential

diz =fdx? + 2f dxdy + f, &7

(11.10)

can easily be identified as a quadratic form ¢ in the two variables « and v:

(11.6") g = au® + 2hue + br°
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Note that, in this quadratic form, dx = u and dy = v are cast in the role of
variables, whereas the second partial derivatives are treated as constants— the
exact opposite of the situation when we were differentiating dz to get d’z. The
reason for this reversal lies in the changed nature of the problem we are now
dealing with. The second-order sufficient condition for extremum stipulates 2z to
be definitely positive (for a minimum) and definitely negative (for a maximum),
regardless of the values that dx and dv may take (so long as they are not both
zero). It 1s obvious, therefore, that in the present context dx and dy must be
considered as variables. The second partial derivatives, on the other hand, will
assume specific values at the points we are examining as possible extremum
points, and thus may be regarded as consrants.

The major question becomes, then: What restrictions must be placed upon «,
b, and h in (11.6), when u and v are allowed to take any values, in order to ensure
a definite sign for ¢?

Positive and Negative Definiteness

As a matter of terminology, let us remark that a quadratic form g is said to be

positive definite positive (>0)

positive semidefinite o nonnegative (>0)
4 o if g is invariably o

negative semidefinite nonpositive (<0)

negative defini[e negative ( < O)

regardless of the values of the variables in the quadratic form, not all zero. If g
changes signs when the variables assume different values, on the other hand, g is
said to be indefinite. Clearly, the cases of positive and negative definiteness of
q = d°z are related to the second-order sufficient conditions for a minimum and a
maximum, respectively. The cases of semidefiniteness, on the other hand, relate to
second-order necessary conditions. When ¢ = d?z is indefinite, we have the
symptom of a saddle point.

Determinantal Test for Sign Definiteness

A widely used test for the sign definiteness of ¢ calls for the examination of the
signs of certain determinants. This test happens to be more easily applicable to
positive and negative definiteness (as against semidefiniteness); that is, it applies
more easily to second-order sufficient (as against necessary) conditions. We shall
confine our discussion here to the sufficient conditions only.*

For the two-variable case. determinantal conditions for the sign definiteness
of g are relatively easy to derive. In the first place, we see that the signs of the first
and third terms in (11.6) are independent of the values of the variables u and v,

* For a discussion of determinantal test for second-order necessary conditions, see Akira Takayama,
Muathematical Economics, The Dryden Press, Hinsdale, IL, 1974, pp. 118-120.
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because these variables appear in squares. Thus it is easy to specify the condition
for the positive or negative definiteness of these terms alone, by restricting the
signs of @ and b. The trouble spot lies in the middle term. But if we can convert
the entire polynomial into an expression such that the variables « and v appear
only in some squares, the definiteness of the sign of ¢ will again become tractable.

The device that will do the trick is that of completing the square. By adding
h*v?/a to. and subtracting the same quantity from, the right side of (11.6"), we
can rewrite the quadratic form as follows:

2 2

-

h bl
g = au? + 2huv + avz+bv“’—7u‘

2

5, 2h h* ‘ R
=a(u“+—uv+—,u* +(b——)v*
a a~ \ a

’ h \* ab—h",
=a(u+—v) + ——(v7)
a d

Now that the variables v and v appear only in squares, we can predicate the sign
of ¢ entirely on the values of the coefficients a, b, and & as follows:

. { positive definite \ .
11. . o
(1 qis | negative definite | <o

f">0} and ab— k2> 0

Note that (1) ab — h> should be posiiive in both cases and (2) as a prerequisite for
the positivity of @b — h*, the product ab must be positive (since it must exceed the
squared term /°); hence, the above condition automatically implies that ¢ and b
must take the identical algebraic sign.

The condition just derived may be stated more succinctly by the use of
determinants. We observe first that the quadratic form in (11.6") can be re-
arranged into the following square, symmetric format:

g=alu?)+ h(uv)
+h(cu) + b(v?)

with the squared terms placed on the diagonal and with the 2Auv term split into
two equal parts and placed off the diagonal. The coeflicients now form a
symmetric matrix, with ¢ and b on the principal diagonal and 4 off the diagonal.
Viewed in this light, the quadratic form is also easily seen to be the 1 X 1 matrix
(a scalar) resulting from the following matrix multiplication:

L P

The determinant of the 2 X 2 coefficient matrix,

Z g :—which is referred to as
the discriminant of the quadratic form ¢, and which we shall therefore denote by
| D| —supplies the clue to the criterion in (11.11), for the latter can be alterna-



322 OPTIMIZATION PROBLEMS

(11.117) qls{negative definite \fal <0

The determinant |a| = a is a subdeterminant of |D| that consists of the first
element on the principal diagonal; thus it is called the first principal minor of | D|.

The determinant Z z

involves the first and second elements on the principal diagonal, it is called the
second principal minor of |D|. In the present case, there are only two principal
minors available, and their signs will serve to determine the positive or negative
definiteness of g.

When (11.11") is translated, via (11.10), into terms of the second-order total
differential d?z, we have

} and

can also be considered a subdeterminant of |D|; since it

, . [positive definite
dzi . .
negative definite
f,\‘,\' fV}'
f,\',\' f\'\'

>0
iff {f‘x } and = f\'.\'f\'y - f,\?\' >0

{fiu <0

Recalling that the last inequality above implies that /. and /.. are required to
take the same sign, we see that this is precisely the second-order sufficient
condition presented in Table 11.1.

In general, the discriminant of a quadratic form

g = au’ + 2huv + bv?

a

h
dzz = fx.\‘ a’xz + 2f,\_l' d'x d); + f\'y ‘1}"2

is the symmetric determinant

z. In the particular case of the quadratic form

the discriminant is a determinant with the second-order partial derivatives as its
elements. Such a determinant is called a Hessian determinant {(or simply a
Hessian). In the two-variable case, the Hessian is

f,\' X f\',n'
fr.\' f\' v

|H| =

which, in view of Young's theorem (f,, = f,,), is symmetric—as a discriminant
should be. You should carefully distinguish the Hessian determinant from the
Jacobian determinant discussed in Sec. 7.6.

Example 1 s g = 5u® + 3uv + 20° either positive or negative definite? The
5 1.5
1.5 2

. 5 1.5
5>0 and )1.5 5

Therefore ¢ 1s positive definite.

discriminant of ¢ is . with principal minors

)=7.75>O



THE CASE OF MORE THAN ONE CHOICE VARIABLE 323

Example 2 Given f = =2 f =1 and f = —1 at a certain point on a

function = = f(x, v). does d*z have a definite sign at that point regardless of the
values of dx and dy? The discriminant of the quadratic form ¢z is in this case

-2 . o .
N with principal miners
~2<0  and ’% =10

Thus d°z 1s negative definite.

Three-Variable Quadratic Forms

Can similar conditions be obtained for a quadratic form in three variables?

A quadratic form with three variables u,. u,, and u; may be generally
represented as
(11.12) gluyusouy) = d(wy) +dp(uus) + dy(uu;)

tdy(uau) + doy(us) +dy(uyuy)

g (uyu) + dy (uyuy) + dyy(u3)

where the double-Y (double-sum) notation means that both the index i and the
index j are allowed to take the values 1. 2, and 3; and thus the double-sum
expression is equivalent to the 3 X 3 array shown above. Such a square array of
the quadratic form 1s, incidentally, always to be considered a symmetric one, even
though we have written the pair of coeflicients (d,. d,;) or (d+. d;,) as if the
two members of each pair were different. For if the term in the quadratic form
involving the variables u, and u, happens to be. say, 12u,u,, we always let
dy=d, = 6.s0thatd ,uu, = d,u,u,. and a similar procedure may be applied
“to make the other off-diagonal elements symmetrical.

Actually, this three-variable quadratic form is again expressible as a product

of three matrices:

d
(11.129) gluy us uy) = [u, uy uy]ldy dy dy||uy| =uDu
d

As 1n the two-variable case, the first matrix (a row vector) and the third matrix (a
column vector) merely list the variables, and the middle one ( D) is a symmetric
coefficient matrix from the square-array version of the quadratic form n (11.12).
This time, however, a total of rhree principal minors can be formed from its



324 OPTIMIZATION PROBLEMS

discriminant, namely,

dy dy dy
dy, d

(Dl = dy, |D,| = d d>s |Ds| =|dy dyp dy
21 2

dy dy dy

where | D,| denotes the ith principal minor of the discriminant | D|.* It turns out
that the conditions for positive or negative definiteness can again be stated in
terms of certain sign restrictions on these principal minors.

By the now-familiar device of completing the square, the quadratic form in
(11.12) can be converted into an expression in which the three variables appear
only as components of some squares. Specifically, recalling that a,, = a,,, etc., we
have

g=d (u +ﬂ3u +ﬂu\)2
“‘I dy* d

+ dlldzz B dlzz (“-’z + d11d23 B d12d13 ,

dyy dlldzz_dlzz
4 d1|d22d33 - d11d223 B d22d123 - d33d122 + 2d12d13d23( 2
B uy)
dndzz - dlz

This sum of squares will be positive (negative) for any values of u,, u,, and u;,
not all zero, if and only if the coefficients of the three squared expressions are all
positive (negative). But the three coefficients (in the order given) can be expressed

in terms of the three principal minors as follows:
| D, | D5

|D] | D2 D3
1D | Ds|

Hence, for positive definiteness, the necessary-and-sufficient condition is threefold:
D, >0
|D,| >0 [given that |D,| > 0 aiready]
|Dy| > 0  [given that | D,| > 0 already]

In~other words, the three principal minors must all be positive. For negarive
definiteness, on the other hand. the necessary-and-sufficient condition becomes:

1D <0
|D,| >0 [given that | D,| < 0 already]
D] <0  [given that |D,| > 0 already]
That is, the three principal minors must alternate in sign in the specified manner.
* We have so far viewed the i th principal minor | D,| as a subdeterminant formed by retaining the
first / principal-diagonal elements of | D|. Since the notion of a minor implies the deletion of something

from the original determinant, however, vou may prefer to view the ith principal minor alternatively
as a subdeterminant formed by deleting the last (# — 1) rows and columns of | D|.
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Example 3 Determine whether ¢ = ui + 6u3 + 3uy — 2uu, — 4u,u; is either
positive or negative definite. The discriminant of g is

1 -1 0
-1 6 -2
0 -2 3

with principal minors as follows:

-1 1 -1 0
1 >0 \_1 6.=5>O and —1 6 —2|=11>0
0 =2 3

Therefore, the quadratic form is positive definite.

Example 4 Determine whether g = 2u + 307 — w + 6uv — 8uw — 2ow 18
either positive or negative definite. The discriminant may be written as
2 3 -4

3 3 —1!, and we find its first principal minor to be 2 > 0, but the
-4 -1 =1
second principal minor is 3 ; = —3 < 0. This violates the condition for both

positive and negative definiteness; thus ¢ is neither positive nor negative definite.

n-Variable Quadratic Forms

As an extension of the above result to the n-variable case. we shall state without
proof that, for the quadratic form

H H

glucuy.. ... w,)= 3 2 d uu, [whered,-/.:a'/,]
i=1 /=1
= uw D u [ef. (11.127)]
(Ixnm) (nxn)y(ux1

the necessary-and-sufficient condition for positive definiteness is that the principal
minors of | D|. namely.

) dll dl?. dln
dg d, d 5 d‘7
\Dy| = d,, |D,| = dlzll dlz: 1D, = HIZ-_”
dnl an dnn

all be positive. The corresponding necessary-and-sufficient condition for negarive
definiteness is that the principal minors alternate in sign as follows:

D, <0 Dy >0 D} <0 (etwe)

so that all the odd-numbered principal minors are negative and all even-numbered
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ones are positive. The nth principal minor, |D,| = | D], should be positive if n is
even, but negative if n 1s odd. This can be expressed succinctly by the inequality
(— "D, =0

Characteristic-Root Test for Sign Definiteness

Aside from the above determinantal test for the sign definiteness of a quadratic
form w’Du. there is an alternative test that utilizes the concept of the so-called
“characteristic roots” of the matrix D. This concept arises in a problem of the
following nature. Given an n X n matrix D. can we find a scalar r, and an n X 1
vector x # 0, such that the matrix equation

(11.13) D x =r x

(rixXn)y (nxh) (nx 1y

is satisfied? If so, the scalar r1s referred to as a characreristic root of matrix D and
X as a characteristic vector of that matrix.*
The matrix equation Dx = rx can be rewritten as Dx — rlx = 0, or

(11.13) (D—rl)x=0 where 0 is n X 1

This. of course. represents a system of » homogeneous linear equations. Since we
want a nontrivial solution for x. the coefficient matrix (D — rl)-—called the
characteristic matrix of D—is required to be singular. In other words, its determi-
nant must be made to vanish:

A d, d,,
(1114)  D—rrp =] v dnr P
d”l d'13 dnn F

Equation (11.14) is called the characteristic equation of matrix D. Since the
determinant |D — r/| will yield, upon Laplace expansion, an nth-degree poly-
nomial in the variable ». (11.14) is in fact an nth-degree polynomial equation.
There will thus be a total of n roots, (r..... r,). each of which qualifies as a
characteristic root. H D is symmetric, as is the case in the quadratic-form context,
the characteristic roots will always turn out to be real numbers, but they can take
either algebraic sign, or be zero.

Inasmuch as these values of r will all make the determinant | D — r/| vanish.
the substitution of any of these (say. r,) into the equation system (11.13") will
produce a corresponding vector x|,_, . More accurately, the system being homo-
geneous, it will yield an infinite number of vectors corresponding to the root r,.
We shall. however, apply a process of normalization (to be explained below) and

* Characteristic roots are also known by the alternative names of latent roots. or eigenvalues.
Characteristic vectors are also called ergencectors.
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select a particular member of that infinite set as the characteristic vector corre-
sponding to r: this vector will be denoted by v,. With a total of n characteristic
roots, there should be a total of n such corresponding characteristic vectors.

Example 5 Find the characteristic roots and vectors of the matrix B _ ﬂ By
substituting the given matrix for D in (11.14), we get the equation

2 —vr 2 I R —

1 ) 1= r—6=20
with roots , = 3 and r, = —2. When the first root is used, the matrix equation

(11.13") takes the form of

PSR | N R R [N B 1

The two rows of the coefficient matrix being linearly dependent, as we would
expect in view of (11.14), there is an infinite number of solutions, which can be
expressed by the equation x; = 2x,. To force out a unique solution, we rormalize
the solution by imposing the restriction xj + x3 = 1.* Then. since

Xp+ox; = (2)(2)2 +x2=5x3=1

we can obtain (by taking the positive square root) x, = 1/ VS . and also x, = 2x,
= 2//5. Thus the first characteristic vector is

2/V5
s ]
Similarly. by using the second root r, = —2 in (11.13), we get the equation
RERRE NN HE
2 -1 -(=2)]|x;, 2 1| x, 0
which has the solution x, = — $x,. Upon normalization, we find

~
j

> 2 2 ) s
x;+ oy = (—1ix,) +x3=4x3=1

which yields x, = 2/ Vs andx, = — 1/ V5 . Thus the second characteristic vector

1S
[ - 1/\/5]
v, = _
- 2/V5

The set of characteristic vectors obtained in this manner possesses (wo

H
* More generally. for the #-variable case, we require that Z yi=1
=1
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important properties: First, the scalar product v]v, (i = 1,2,..., n) must be equal
to unity, since

X,
X5 "
v, =[x, x; - x| =2Xxi=1 [by normalization|
X,
Second, the scalar product v]v, (where i # j) can always be taken to be zero.* In
sum. therefore, we may write that

(11.15) o, =1 and  v/e,=0  (i+])

These properties will prove useful below. As a matter of terminology, when two
vectors yield a zero-valued scalar product, the vectors are said to be orthogonal
(perpendicular) to each other. Hence each pair of characteristic vectors of matrix
D must be orthogonal. The other property, v/v, = 1. is indicative of normaliza-
tion. Together, these two properties account for the fact that the characteristic
vectors (v)...., v,) are said to be a set of orthonormal vectors. You should try to
verify the orthonormality of the two characteristic vectors found in Example S.
Now we are ready to explain how the characteristic roots and characteristic
vectors of matrix D can be of service in determining the sign definiteness of the
quadratic form u'Du. In essence, the idea is again to transform u’Du (which
involves not only squared terms u{,..., u2, but also cross-product terms such as
u u, and u,u,) into a form that contains only squared terms. Thus the approach
is similar in intent to the completing-the-square process used in deriving the
determinantal test above. However, in the present case, the transformation
possesses the additional feature that each squared term has as its coefficient one
of the characteristic roots, so that the signs of the n roots will provide sufficient
information for determining the sign definiteness of the quadratic form.

* To demonstrate this, we note that, by (11.13), we may write D¢, = rv,, and Duv, = r,v,. By
premultiplying both sides of each of these equations by an appropriate row vector, we have

v/ Do, = v/re, = rne [r/ s a scalar]

,
ey IIL

._/

D o e e RPN
v, D, = vinu, = ruv, = o, [l,l,/ l'/L,]

Since ¢/ Dr, and ¢/ Dy, are both 1 X 1. and since they are transposes of each other (recall that D' = D
because D is symmetric), they must represent the same scalar. It follows that the extreme-right
expressions in these two equations are equal: hence, by subtracting, we have

(r, - r)vjr,=0

Now if r; # r; (distinct roots), then ¢, has to be zero in order for the equation to hold, and this
establishes our claim. If r, = #, {repeated roots). moreover, it will always be possible, as it turns out. to
find two linearly independent normalized vectors satisfying v;v; = 0. Thus, we may state in general
that /e, = 0, whenever 1 # ;. | 0

T As asimple illustration of this, think of the two unit vectors of a 2-space, e, = 0 and e, = [ X ]
These vectors lie, respectively, on the two axes, and are thus perpendicular. At the same time, we do
find that eje, = ese, = 0.
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The transformation that will do the trick is as follows. Let the characteristic

vectors v,,. .., v, constitute the columns of a matrix 7"
r =[v, v; -+ vl
(i X 1)
and then apply the transformation u = T  y to the quadratic form
(nxl) (nxn) (nx1h)
u'Du:

w'Du = (Ty)'D(Ty) = y'T'DTy  [by (4.11)]
= y'Ry where R=TDT

As a result, the original quadratic form in the variables u, is now turned into
another quadratic form in the variables y,. Since the u; variables and the y,
variables take the same range of values, the transformation does not affect the
sign definiteness of the quadratic form. Thus we may now just as well consider the
sign of the quadratic form y’Ry instead. What makes this latter quadratic form
intriguing is that the matrix R will turn out to be a diagonal one, with the roots
ri...., r, of matrix D displayed along its diagonal, and with zeros everywhere else.
so that we have in fact

ro 0 01
Y2

(11.16)  w'Du=y'Ry = [y, » | I ’
0 0 r, Yu

2 2 2
=nyitnyt--+try,

which is an expression involving squared terms only. The transformation R =
T'DT provides us, therefore, with a procedure for diagonalizing the symmetric
matrix D into the special diagonal matrix R.

Example 6 Verify that the matrix B _“;‘

no 0} _ [3 0
0 n 0 =2
acteristic vectors found in Example 5, the transformation matrix 7" should be

T:[U U]={2/\F5 _1/‘/5
) A5 25

] given in Example 5 can be

diagonalized into the matrix ] On the basis of the char-

Thus we may write

2 1 2 1
S 2 2= -—= 3 0
/S5 5 ¥G
R=TDT = 1 5 \/1 5 =
- =2 -1l = = 0 -2
/55 V5 Vs

which duly verifies the diagonalization process.
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To prove the diagonalization result in (11.16). let us (partially) write out the
matrix R as follows:

v
[
R=TDr=| |[Dle, v - v}
¢,
We may easily verify that D{c, ¢, --- ¢,] can be rewritten as [Dv, Dr,

Duv, ). Besides. by (11.13), we can further rewrite this as [r,e, ro,
r,t,]. Hence, we see that

v A T N PN oeorale,
Ué rlt‘.élﬂl rll",ll‘z e rnvéltn
R = . [rlvl rZUZ e f'”l‘”] -

-7 - ' 2" - PR
| t'u 4 1 Ln"' 1 l”:l'”l 2 rnl’nl’n
- -

o0 0

O r - 0

= [by (11.15)]
o o0 - r”J

which is precisely what we intended to show.
In view of the result in (11.16). we may formally state the characteristic-root
test for the sign definiteness of a quadratic form as follows:

a g = u’'Du 1s positive (negative) definite. if and only if every characteris-
tic root of D is posttive (negative)

b g = u'Du is positive (negative) semidefinite, if and only if a// character-
1stic roots of D are nonnegative (nonpositive)

¢ g = u'Du is indefinite, if and only if some of the characteristic roots of

D are positive and some are negative

Note that. in applying this test, all we need are the characteristic roots; the
characteristic vectors are not required unless we wish to find the transformation
matrix T. Note. also, that this test, unlike the determinantal test outlined above.
permits us to check the second-order necessary conditions (part  above) simulta-
neously with the sufficient conditions (part ). However, it does have a drawback.
When the matrix D is of a high dimension, the polynomial equation (11.14) may
not be easily solvable for the characteristic roots needed for the test. In such
cases, the determinantal test might yet be preferable.
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EXERCISE 11.3

1 By direct matrix multiplication, express each matrix product below as a quadratic form:

w3 e i 20
oo 733 @l 4]

2 In parts b and ¢ of the preceding problem, the coefficient matrices are not symmetric
with respect to the principal diagonal. Verify that by averaging the off-diagenal elements

2and5

9 1 h . 1 s ]
and thus converting them, respectively, into 5 _4 30

we will get the
same quadratic forms as before.

3 On the basis of their coeflicient matrices (the symmetric versions), determine by the
determinantal test whether the quadratic forms in Exercise 11.3-1a, b, and ¢ are either
positive definite or negative definite.

4 Express each quadratic form below as a matrix product involving a symmetric coefficient
matrix:

(a) g =73u’ — duv + Tv°

(b)y g =u*+ Tuv + 3v°

(¢) g = 8ur — ul —31e”

(d) g=6xy — 5y° — 2x°?

(€) ¢ =3ui — 2uyuy + duyuy + Sus + dui — 2uyu;

(f) g= —u’ + duv — 6uw — 4v* — T’

5 From the discriminants obtained {rom the symmetric coefficient matrices of the preced-
ing problem, ascertain by the determinantal test which of the quadratic forms are positive
definite and which are negative definite.

6 Find the characteristic roots of each of the following matrices:
_ |4 2 _| -2 2 . _15 3
o[t 2] wel 32wl
What can you conclude about the signs of the quadratic forms u'Du, u’'Eu, and u’'Fu?
(Check your results against Exercise 11.3-3))

201
8 Given a quadratic form u’Du, where D is 2 X 2, the characteristic equation of D can be
written as

7 Find the characteristic vectors of the matrix [4 2].

=0 (d|z=d2:)

Expand the determinant; express the roots of this equation by use of the quadratic
formula; and deduce the following:
(a) No imaginary number (a number involving v — 1) can occur in r, and »,.

() To have repeated roots, matrix D must be in the form of [8 0

C
(¢) To have either positive or negative semidefiniteness, the discriminant of the quadratic
form may vanish, that is, |[D| = 0 is possible.
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11.4 OBJECTIVE FUNCTIONS WITH MORE THAN TWO. -~
VARIABLES

When there appear in an objective function n > 2 choice variables, it is no longer
possible to graph the function, although we can still speak of a hypersurface in an
(n + 1)-dimensional space. On such a (nongraphable) hypersurface, there again
may exist (# + 1)-dimensional analogs of peaks of domes and bottoms of bowls.
How do we identify them?

First-Order Condition for Extremum
Let us specifically consider a function of three choice variables,

z =f(x],x2,x3)

with first partial derivatives f,, f,. and f; and second partial derivatives f,
(= 9%2/dx, dx;), with i, j=1,2,3. By virtue of Young’s theorem, we have
fiy = fe

Our earlier discussion suggests that, to have a maximum or a minimum of z,
it is necessary that dz = 0 for arbitrary values of dx,, dx,, and dx;, not all zero.
Since the value of dz is now

(11.17) dz = fidx, + f,dx, + fydx,

and since dx,, dx,, and dx, are arbitrary (infinitesimal) changes in the indepen-
dent variables, not all zero, the only way to guarantee a zero dz is to have
f1 =/, = f; = 0. Thus, again, the necessary condition for extremum is that all the
first-order partial derivatives be zero, the same as for the two-variable case.*

Second-Order Condition

The satisfaction of the first-order condition earmarks certain values of z as the
stationary values of the objective function. If at a stationary value of z we find
that d?z is positive definite, this will suffice to establish that value of z as a
minimum. Analogously, the negative definiteness of d°z is a sufficient condition
for the stationary value to be a maximum. This raises the questions of how to
express d 2z when there are three variables in the function and how to determine
its positive or negative definiteness. '

* As a special case, note that if we happen te be working with a function z = f(x,, x,. x3)
implicitly defined by an equation F(z, x;, x5. x;} = 0, where
dz —d F/a.\‘,

_——=— [ o= 3
Ny aF/ iz (i=1.2.3)

It

/i

then the first-order condition f, = f, = f; = 0 will amount to the condition

JdF dF aF
AL S L —
dx, dx, dx,

since the value of the denominator d F /d- # 0 makes no difference.
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The expression for dz can be obtained by differentiating dz in (11.17). In
such a process, as in (11.6), we should treat the derivatives f, as variables and the
differentials dx, as constants. Thus we have

a(d
d(dz) a(dz)dx2+ (dz)

2 = = ——7
(11.18) d*z=d(dz) ax, dx, + o, o,

dx,

d
ax, (fl dx, + [dx, + f; dx3) dx,

d
+ axj(fl dx, + fodx, + f dxy) dx,

d
+ a—x‘;(fl dx, + fydx, + fydxy) dx,

fnd)ﬁ2 + fipdx dx, + fydx,dx,
+fdxydxy + foy dx% + foy dx,dx,y
+fydxydxy + fr dxydx, + i dx32

which is a quadratic form similar to (11.12). Consequently, the criteria for positive
and negative definiteness we learned earlier are directly applicable here.

In determining the positive or negative definiteness of d?z, we must again, as
we did in (11.6"), regard dx, as variables that can take any values (though not all
zero), while considering the derivatives f, as coefficients upon which to impose
certain restrictions. The coefficients in (11.18) give rise to the symmetric Hessian
determinant

fII le f13
|H| =1 /3 [ fas
fSI f32 f33
whose successive principal minors may be denoted by
fll fl7
H|| = Hy| = : Hy| = [H
I 1 | fll | 2| le fzz I 3 | l 1

Thus, on the basis of the determinantal criteria for positive and negative definite-
ness, we may state the second-order sufficient condition for an extremum of z as
follows:

(11.19)  Zisa fm?”‘.‘m“m}
\ minimum

f|H,| <0:; |H, >0:; |H,;] <0 (d?znegative definite)
|[H,| >0: |Hy| >0; [H;| >0 (d? positive definite)

In using this condition, we must evaluate all the principal minors at the stationary
point where f, = f, = f; = 0.
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We may, of course, also apply the characteristic-root test and associate the
positive definiteness (negative definiteness) of @2z with the positivity (negativity)

o fo /s
of all the characteristic roots of the Hessian matrix | f,, f, foz |. In fact.
f3| f32 f33

instead of saying that the second-order total differential d%z is positive (negative)
definite, it is also acceptable to state that the Hessian matrix H (to be dis-
tinguished from the Hessian determinant |H|) is positive (negative) definite. In
this usage, however, note that the sign definiteness of H refers to the sign of the
quadratic form d°z with which H is associated, ror to the signs of the elements of
H per se.

Example 1 Find the extreme value(s) of
z2=2X] + XX, T 4x3 4+ x,x; + xI + 2

The first-order condition for extremum involves the simultaneous satisfaction of
the following three equations:

(fi=)4x,+ x,+ x;=0

(/=) x, +8x, =0

(fi=) x +2x;=0
Because this is a homogeneous linear-equation system, in which all the three
equations are independent (the determinant of the coefficient matrix does not
vanish), there exists only the single solution X, = ¥, = ¥, = 0. This means that

there is only one stationary value, 7 = 2.
The Hessian determinant of this function is

o S T 4 1 1
|H| =|/n /n fal=!1 8 0
o o fs b0 2

the principal minors of which are all positive:
[Hy| =4 [Hy| =31 |Hy] =54

Thus we can conclude, by (11.9). that Z = 2 is a minimum.

Example 2 Find the extreme value(s) of
= —xj+3xx5+ 2x;, ~ x3 — 3x}
The first partial derivatives are found to be
fi = —=3x] + 3x, fr=2-2x,  fi=3x —6x,

By setting all f, equal to zero, we get three simultaneous equations, one nonlinear
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and two linear:
—3x} +3x; =0
—2x, = -2
3x, —6x;,=0

Since the second equation gives X, = 1 and the third equation implies X, = 2Xx,,
substitution of these into the first equation yields two solutions:

(0,1,0), implying z = 1
| 17

(1.1,%), implying 7 = 3

The second-order partial derivatives, properly arranged, give us the Hessian

(fla X5, )73) = {

- 6x, 0 3
|H| =] ¢ -2 0
3 0 —6

in which the first element (—6x,) reduces to 0 under the first solution (with
%, = 0) and to — 3 under the second (with X, = ). It is immediately obvious that
the first solution does not satisfy the second-order sufficient condition, since
|H,] = 0. We may, however, resort to the characteristic-root test for further
information. For this purpose, we apply the characteristic equation (11.14). Since
the quadratic form being tested is d’z, whose discriminant is the Hessian
determinant, we should, of course. substitute the elements of the Hessian for the
d.. elements in that equation. Hence the characteristic equation is (for the first

)
solution)

—r 0 3
0 -2 -7 0 =0
3 0 —6—r

which, upon expansion, becomes the cubic equation

rP+8ri+3r—18=0
By trial and error, we are able to factor the cubic function and rewrite the above
equation as

(r+2)(rr+6r—9)=0

It is clear from the (r + 2) term that one of the characteristic roots is ry = —2.
The other two roots can be found by applying the quadratic formula to the other
term; they arer, = —3 + 172 . and r,=—3- 1472 . Inasmuch as ¢, and ry are
negative but r, 18 positive, the quadratic form d’z is indefinite, thereby violating
the second-order necessary conditions for both a maximum and a minimum :z.
Thus the first solution (Z = 1) is not an extremum at all, but an inflection point.

As for the second solution, the situation is simpler. Since the successive
principal minors

H|= -3 |H =6 and |H,| = —18
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duly alternate in sign, the determinantal test is conclusive. According to (11.19),
the solution Z = {} is a maximum.

n-Variable Case

When there are n choice variables, the objective function may be expressed as
z=f(x), X5,---, X,

The total differential will then be
dz = fidx, + fydx, + - + [ dx,

so that the necessary condition for extremum (dz = 0 for arbitrary dx;) means
that all the » first-order partial derivatives are required to be zero.

The second-order differential ¢z will again be a quadratic form, derivable
analogously to (11.18) and expressible by an n X n array. The coefficients of that
array, properly arranged, will now give the (symmetric) Hessian

fll flz U fln
|H| = le fzz T on
) A
with principal minors |H,|, |H,|,..., |H,|, as defined before. The second-order

sufficient condition for extremum is, as before, that all the # principal minors be
positive (for a minimum in z) and that they duly alternate in sign (for a maximum
in z), the first one being negative.

In summary, then-—if we concentrate on the determinantal test—we have the
criteria as listed in Table 11.2, which is valid for an objective function of any
number of choice variables. As special cases, we can have n = 1 or n = 2. When
n = 1, the objective function is z = f(x), and the conditions for maximization,
f, =0and |H,| <0, reduce to f'(x)=0and f”(x) < 0, exactly as we learned in
Sec. 9.4. Similarly, when n = 2. the objective function is z = f(x,, x,), so that the
first-order condition for maximum 1is f, = f, = 0, whereas the second-order

Table 11.2 Determinantal test for relative extremum: z = f(x,, x,,..., x,)
Condition Maximum Minimum
First-order necessary condition Hi=f=--=f=0 fi=hHh= " =£=0
Second-order sufficient condition* [Hy] <0:|Hs| > 0;
‘][“ <O'~“"~(*l)”‘H”r>0 ‘Hl|‘ii{2‘ “““ ‘]In|>()

*Applicable only after the first-order necessary condition has been satisfied,
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sufficient condition becomes

f]l fll
f?_l f22

which is merely a restatement of the information presented in Table 11.1.

fi, <0 and =finfn—f2>0

EXERCISE 11.4

Find the extreme values, if any, of the following five functions. Check whether they are
maxima or minima by the determinantal test.

D=7+ 3x3 = 3x,x, + 4x,x, + 6x3

2=129 — (x{ + x3+ x7)

1
2
3z2=xx;+ X7~ X2+ XXy + X5 + 313
4 -=¢"+e"+ e" = 2et — (x + 1)

5

c=e VN te "t - 2x+2e" — )
Then answer theé following questions regarding Hessian matrices and their characteristic
roots:

6 (a) Which of the above five problems yield diagonal Hessian matrices? In each such
case, do the diagonal elements possess a uniform sign?

(b)Y What can you conclude about the characteristic roots of each diagonal Hessian
matrix found? About the sign definiteness of 4-2?

(¢) Do the results of the characteristic-root test check with those of the determinantal
test?
7 () Find the characteristic roots of the Hessian matrix for problem 3.

(b) What can you conclude from your results?

(¢) Is your answer to (h) consistent with the result of the determinantal test for
problem 3 above?

11.5 SECOND-ORDER CONDITIONS IN RELATION TO
CONCAVITY AND CONVEXITY

Second-order conditions— whether stated in terms of the principal minors of the
Hessian determinant or the characteristic roots of the Hessian matrix—are always
concerned with the question of whether a stationary point is the peak of a hill or
the bottom of a valley. In other words, they relate to how a curve, surface, or
hypersurface (as the case may be) bends itself around a stationary point. In the
single-choice-variable case, with z = f(x). the hill (valley) configuration is mani-
fest in an inverse U-shaped (U-shaped) curve. For the two-variable function
z = f(x. y), the hill (valley) configuration takes the form of a dome-shaped
(bowl-shaped) surface, as illustrated in Fig. 11.2a (Fig. 11.2b). When three or
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more choice variables are present, the hills and valleys are no longer graphable,
but we may nevertheless think of “hills” and * valleys” on hypersurfaces.

A function that gives rise to a hill (valley) over the entire domain is said to be
a concave (convex) function.* For the present discussion, we shall take the
domain to be the entire R”, where » is the number of choice variables. Inasmuch
as the hill and valley characterizations refer to the entire domain, concavity and
convexity are, of course, global concepts. For a finer classification, we may also
distinguish between concavity and convexity on the one hand, and strict concavity
and strict convexity on the other hand. In the nonstrict case, the hill or valley is
allowed to contain one or more flat (as against curved) portions, such as line
segments (on a curve) or line segments and plane segments (on a surface). The
presence of the word “strict,” however, rules out such line or plane segments. The
two surfaces shown in Fig. 11.2 illustrate strictly concave and strictly convex
functions, respectively. The curve in Fig. 6.5, on the other hand, is convex (it
shows a valley) but not strictly convex (it contains line segments). A strictly
concave (strictly convex) function must be concave (convex), but the converse is
not true.

In view of the association of concavity and strict concavity with a global hill
configurafion, an extremum of a concave function must be a peak—a maximum
(as against minimum). Moreover, that maximum must be an absolute maximum
(as against relative maximum), since the hill covers the entire domain. However,
that absolute maximum may not be unique, because multiple maxima may occur
if the hill contains a flat horizontal top. The latter possibility can be dismissed
only when we specify strict concavity. For only then will the peak consist of a
single point and the absolute maximum be unique. A unique (nonunique) absolute
maximum is also referred to as a sirong (weak) absolute maximum.

By analogous reasoning, an extremum of a convex function must be an
absolute (or global) minimum, which may not be unique. But an extremum of a
strictly convex function must be a unique absolute minimum.

In the preceding paragraphs, the properties of concavity and convexity are
taken to be global in scope. If they are valid only for a portion of the curve or
surface (only in a subset S of the domain), then the associated maximum and
minimum are relative (or local) to that subset of the domain, since we cannot be
certain of the situation outside of subset S. In our earlier discussion of the sign
definiteness of d?z (or of the Hessian matrix H), we evaluated the principal
minors of the Hessian determinant only at the stationary point. By thus limiting
the verification of the hill or valley configuration to a small neighborhood of the
stationary point, we could discuss only relative maxima and minima. But it may
happen that 4%z has a definite sign everywhere, regardless of where the principal
minors are evaluated. In that event, the hill or valley would cover the entire
domain, and the maximum or minimum found would be absolute in nature. More
specifically, if d?z is everywhere negative (positive) semidefinite, the function

* If the hill (valley) pertains only to a subset S of the domain, the function is said to be concave
(convex) on S.
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z = f(X,, X,...., X,,) must be concave (convex), and if d*z is everywhere negative
(positive) definite, the function f must be strictly concave (strictly convex).

The preceding discussion is summarized in Fig. 11.5 for a twice continuously
differentiable function z = f(x,, x,,..., x,). For clarity, we concentrate exclu-
sively on concavity and maximum; however, the relationships depicted will
remain valid if the words “concave,” “negative,” and “maximum” are replaced,
respectively, by “convex,” “positive,” and “minimum.” To read Fig. 11.5, recall
that the = symbol (here elongated and even bent) means “implies.” When that
symbol extends from one enclosure (say, a rectangle) to another (say, an oval), it

z=flx,,....%,)
is a stationary point
[first-order condition]

|

d?z is negative d?z is negative

definite at semidefinite at z

[second-order sufficient [second-orde_r .

condition) necessary condition]
Zisa
\ relative maximum /
; fis

fis strictly
concave e

absolute maximum

ST e N

d?z d?z
is is
everywhere everywhere
negative Z is a unique negative
semidefinite absolute maximum definite

Figure 11.5
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means that the former implies (is sufficient for) the latter; it also means that the
latter is necessary for the former. And when the = symbol extends from one
enclosure through a second to a third, it means that the first enclosure, when
accompanied by the second, implies the third.

In this light, the middle column in Fig. 11.5, read from top to bottom, states
that the first-order condition is necessary for Z to be a relative maximum, and the
relative-maximum status of Z is, in turn, necessary for Z to be an absolute
maximum, and so on. Alternatively, reading that column from bottom to top, we
see that the fact that 7 is a unique absolute maximum is sufficient to establish 7 as
an absolute maximum, and the absolute-maximum status of Z is, in turn, sufficient
for Z to be a relative maximum, and so forth. The three ovals at the top have to do
with the first- and second-order conditions at the stationary point z. Hence they
relate only to a relative maximum. The diamonds and triangles in the lower part,
on the other hand, describe global properties that enable us to draw conclusions
about an absolute maximum. Note that while our earlier discussion indicated only
that the everywhere negative semidefiniteness of d°z is sufficient for the concavity
of function f, we have added in Fig. 11.5 the information that the condition is
necessary, t0o. In contrast, the stronger property of everywhere negative definite-
ness of d°z is sufficient, but not necessary, for the strict concavity of f—because
strict concavity of f is compatible with a zero value of d?z at a stationary point.

The most important message conveyed by Fig. 11.5, however, lies in the two
extended = symbols passing through the two diamonds. The one on the left
states that, given a concave objective function, any stationary point can im-
mediately be identified as an absolute maximum. Proceeding a step further, we
see that the one on the right indicates that if the objective function is srictly
concave, the stationary point must in fact be a unique absolute maximum. In
either case, once the first-order condition is met, concavity or strict concavity
effectively replaces the second-order condition as a sufficient condition for maxi-
mum—nay, for an absolute maximum. The powerfulness of this new sufficient
condition becomes clear when we recall that d*z can happen to be zero at a peak,
causing the second-order sufficient condition to fail. Concavity or strict concavity,
however, can take care of even such troublesome peaks, because it guarantees that
a higher-order sufficient condition is satisfied even if the second-order one is not.
It is for this reason that concavity is often assumed from the very outset when a
maximization model is to be formulated with a general objective function (and,
similarly, convexity is often assumed for a minimization model). For then all one
needs to do is to apply the first-order condition. Note, however, that if a specific
objective function is used, the property of concavity or convexity can no longer
simply be assumed. Rather, it must be checked.

Checking Concavity and Convexity

Concavity and convexity, strict or nonstrict, can be defined (and checked) in
several ways. We shall first introduce a geometric definition of concavity and
convexity for a two-variable function z = f(x,, x,), similar to the one-variable
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version discussed in Sec. 9.3:

The function z = f(x,, x,) is concave (convex) iff, for any pair of distinct
pomnts M and N on its graph—a surface—line segment MN lies either on or
below (above) the surface. The function is strictly concave (strictly convex) iff
line segment MN lies entirely below (above) the surface, except at M and N.

The case of a strictly concave function is illustrated in Fig. 11.6, where M and N,
two arbitrary points on the surface, are joined together by a broken line segment
as well as a solid arc, with the latter consisting of points on the surface that lie
directly above the line segment. Since strict concavity requires line segment MN
to lie entirely below arc MN (except at M and N) for any pair of points M and N,
the surface must typically be dome-shaped. Analogously, the surface of a strictly
convex function must typically be bowl-shaped. As for (nonstrictly) concave and
convex functions, since line segment MN is allowed to lie on the surface itself,
some portion of the surface, or even the entire surface, may be a plane—flat,
rather than curved.

To facilitate generalization to the nongraphable n-dimensional case. the
geometric definition needs to be translated into an equivalent algebraic version.
Returning to Fig. 11.6, let u = (u, u,) and v = (v, v,) be any two distinct
ordered pairs (2-vectors) in the domain of z = f( x|, x,). Then the z values (height
of surface) corresponding to these will be f(u) = f(u,, u,) and f(v) = f(v,. vy).
respectively. We have assumed that the variables can take all real values, so if
and v are in the domain, then all the points on the line segment uv are also in the

fl0u+(1-6) v]

——— y
2
X

Figure 11.6



342 OPTIMIZATION PROBLEMS

domain. Now each point on the said line segment is in the nature of a * weighted
average” of u and v. Thus we can denote this line segment by fu + (1 — 8)v.
where # (the Greek letter theta)—unlike » and v—is a (variable) scalar with the
range of values 0 < 6 < 1.* By the same token, line segment MN, representing
the set of all weighted averages of f(u) and f(v), can be expressed by 8f(u) +
(1 — 8)f(v), with § again varying from 0 to 1. What about arc MN along the
surface? Since that arc shows the values of the function f evaluated at the various
points on line segment uv, it can be written simply as f[fu + (1 — 6)v]. Using
these expressions, we may now state the following algebraic definition:

A function f is { ggggg;/e} iff. for any pair of distinct points « and v in the

domain of f, and for 0 < § < 1,

(1120) /() + (1= 6)/(0) | 2} f[0u+(1=6)0]

height of line segment height of arc

vV IA

Note that, in order to exclude the two end points M and N from the height
comparison, we have restricted # to the open interval (0, 1) only.

This definition is easily adaptable to stricr concavity and convexity by
changing the weak inequalities < and > to the strict inequalities < and > .
respectively. The advantage of the algebraic definition is that it can be applied to
a function of any number of variables, for the vectors u and v in the definition
can very well be interpreted as n-vectors instead of 2-vectors.

From (11.20), the following three theorems on concavity and convexity can
be deduced fairly easily. These will be stated in terms of functions f(x) and g(x),
but x can be interpreted as a vector of variables; that is, the theorems are valid
for functions of any number of variables.

Theorem I (linear function) If f(x) is a linear function, then it is a concave
function as well as a convex function, but not strictly so.

Theorem II (negative of a function) If f(x) i1s a concave function, then
—f(x) is a convex function, and vice versa. Similarly, if f(x) is a strictly concave
function, then —f(x) is a strictly convex function, and vice versa.

Theorem 1II  (sum of functions) If f(x) and g(x) are both concave (convex)
functions, then f(x) + g(x) is also a concave (convex) function. If f(x) and g(x)

* The weighted-average expression @u + (1 — 6)e, for any specific value of 8 between 0 and 1, is
technically known as a convex combination of the two vectors u and v. Leaving a more detailed
explanation of this to a later point of this section, we may note here that when 8 = 0, the given
expression reduces to vector ¢ and similarly that when 8 = 1, the expression reduces to vector 4. An
intermediate value of #, on the other hand, gives us an average of the two vectors 1 and c.
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are both concave (convex) and, in addition, either one or both of them are strictly
concave (strictly convex), then f(x) + g(x) is strictly concave (strictly convex).

Theorem I follows from the fact that a linear function plots as a straight line,
plane, or hyperplane, so that “line segment MN” always coincides with ‘“arc
MN.” Consequently, the equality part of the two weak inequalities in (11.20) are
simultaneously satisfied, making the function qualify as both concave and convex.
However, since it fails the strict-inequality part of the definition, the linear
function is neither strictly concave nor strictly convex.

Underlying Theorem II is the fact that the definitions of concavity and
convexity differ only in the sense of inequality. Suppose that f(x) is concave; then

Of(u) + (1 —8)f(v)<f[0u~+{(1—-6)v]

Multiplying through by — 1, and duly reversing the sense of the inequality, we get

O[—f()]+ (1 =) [—f(v)] = —f[8u+ (1 - 0)0]

This, however, is precisely the condition for —f(x) to be convex. Thus the
theorem is proved for the concave f(x) case. The geometric interpretation of this
result is very simple: the mirror image of a hill with reference to the base plane or
hyperplane is a valley. The other cases can be proved similarly.

To see the reason behind Theorem III, suppose that f(x) and g(x) are both
concave. Then the following two inequalities hold:

(11.21) 6f(u)+ (1 —6)f(v)<f[0u+(1—8)o]
(11.22) fg(u)+ (1 —0)g(v) < gll8u+(1-06)v]
Adding these, we obtain a new inequality

(11.23)  o[f(u)+g(u)] + (1 =) f(v) +g(o)]
</{6u+ (1~-0)o]+g[0u+(1-8)0]

But this 1s precisely the condition for { f(x) + g(x)] to be concave. Thus the
theorem 1s proved for the concave case. The proof for the convex case is similar.

Moving to the second part of Theorem II1, let f(x) be strictly concave. Then
(11.21) becomes a strict inequality:

(11.21)  f(u)+ (1= 8)f(v) < f[6u+ (1 —-8)0]

Adding this to (11.22), we find the sum of the left-side expressions in these two
inequalities to be strictly less than the sum of the right-side expressions, regardless
of whether the < sign or the = sign holds in (11.22). This means that (11.23) now
becomes a sirict inequality, too, thereby making [ f(x) + g(x)} strictly concave.
Besides, the same conclusion emerges a fortiori, if g(x) is made strictly concave
along with f(x), that is, if (11.22) is converted into a strict inequality along with
(11.21). This proves the second part of the theorem for the concave case. The
proof for the convex case is similar.
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This theorem, which is also valid for a sum of more than two concave
(convex) functions, may prove useful sometimes because it makes possible the
compartmentalization of the task of checking concavity or convexity of a function
that consists of additive terms. If the additive terms are found to be individually
concave (convex), that would be sufficient for the sum function to be concave
{convex).

Example 1 Check z = x{ + x3 for concavity or convexity. To apply (11.20), let
u = (u, uy) and v = (v, v,} be any two distinct points in the domain. Then we
have

flu) = flupouy) = uif + u3
fle) =f(v,0) = o1 + 0]
and  f[0u+ (1 —-0)v]=f|8u + (1 —86)v,,0u,+ (1 ~-8)0,

YT
value of x, value of x,

=[6u, + (1 - 0)01]2 + [6u, + (1 - 9)02]2

Substituting these into (11.20), subtracting the right-side expression from the
left-side one, and collecting terms, we find their difference to be

g1 — 6)(u + u%) +6(1 — 0)(0% + v%) —20(1 = 8)(uv, + uy0,)

=6(1 - 0)[(“1 - Ul)z + (uy — 02)2]

Since 8 is a positive fraction, #(1 — #) must be positive. Moreover, since (u,, Uy)
and (v, vy) are distinct points, so that either u, # v, or u, # v, (or both), the
bracketed expression must also be positive. Thus the strict > inequality holds in
(11.20), and z = x{ + x? is strictly convex.

Alternatively, we may check the xi and x3 terms separately. Since each of
them is individually strictly convex, their sum is also strictly convex.

Because this function is strictly convex, it possesses a unique absolute
minimum. It is easy to verify that the said minimum is Z = 0, attained at
X, = X, =0, and that it is indeed absolute and unique because any ordered pair
(x,. x,) # (0,0) yields a z value greater than zero.

Example 2 Check z = —x] — x3 for concavity or convexity. This function is the
negative of the function in Example 1. Thus, by Theorem I, it is strictly concave.

Example 3 Check z = (x + y)? for concavity or convexity. Even though the
variables are denoted by x and y instead of x| and x,, we can still let u = (u,, u,)
and v = (v, v,) denote two distinct points in the domain, with the subscript i
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referring to the ith variable. Then we have
f(u) = fluyuy) = (u, + uy)’
f(0) = f(v),0,) = (v + )’
and  f[0u+ (1 -6)v] =[8u, + (1 —8)o, +0u, +(1 — 8)v,]
= [6(u, + uy) + (1 = 8)(v, + v,)]°

Substituting these into (11.20), subtracting the right-side expression from the
left-side one, and simplifying, we find their difference to be

6(1 — 6)(u, + uz)2 —260(1 = 8)(u, + uy)(v, +v,) +6(1 = 0)(v, + 02)2

=6(1 - 9)[(“1 +uy) — (o + Uz)]2
As in Example 1, 8(1 — 8) is positive. The square of the bracketed expression is
nonnegative (zero cannot be ruled out this time). Thus the > inequality holds in
(11.20), and the function (x + y)? is convex, though not strictly so.
Accordingly, this function has an absolute minimum that may not be unique.
It is easy to verify that the absolute minimum is z = 0, attained whenever
X + 7 = 0. That this is an absolute minimum is clear from the fact that whenever
x + y # 0, z will be greater than Z = 0. That it is not unique follows from the fact
that an infinite number of (X, ¥) pairs can satisfy the condition X + y = 0.

Differentiable Functions

As stated in (11.20), the definition of concavity and convexity uses no derivatives
and thus does not require differentiability. If the function /s differentiable,
however, concavity and convexity can also be defined in terms of its first
derivatives. In the one-variable case, the definition is:

concave

A differentiable function f(x) 1s { convex

other point v in the domain,

} iff, for any given point ¥ and any

(1124)  f(o) { =} 7(w)+7 ()0~ )

Concavity and convexity will be strict, if the weak inequalities in (11.24) are
replaced by the strict inequalities < and > , respectively. Interpreted geometri-
cally, this definition depicts a concave (convex) curve as one that lies on or below
(above) all its tangent lines. To qualify as a strictly concave (strictly convex)
curve, on the other hand, the curve must lie strictly below (above) all the tangent
lines, except at the points of tangency.

In Fig. 11.7, let point 4 be any given point on the curve, with height f(u) and
with tangent line AB. Let x increase from the value u. Then a strictly concave
curve (as drawn) must, in order to form a hill, curl progressively away from the
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Figure 11.7

tangent line AB, so that point C, with height f(v), has to lie below point B. In
this case, the slope of line segment 4C is less than that of tangent 4 B. If the curve
is nonstrictly concave, on the other hand, it may contain a line segment, so that,
for instance, arc AC may turn into a line segment and be coincident with line
segment A B, as a linear portion of the curve. In the latter case the slope of AC is
equal to that of AB. Together, these two situations imply that
Slope of line segment AC = DC ) fe) = f(w) < (slopeof AB =)f"(u)
AD v—u
When multiplied through by the positive quantity (v — u), this inequality yields
the result in (11.24) for the concave function. The same result can be obtained, if
we consider instead x values less than u.
When there are two or more independent variables, the definition needs a
slight modification:

A differentiable function f(x) = f(x,,.... x,) 18 { cc%r:lc;/ag(e} iff, for any given

pomnt u = (u,..... u,) and any other point v = (vy,..., v,) in the domain,

OIS WA

=1

(1124)  f(v) {

vV A

where f(u) = df/0x, is evaluated at u = (u..... u,).

This definition requires the graph of a concave (convex) function f(x) to lie on or
below (above) all its tangent planes or hyperplanes. For strict concavity and
convexity, the weak inequalities in (11.24") should be changed to strict ineguali-
ties, which would require the graph of a strictly concave (strictly convex) function
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to lie strictly below (above) all its tangent planes or hyperplanes, except at the
points of tangency.

Finally, consider a function z = f(x,,..., x,) which is twice continuously
differentiable. For such a function, second-order partial derivatives exist, and thus
d?z is defined. Concavity and convexity can then be checked by the sign of d 2z

(11.25)

A twice continuously differentiable function z = f(x,,..., x,) is { concave}

convex
negative

. e g2 h .
if, and only if, d-z is everywhere { positive

} semidefinite. The said function

concave

convex

. negative
is strictly { & }

. . 2 . .
} if (but not only if) d°z i1s everywhere {positive

definite.

You will recall that the concave and strictly concave aspects of (11.25) have
already been incorporated into Fig. 11.5.

Example 4 Check z = —x* for concavity or convexity by the derivative condi-
tions. We first apply (11.24). The left- and right-side expressions in that inequality
are in the present case —v* and —u* — 4u’(v — u), respectively. Subtracting the
latter from the former, we find their difference to be

ot - ut

—o* + u4+4u3(v—u)=(v—u)(— + 4y’ [factoring]

= (v — u)[—(v3 + vu + vu’ + ud) + 4u3]
[by (7.2)]

It would be nice if the bracketed expression turned out to be divisible by (v — u),
for then we could again factor out (v — ) and obtain a squared term (v — u)* to
facilitate the evaluation of sign. As it turns out, this is indeed the case. Thus the
difference cited above can be written as

— (v —u) [0+ 2vou + 3u*] = — (v - u)z[(v +u) + 2u2]

Given that v # u, the sign of this expression must be negative. With the strict <
inequality holding in (11.24), the function z = —x* is strictly concave. This
means that it has a unique absolute maximum. As can be easily verified, that
maximum is Z = 0, attained at X = 0.

Because this function is twice continuously differentiable, we may also apply
(11.25). Since there is only one variable, (11.25) gives us

d’z = f"(x)dx? = —12x7 dx? [by (11.2)]

We know that dx? is positive (only nonzero changes in x are being considered);
but — 12x? can be either negative or zero. Thus the best we can do is to conclude
that d%z is everywhere negative semidefinite, and that z = —x* is (nonstrictly)
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concave. This conclusion from (11.25) is obviously weaker than the one obtained
earlier from (11.24); namely, z = —x* is strictly concave. What limits us to the
weaker conclusion in this case is the same culprit that causes the second-deriva-
tive test to fail on occasions—the fact that d2z may take a zero value at a
stationary point of a function known to be strictly concave, or strictly convex.
This is why, of course, the negative (positive) definiteness of d°z is presented in
(11.25) as only a sufficient, but not necessary, condition for strict concavity (strict
convexity).

Example 5 Check z = x{ + x3 for concavity or convexity by the derivative
conditions. This time we have to use (11.24") instead of (11.24). With u = (u,, u,)
and v = (v, v,) as any two points in the domain, the two sides of (11.24') are

Left side

Right side = u} + u3 + 2u, (v, — u,) + 2u,(v, — u,)

2 2
v+ v

Subtracting the latter from the former, and simplifying, we can express their
difference as

2 2
vl — 20U, + ul + vy — 20,u, + ui = (v, - u )+ (vy — uy)

Given that (v, vy) # (u,, u,), this difference is always positive. Thus the strict >
inequality holds in (11.24"), and z = x{ + x3 is strictly convex. Note that the
present result merely reaffirms what we have previously found in Example 1.

As for the use of (11.25), since f, = 2x,, and f, = 2x,, we have

2.0
i a0
L fa] |02

regardless of where the second-order partial derivatives are evaluated. Thus 4z is
everywhere positive definite, which duly satisfies the sufficient condition for strict
convexity. In the present example, therefore, (11.24") and (11.25) do yield the
same conclusion.

fmh=2>0 and

Convex Functions versus Convex Sets

Having clarified the meaning of the adjective “convex” as applied to a function,
we must hasten to explain its meaning when used to describe a ser. Although
convex sets and convex functions are not unrelated, they are distinct concepts,
and it is important not to confuse them.

For easier intuitive grasp, let us begin with the geometric characterization of a
convex set. Let S be a set of points in a 2-space or 3-space. If, for any two points
in set S, the line segment connecting these two points lies entirely in S, then S is
said to be a convex ser. It should be obvious that a straight line satisfies this
definition and constitutes a convex set. By convention, a set consisting of a single
point is also considered as a convex set, and so is the null set (with no point). For
additional examples, let us look at Fig. 11.8. The disk—namely, the “solid” circle,
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a circle plus all the points within 1t—is a convex set, because a line joining any
two points in the disk lies entirely in the disk, as exemplified by ab (linking two
boundary points) and c¢d (linking two interior points). Note, however, that a
{(hollow) circle is nort in itself a convex set. Similarly, a triangle, or a pentagon, is
not in itself a convex set, but its solid version is. The remaining two solid figures
in Fig. 11.8 are not convex sets. The palette-shaped figure is reentrant (indented);
thus a line segment such as gh does not lie entirely in the set. In the key-shaped
figure, moreover, we find not only the feature of reentrance, but also the presence
of a hole, which is yet another cause of nonconvexity. Generally speaking, to
qualify as a convex set, the set of points must contain no holes, and its boundary
must not be indented anywhere.

The geometric definition of convexity also applies readily to point sets in a
3-space. For instance, a solid cube is a convex set, whereas a hollow cylinder is
not. When a 4-space or a space of higher dimension is involved, however, the
geometric interpretation becomes less obvious. We then need to turn to the
algebraic definition of convex sets.

To this end, it is useful to introduce the concept of convex combination of
vectors (points), which 1s a special type of linear combination. A linear combina-
tion of two vectors v and v can be written as

kau+ kv
where k, and k, are two scalars. When these two scalars both lie in the closed

interval [0, 1] and add up to unity, the linear combination is said to be a convex
combination, and can be expressed as

(11.26) fu+ (1 —6)o (0<8<1)

. . . 172 214
As an illustration, the combination 3 [ 0} + 3 [ 9

view of the fact that these two scalar multipliers are positive fractions adding up

] 1S a convex combination. In

Figure 11.8
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to 1, such a convex combination may be interpreted as a weighted average of the
two vectors.*

The unique characteristic of the combination in (11.26) is that, for every
acceptable value of 6, the resulting sum vector lies on the line segment connecting
the points « and v. This can be demonstrated by means of Fig. 11.9, where we

u v

have plotted two vectors u = [ul ] and v = [Ul] as two points with coordinates
2 2

(u). uy) and (v, vy), respectively. If we plot another vector ¢ such that Ogquv

forms a parallelogram, then we have (by virtue of the discussion in Fig. 4.3)
Uu=qg+wv or g=u-—v

It follows that a convex combination of vectors « and v (let us call it w) can be
expressed in terms of vector ¢, because

w=0u+(l-8)v=0u+v—0v=0u—v)+v="=0g+0

Hence, to plot the vector w, we can simply add 6g and v by the familiar
parallelogram method. If the scalar @ is a positive fraction, the vector fg will
merely be an abridged version of vector ¢; thus g must lie on the line segment
Oq. Adding g and v, therefore, we must find vector w lying on the line segment
uv, for the new, smaller parallelogram is nothing but the original parallelogram
with the gu side shifted downward. The exact location of vector w will, of course,
vary according to the value of the scalar 8; by varying @ from zero to unity, the
location of w will shift from v to u. Thus the set of all points on the line segment
uv, including ¥ and v themselves, corresponds to the set of all convex combina-
tions of vectors u and v.

* This interpretation has been made use of earlier in the discussion of concave and convex
functions.
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In view of the above, a convex set may now be redefined as follows: A set S is
convex if and only if, for any two points u € § and v € S, and for every scalar
g [0,1], it is true that w = f6u + (1 — f)v € §. Because this definition is
algebraic, it is applicable regardless of the dimension of the space in which the
vectors « and v are located. Comparing this definition of a convex set with that of
a convex function in (11.20), we see that even though the same adjective “convex”
is used in both, the meaning of this word changes radically from one context to
the other. In describing a function, the word “convex” specifies how a curve or
surface bends itself—it must form a valley. But in describing a set, the word
specifies how the points in the set are ~packed” together—they must not allow
any holes to arise. and the boundary must not be indented. Thus convex functions
and convex sets are clearly distinct mathematical entities.

Yet convex functions and convex sets are not unrelated. For one thing, in
defining a convex function, we need a convex set for the domain. This is because
the definition (11.20) requires that. for any two points v and v in the domain, all
the convex combinations of u and v—specifically, fu + (I — 8)v, 0 <0 <
| —must also be in the domain. which is, of course, just another way of saying
that the domain must be a convex set. To satisfy this requirement, we adopted
earlier the rather strong assumption that the domain consists of the entire n-space
(where n is the number of choice variables), which is indeed a convex set.
However, with the concept of convex sets at our disposal, we can now substan-
tially weaken that assumption. For all we need to assume is that the domain is a
convex subset of R”, rather than R" itself.

There is yet another way in which convex functions are related to convex sets.
If f(x) is a convex function, then for any constant k, it can give rise to a convex
set

(11.27) S=={x|f(x) < k) [ 7(x) convex]

This is illustrated in Fig. 11.10« for the one-variable case. The set S= consists of
all the x values associated with the segment of the f(x) curve lying on or below
the broken horizontal line. Hence it is the line segment on the horizontal axis
marked by the heavy dots, which is a convex set. Note that if the k value 1s
changed, the S~ set will become a different line segment on the horizontal axis,
but it will still be a convex set.

Going a step further, we may observe that even a concave function is related
to convex sets in ways similar. First. the definition of a concave function in
(11.20) is. like the convex-function case, predicated upon a domain that is a
convex set. Moreover, even a concave function—say, g(x)—can generate an
associated convex set, given some constant k. That convex set 1s

(11.28) S ={x|glx) =k} [g(x) concave]

in which the > sign appears instead of < . Geometrically, as shown in Fig.
11.10b for the one-variable case. the set $= contains all the x values correspond-
ing to the segment of the g(x) curve lying on or above the broken horizontal line.
Thus it is again a line segment on the horizontal axis—a convex set.
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Although Fig. 11.10 specifically illustrates the one-variable case, the defini-
tions of $= and S~ in (11.27) and (11.28) are not limited to functions of a single
variable. They are equally valid if we interpret x to be a vector, i.e.. let
x = (x,..., x,). In that case, however, (11.27) and (11.28) will define convex sets
in the n-space instead. It is important to remember that while a convex function
implies (11.27), and a concave function implies (11.28), the converse is not
true—for (11.27) can also be satisfied by a nonconvex function and (11.28) by a
nonconcave function. This is discussed further in Sec. 12.4.

EXERCISE 11.5

1 Use (11.20) to check whether the following functions are concave, convex, strictly
concave, strictly convex, or neither:
(a) z = x* (b) z=x{+2x3 (¢) 2=2x"— xy +?

2 Use (11.24) or (11.24) to check whether the following functions are concave, convex,
strictly concave, strictly convex, or neither:
(a) z = —x? (b) z={(x, + x,)? (¢) z= —xy

3 In view of your answer to problem 2¢ above, could you have made use of Theorem III
of this section to compartmentalize the task of checking the function z = 2x* — xp + ?
in problem lc¢? Explain your answer.

4 Do the following constitute convex sets in the 3-space?
(a) A doughnut (b) A bowling pin (¢) A perfect marble

5 The equation x* + y? = 4 represents a circle with center at (0,0) and with a radius of 2.
(a) Interpret geometrically the set {(x, y) | x> + y? < 4).
(b) Is this set convex?
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6 Graph each of the following sets, and indicate whether it is convex:
(a) {(x, M |y=¢e"} () {(x, )iy <13 —x%)
(b)) {(x.¥»)|y=e) (d) (x, ) 1xy=>lLix>0,py>0)

10

7G1venu=[ 6

and ¢?

RN E G EH EC

8 Given two vectors u and © in the 2-space, find and sketch:
(a) The set of all linear combinations of v and v
(h) The set of all nonnegative linear combinations of « and v
(¢) The set of all convex combinations of ¥ and v

} and v = [g] which of the following are convex combinations of u

9 (a) Rewrite (11.27) and (11.28) specifically for the cases where the f and g functions
have n independent variables.

(b) Let n = 2, and let the function f be shaped like a (vertically held) ice-cream cone
whereas the function g is shaped like a pyramid. Describe the sets $= and §~ .

11.6 ECONOMIC APPLICATIONS

At the beginning of this chapter, the case of a multiproduct firm was cited as an
illustration of the general problem of optimization with more than one choice
variable. We are now equipped to handle that problem and others of a similar
nature.

Problem of a Multiproduct Firm

Example I Let us first postulate a two-product firm under circumstances of pure
competition. Since with pure competition the prices of both commodities must be
taken as exogenous, these will be denoted by P, and P,;. respectively. Accord-
ingly, the firm’s revenue function will be

R =PQ, + PyQ,

where Q, represents the output level of the ith product per unit of time. The firm’s
cost function is assumed to be

C=20{ + 0,0, +20;

Note that dC/3Q, = 4Q, + Q, (the marginal cost of the first product) is a
function not only of Q, but also of Q5. Similarly, the marginal cost of the second
product also depends, in part, on the output level of the first product. Thus,
according to the assumed cost function, the two commodities are seen to be
technically related in production.

The profit function of this hypothetical firm can now be written readily as

W:R_C:PlUQl+P20Q2_2Q12_QIQ2—2Q%
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a function of two choice variables (Q, and ¢, ) and two price parameters. It is our
task to find the levels of Q| and @, which, in combination, will maximize =. For
this purpose, we first find the first-order partial derivatives of the profit function:

J
771(5 351 ) =Py =40, —~ 0,
(11.29)

d
772(5552) =Py — 0, — 40,

Setting these both equal to zero, to satisfy the necessary condition for maximum,
we get the two simultaneous equations

40, + @, = Py,

Q) +40Q, =Py

which yield the unique solution
-—_4P10_P20 —_4P20*P10
Ql - 15 and QZ - 15

Thus, if P, =12 and P,, = 18, for example, we have 0, =2 and Q, = 4,
implying an optimal profit 7 = 48 per unit of time.

To be sure that this does represent a maximum profit, let us check the
second-order condition. The second partial derivatives, obtainable by partial
differentiation of (11.29), give us the following Hessian:

" T2y -4 -1
1H] = T T ‘ -1 -4
Since |H,| = —4 < 0and |H,| = 15 > 0. the Hessian matrix (or 4°z) is negative

definite, and the solution does maximize the profit. In fact, since the signs of the
principal minors do not depend on where they are evaluated, d°z is in this case
everywhere negative definite. Thus, according to (11.25), the objective function
must be strictly concave, and the maximum profit found above is actually a
unique absolute maximum.

Example 2 Let us now transplant the problem of Example 1 into the setting of a
monopolistic market. By virtue of this new market-structure assumption, the
revenue function must be modified to reflect the fact that the prices of the two
products will now vary with their output levels (which are assumed to be identical
with their sales levels, no inventory accumulation being contemplated in the
model). The exact manner in which prices will vary with output levels is. of
course, to be found in the demand functions for the firm’s two products.

Suppose that the demands facing the monopolist firm are as follows:
Q,=40—-2P, + P
(11.30) ' b
0,=15+ P - P

These equations reveal that the two commodities are related in consumption;
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specifically, they are substitute goods. because an increase in the price of one will
raise the demand for the other. As given, (11.30) expresses the quantities de-
manded Q, and Q, as functions of prices, but for our present purposes it will be
more convenient to have prices P, and P, expressed in terms of the sales volumes
Q, and Q,, that is, to have average-revenue functions for the two products. Since
(11.30) can be rewritten as

2P+ P =0, —40
Pi=P =0, 15

we may (considering @, and Q, as parameters) apply Cramer’s rule to solve for P,
and P, as follows:

P =55-0Q, -
(11.30) ! Q) g
pP,=70-0Q, - 20,

These constitute the desired average-revenue functions, since P, = AR, and
P, = AR,.
Consequently, the firm’s total-revenue function can be written as

R=P0Q + PO,
=(55-0,-0,)0, + (710 - Q, - 20,)0,  [by(11.30")]
=55Q, + 700, — 20,0, — le - 2Q22
If we again assume the total-cost function to be
C=0Q{+ 00, + Q3
then the profit function will be
{11.31) 7=R—-C=550, +70Q, — 30,0, — 207 — 303

which is an objective function with two choice variables. Once the profit-maximiz-
ing output levels 0, and Q, are found, however, the optimal prices P, and P, are
easy enough to find from (11.30").

The objective function yields the following first and second partial deriva-
tives:

m = 55-30,-4Q, m=70-3Q, - 60,

T, = —4 Ty =Ty = —3 Ty = —6

To satisfy the first-order condition for a maximum of 7, we must have 7, = 7, = 0;
that 1s,

40, + 3Q, =55
30, + 6Q, =170

Thus the solution output levels (per unit of time) are
(élw Qz) = (877%)

Upon substitution of this result into (11.30') and (11.31), respectively. we find
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that
P, =39} Fl = 46

s

and 7 = 4881 (per unit of time)
—4 -3
-3 -6
|H| = —4<0 and |Hy =15>0

Inasmuch as the Hessian is , we have

so that the value of # does represent the maximum profit. Here, the signs of the
principal minors are again independent of where they are evaluated. Thus the
Hessian matrix is everywhere negative definite, implying that the objective
function is strictly concave and that it has a unique absolute maximum.

Price Discrimination

Even in a single-product firm, there can arise an optimization problem involving
two or more choice variables. Such would be the case, for instance, when a
monopolistic firm sells a single product in two or more separate markets (e.g.,
domestic and foreign) and therefore must decide upon the quantities (Q,, Q,,
ctc.) to be supplied to the respective markets in order to maximize profit. The
several markets will, in general, have different demand conditions, and if demand
elasticities differ in the various markets, profit maximization will entail the
practice of price discrimination. Let us derive this familiar conclusion mathemati-
cally.

Example 3 For a change of pace, this time let us use three choice variables, i.e.,
assume three separate markets. Also, let us work with general rather than
numerical functions. Accordingly, our monopolistic firm will simply be assumed
to have total-revenue and total-cost functions as follows:

R = Rl(QI) + Rz(Qz) + R}(Qa)
C=C(Q) whereQ=0,+0,+0,

Note that the symbol R, represents here the revenue function of the ith
market, rather than a derivative in the sense of f. Each such revenue function
naturally implies a particular demand structure, which will generally be different
from those prevailing in the other two markets. On the cost side, on the other
hand, only one cost function is postulated, since a single firm is producing for all
three markets. In view of the fact that 0 = Q, + Q, + Q,, total cost C is also
basically a function of Q,, Q,, and Q,, which constitute the choice variables of
the model. We can, of course, rewrite C(Q) as C(Q, + Q, + Q5). It should be
noted, however, that even though the latter version contains three independent
variables, the function should nevertheless be considered as having a single
argument only, because the sum of Q, is really a single entity. In contrast, if the
function appears in the form C(Q,. Q,. Q5), then there can be counted as many
arguments as independent variables.
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Now the profit function is

=R, (Q)) + Ry(Q,) + R4(Q5) — C(Q)
with first partial derivatives 7, = dn/9Q, (for i = 1,2, 3) as follows:*

]
m = Ri(Q) ~ C(0) 49 = Ki(@) - C'Q)  |since 55 = 1

(11.32) 772=R'2(Q2)_CI(Q)_;EQZ—=R’2(Q2)_C’(Q) smceaiQQ;= 1

7= Ry(0)) — CQ) 42 = Ri(Q) = €(Q)  |since 55 = 1

Setting these equal to zero simultaneously will give us

C,(Q) = RII(QI) = Rlz(Qz) = Rls(Qa)
That is,
MC = MR, = MR, = MR,

Thus the levels of Q,, Q,. and Q; should be chosen such that the marginal
revenue in each market is equated to the marginal cost of the total output Q.

To see the implications of this condition with regard to price discrimination,
let us first find out how the MR in any market is specifically related to the price in
that market. Since the revenue in each market is R; = P,Q,, it follows that the
marginal revenue must be

M _dRI_ dQ, dP,
R=20"Pap, %
Pl+£%) ,(1+$) [by (8.4)]

where ¢, the point elasticity of demand in the i th market, is normally negative,
Consequently, the relationship between MR and P, can be expressed alternatively
by the equation

(11.33) MR=P(1—L)
L&yl

Recall that |e,,| is, in general, a function of P,, so that when Q, is chosen, and P,

thus specified, |e,,| will also assume a specific value, which can be either greater

than, or less than, or equal to one. But if |e,;| < 1 (demand being inelastic at a

point), then its reciprocal will exceed one, and the parenthesized expression in

(11.33) will be negative, thereby implying a negative value for MR,. Similarly, if

* Note that, to find dC/8Q,. the chain rule is used:
4C _ dC 99
3Q, dQ 99,
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le,;| = | (unitary elasticity), then MR, will take a zero value. Inasmuch as a firm’s
MC is positive, the first-order condition MC = MR, requires the firm to operate
at a positive level of MR . Hence the firm’s chosen sales levels Q. must be such
that the corresponding point elasticity of demand in each market is greater than
one.

The first-order condition MR, = MR, = MR, can now be translated, via
(11.33), into the following:

1 1 1
Pl1——|=Pl1 - —|=P]1 -2
l( le41] ) 2( &4 ) 3( [€43] )

From this it can readily be inferred that the smaller the value of |e,| (at the
chosen level of output) in a particular market, the higher the price charged in that
market must be—hence, price discrimination—if profit is to be maximized.

To ensure maximization, let us examine the second-order condition. From
(11.32), the second partial derivatives are found to be

J
mi = R{(Q) - C"(Q) 55 = Ri(0)) - C(©)
9Q

me = RY(Q:) - C'(0) 55~ = R3(03) - €'(©Q)
d :
ms = R3(Q:) - C(Q) 550 = RY(03) - C"(Q)

3Q;

. d
and Ty =Ty =Ty = Ty =7y =13 = —C"(Q) [smce 9Q _ 1]

so that we have (after shortening the second-derivative notation)
Ry — C” -C” S O
|H| =| —-C” Ry —C” -C”
—-C” -C” Ry = C”

The second-order sufficient condition will thus be duly satisfied, provided we
have:

1. |H|| = R} — C” < 0; that is, the slope of MR is less than the slope of MC
of the entire output [cf. the situation of point L in Fig. 9.6¢]. (Since any of the
three markets can be taken as the “first” market, this in effect also implies
R7 - C” <0and Ry — C" <0,

2. |Hy| =(RY — C"YR% — C")—(C")? > 0; 0or, RYR; — (R} + R5)C" >0

3. |Hy| = RYR{RY = (RYRY + RRY + R{R{C <0

The last two parts of this condition are not as easy to interpret economically as
the first. Note that had we assumed that the general R,;(Q;) functions are all
concave and the general C(Q) function is convex, so that — C(Q) is concave, then
the profit function—the sum of concave functions—could have been taken to be
concave, thereby obviating the need to check the second-order condition.
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Example 4 To make the above example more concrete, let us now give a
numerical version. Suppose that our monopolistic firm has the specific average-
revenue functions

P, =63 — 40, so that R, = P,Q, = 630, — 407
P, =105 - 50, R, = P,Q, = 1050, — 50;
P, =75 — 60, R, = P,Q, =750, — 603
and that the total-cost function is
C =20+ 15Q

Then the marginal functions will be
R, =63 — 80, R, =105 - 10Q, Ry =175 — 12Q, C'=15

When each marginal revenue R’ is set equal to the marginal cost C’ of the total
output, the equilibrium quantities are found to be

0, =6 0,=9 and 0,=5

3
Thus Q=) Q,=20
i=1

Substituting these solutions into the revenue & «d cost equations, we get 7 = 679
as the total profit from the triple-market business operation.

Because this is a specific model, we do have to check the second-order
condition (or the concavity of the objective function). Since the second derivatives
are

Ri=-8 Rj=-10 R{y=-12 (=0

all three parts of the second-order sufficient conditions given in Example 3 are
duly satisfied.

It is easy to see from the average-revenue functions that the firm should
charge the discriminatory prices P, = 39, P, = 60, and P, = 45 in the three
markets. As you can readily verify, the point elastlcuy of demand is lowest in the
second market, in which the highest price is charged.

Input Decisions of a Firm

Instead of output levels Q,, the choice variables of a firm may also appear in the
guise of input levels.

Example 5 Let us assume the following circumstances: (1) Two inputs @ and b
are used in the production of a single product Q of a hypothetical firm. (2) The
prices of both inputs, P, and P,, are beyond the control of the firm, as is the
output price P; hence we shall denote them by P, Py, and Py, respectively. (3)
The production process takes f, years (7, being some positive constant) to
complete; thus the revenue from sales should be duly discounted before it can be



360 OPTIMIZATION PROBLEMS

properly compared with the cost of production incurred at the present time. The
rate of discount, on a continuous basis, is assumed to be given at r,.

Upon assumption 1, we can write a general production function Q = Q(a, b),
with marginal physical products Q, and Q,. Assumption 2 enables us to express
the total cost as

C=aP,, +bP,
and the total revenue as
R = P,Q(a,b)

To write the profit function, however, we must first discount the revenue by
multiplying it by the constant e "o—which, to avoid complicated superscripts
with subscripts, we shall write as e ™. Thus, the profit function is

7= PyQ(a,bye " — aP,, — bP,,

in which @ and b are the only choice variables.
To maximize profit, it is necessary that the first partial derivatives

dm —rt
WQ(EE)=POQU€ _Pa0

am

(11.34)
A E'ég) = PQre " — Py

both be zero. This means that
(1135)  PyQ,e "=P, and PO, " =P,

Since PyQ, (the price of the product times the marginal product of input a)
represents the value of marginal product of input a (VMP,), the first equation
merely says that the present value of VMP, should be equated to the given price
of input a. The second equation is the same prerequisite applied to input b.

Note that, to satisfy (11.35), the marginal physical products @, and Q, must
both be positive, because P, P, P,,, and e " all have positive values. This has
an important interpretation in terms of an isoquant, defined as the locus of input
combinations that yield the same output level. When plotted in the ab plane,
1isoquants will generally appear like those drawn in Fig. 11.11. Inasmuch as each
of them pertains to a fixed output level, along any isoquant we must have

dQ = Q,da+ Q,db =10
which implies that the slope of an isoquant is expressible as

a0, __ MPP,
da  Q, ~ MPP,

Thus, to have Q, and Q, both positive is to confine the firm’s input choice to
the negatively sloped segments of the isoquants only. In Fig. 11.11, the relevant
region of operation is accordingly restricted to the shaded area defined by the two
so-called *“ridge lines.” Outside the shaded area, where the isoquants are char-
acterized by positive slopes, the marginal product of one input must be negative.

(11.36)
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The movement from the input combination at M to the one at N, for instance,
indicates that with input b held constant the increase in input g leads us to a lower
isoquant (a smaller output); thus, @, must be negative. Similarly, a movement
from M’ to N’ illustrates the negativity of Q,. Note that when we confine our
attention to the shaded area, each isoquant can be taken as a function of the form
b = ¢(a), because for every admissible value of a, the isoquant determines a
unique value of b.

The second-order condition revolves around the second partial derivatives of
7, obtainable from (11.34). Bearing in mind that Q, and Q,, being derivatives, are
themselves functions of the variables a and b, we can find 7, m,, = 7,,, and 7,
and arrange them into a Hessian:

(11.37) |H| = Taa Tab| _ PyQ.e " PyQue "

-t -rt
Tab Tob PyQ e PyQphe
For a stationary value of 7 to be a maximum, it is sufficient that

|H,| <0 [that is, 7, < O, which can obtain iff Q,, < 0]
|H,| = |H| >0 [that is, 7, m,, > =2, which can obtain iff Q_,Q,, > Qi,,]

Thus, we note, the second-order condition can be tested either with the =,
derivatives or the @, derivatives, whichever are more convenient.

The symbol Q,, denotes the rate of change of Q, (= MPP,) as input a
changes while input b is fixed; similarly, Q,, denotes the rate of change of Q,
(= MPP,) as input b changes alone. So the second-order sufficient condition
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supulates, in part, that the MPP of both inputs be diminishing at the chosen input
levels @ and h. Observe, however, that diminishing MPP, and MPP, do nor
guarantee the satisfaction of the second-order condition, because the latter
condition also involves the magnitude of Q , = Q,,. which measures the rate of
change of MPP of one input as the amount of the other input varies.

Upon further examination it emerges that, just as the first-order condition
specifies the isoquant to be negatively sloped at the chosen input combination (as
shown in the shaded area of Fig. 11.11), the second-order sufficient condition
serves to specify that same isoquant to be strictly convex at the chosen input
combination. The curvature of the isoquant is associated with the sign of the
second derivative d°b/da’. To obtain the latter, (11.36) must be differentiated
totally with respect to a, bearing in mind that Q, and Q, are both derivative
functions of @ and b and yet. on an isoquant, b is itself a function of a; that is.

=Q.(a.b)  Q,=0y(a.b) and  b=¢(a)
The total differentiation thus proceeds as follows:

d’h _d{ @Q, l [ dQ, aQ,
da® da( Qh) 02 <z da “ da

Since b is a function of @ on the isoquant, the total-derivative formula (8.9) gives
us

(11.38)

dQ, _@@ a0, B db
(11.39) da  0b da+ da Q”“a’a Qua
P o w0, a 00, @

da  0b da+ da _Qb”da+Q“b

After substituting (11.36) into (11.39) and then substituting the latter into (11.38),
we can rewrite the second derivative as
(11.40) g“z—b=——[QQ 0.9, — Q0.+ 0 Q( )l

- daz Qb auxh baxa ab bb Qb

1 2
= - —5[e.(2.)" - 20,0000, + 0,,(0,)]
0
It is to be noted that the expression in brackets (last line) is a quadratic form in
the two variables Q, and Q,. If the second-order sufficient condition is satisfied,
so that

Qau - Quh
- Qub th

then. by virtue of (11.11"), the said quadratic form must be negative definite. This
will in turn make d°b/da® positive, because Q, has been constrained to be
positive by the first-order condition. Thus the satisfaction of the second-order
sufficient condition means that the relevant (negatively sloped) isoquant is strictly
convex at the chosen input combination, as was asserted.

0,..<0 and I >0
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The concept of strict convexity, as applied to an isoquant b = ¢(a), which is
drawn in the two-dimensional ab plane, should be carefully distinguished from
the same concept as applied to the production function Q(a, b) itself, which is
drawn in the three-dimensional abQ space. Note, in particular, that if we are to
apply the concept of strict concavity or convexity to the production function in
the present context, then, to produce the desired isoquant shape, the appropriate
stipulation is that Q(a, b) be strictly concave in the 3-space (be dome-shaped),
which is in sharp contradistinction to the stipulation that the relevant isoquant be
strictly convex in the 2-space (be U-shaped, or shaped like a part of a U).

Example 6 Next, suppose that interest is compounded quarterly instead, at a
given interest rate of i/, per quarter. Also suppose that the production process
takes exactly a quarter of a year. The profit function then becomes

T = POQ(a, b)(l + "0)71 —aP,, — bPy,
The first-order condition is now found to be

POQa(l + iO)Wl - PaO = 0

PyQ,(1 + ’.0)7l — Pyy=0

with an analytical interpretation entirely the same as in Example 5, except for the
different manner of discounting,.

You can readily see that the same sufficient condition derived in the preced-
ing example must apply here as well.

EXERCISE 11.6

1 If the competitive firm of Example 1 has the cost function C = 2Q{ + 2Q3 instead,
then:

(a) Will the production of the two goods still be technically related?

(b) What will be the new optimal levels of Q| and @5?

(¢) What is the value of #,,?7 What does this imply economically?

2 A two-product firm faces the demand and cost functions below:
0, =40-2P P, 0,=35-P -P, C=0Q7+20;+10

(a) Find the output levels that satisfy the first-order condition for maximum profit.
{Use fractions.)

(b) Check the second-order sufficient condition. Can you conclude that this problem
possesses a unique absolute maximum?

(¢) What is the maximal profit?

3 On the basis of the equilibrium price and quantity in Example 4, calculate the point
elasticity of demand {e,,| (for i = 1,2,3). Which market has the highest and the lowest
demand elasticities?
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4 If the cost function of Example 4 is changed to C = 20 + 15Q + Q%
(a) Find the new marginal-cost function.
(b) Find the new equilibrium quantities. (Use fractions).
(¢) Find the new equilibrium prices.
(d) Verify that the second-order sufficient condition is met.

5 In Example 6, how would you rewrite the profit function if the following conditions
hold?

(a) Interest is compounded semiannually at an interest rate of i, per annum, and the
production process takes | year.

{b) Interest is compounded quarterly at an interest rate of iy per annum, and the
production process takes 9 months.

6 Given ¢ = Q(a, b), how would you express algebraically the isoquant for the output
level of, say, 260?

11.7 COMPARATIVE-STATIC ASPECTS OF OPTIMIZATION

Optimization, which is a special variety of static equilibrium analysis, is naturally
also subject to investigations of the comparative-static sort. The idea is, again, to
find out how a change in any parameter will affect the equilibrium position of the
model, which in the present context refers to the optimal values of the choice
variables (and the optimal value of the objective function). Since no new
technique is involved beyond those discussed in Part 3, we may proceed directly
with some illustrations, based on the examples introduced in the preceding
section.

Reduced-Form Solutions

Example 1 of Sec. 11.6 contains two parameters (or exogenous variables), P, and
P,; 1t 1s not surprising, therefore, that the optimal output levels of this two-prod-
uct firm are expressed strictly in terms of these parameters:

_ 4pP., — P. — 4P,, — P
Ql:"_l)'—20 and Q2=_____2_015—10

15

These are reduced-form solutions, and simple partial differentiation alone is
sufficient to tell us all the comparative-static properties of the model, namely,

90, _4 90, _ 1 90, 1 40, _4

apP, 15 Py, 15 dP,, 15 P, 15

For maximum profit, each product of the firm should be produced in a larger
quantity 1f its market price rises or if the market price of the other product falls.

Of course, these conclusions follow only from the particular assumptions of
the model in question. We may point out, in particular, that the effects of a
change in P, on Q, and of Py, on Q,, are consequences of the assumed technical
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relation on the production side of these two commodities, and that in the absence
of such a relation we shall have

00, _ 00,

dPy 3Py 0

Moving on to Example 2, we note that the optimal output levels are there
stated, numerically, as Q, = 8 and 0, = 72 —no parameters appear. In fact, all
the constants in the equations of the model are numerical rather than parametric,
so that by the time we reach the solution stage those constants have all lost their
respective identities through the process of arithmetic manipulation. What this
serves to underscore is the fundamental lack of generality in the use of numerical
constants and the consequent lack of comparative-static content in the equi-
librium solution.

On the other hand, the nonuse of numerical constants is no guarantee that a
problem will automatically become amenable to comparative-static analysis. The
price-discrimination problem (Example 3), for instance, was primarily set up for
the study of the equilibrium (profit-maximization) condition, and no parameter
was introduced at all. Accordingly, even though stated in terms of general
functions, a reformulation will be necessary if a comparative-static study is
contemplated.

General-Function Models

The input-decision problem of Example 5 illustrates the case where a general-
function formulation does embrace several parameters—in fact, no less than five
(Py, P,y, Py, r, and t), where we have, as before, omitted the 0 subscripts from
the exogenous variables r, and #,. How do we derive the comparative-static
properties of this model?

The answer lies again in the application of the implicit-function theorem. But,
unlike the cases of nongoal-equilibrium models of the market or of national-
income determination, where we worked with the equilibrium conditions of the
model, the present context of goal equilibrium dictates that we work with the
first-order conditions of optimization. For Example 5, these conditions are stated
in (11.35). Collecting all terms in (11.35) to the left of the equals signs, and
making explicit that Q_ and Q, are both functions of the endogenous (choice)
variables a and b, we can rewrite the first-order conditions in the format of (8.20)
as follows:

F'(a,b; Py, Py, Ppoyor.t)=P,Q, (a.b)e " —P,y=0

(11.41)
F*(a,b; Py, Py, Poy,r.1) = PoQy(a, b)e™ — Py =0

The functions F' and F? are assumed to possess continuous derivatives. Thus it
would be possible to apply the implicit-function theorem, provided the Jacobian
of this system with respect to the endogenous variables ¢ and b does not vanish at
the 1nitial equilibrium. The said Jacobian turns out to be nothing but the Hessian
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determinant of the = function of Example 5:
IF'  JF!
da b | |PQ.e " PQue "

2 2| —rt —rt - IHl
dF JF PoQve PoQpre
da ob

(11.42) || =

[by (11.37)]

Hence, if we assume that the second-order sufficient condition for profit-maximi-
zation is satisfied, then|H| must be positive, and so must be |J|, at the initial
equilibrium or optimum. In that event, the implicit-function theorem will enable
us to write the pair of implicit functions

a_za(PO’PaO?PbO’r’t)

(11.43) _
b=0b(Py, Py, Ppo. 1, 1)
as well as the pair of identities
PQ(a,b)e"—P,=0
(11.44) OQu( _) 0
PQy(a. b)e "~ Py=0

To study the comparative statics of the model, first take the total differential
of each identity in (11.44). For the time being, we shall permit all the exogenous
variables to vary, so that the result of total differentiation will involve da, db, as
well as dP, dP,,, dP,, dr, and dt. If we place on the left side of the equals sign
only those terms involving da and db, the result will be

P,Q,.e "da+ PyQ,e ""db

= —Q.e "dPy+ dP, + PyQ te”"dr + P,Q, re " dt
PoQupe” "' da + PoQye " db

= —Qe "dPy + dP,, + PyQ te” " dr + PyQ re” " dt

(11.45)

where, be it noted, the first and second derivatives of Q are all to be evaluated at
the equilibrium, i.e., at @ and b. You will also note that the coefficients of da and
db on the left are precisely the elements of the Jacobian in (11.42).

To derive the specific comparative-static derivatives—of which there are a
total of ten (why?)—we now shall allow only a single exogenous variable to vary
at a time. Suppose we let P, vary, alone. Then dP, + 0, but dP,, = dP,, = dr =
dt = 0, so that only the first term will remain on the right side of each equation in
(11.45). Dividing through by dP,, and interpreting the ratio dia/dP, to be the
comparative-static derivative (da/dP,), and similarly for the ratio db/dP,, we
can write the matrix equation

Qe "
-Q, rt

PO, " POQa,,e‘”] (da/ap,)
PoQ e PoQpre " (é’b_/aPU)
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The solution, by Cramer’s rule, 1s found to be

( da ) _ (0,0, - Qthh)P()eﬁzn
dF, |/

(11.46)

( ab_ ) _ (QaQab B QbQua)P()e-_zn
Ik, /1

If you prefer, an alternative method is available for obtaining these results: You
may simply differentiate the two identities in (11.44) rorally with respect to Py
(while holding the other four exogenous variables fixed), bearing in mind that 7,
can affect @ and b via (11.43).

Let us now analyze the signs of the comparative-static derivatives in (11.46).
On the assumption that the second-order sufficient condition is satisfied, the
Jacobian in the denominator must be positive. The second-order condition also
implies that Q,, and Q,, are negative, just as the first-order condition implies that
Q, and Q, are positive. Moreover, the expression Pye > is certainly positive.
Thus, if Q,, > 0 (if increasing one input will raise the MPP of the other input),
we can conclude that both (3a/3P,) and (8b/dP,) will be positive, implying that
an increase in the product price will result in increased employment of both
inputs in equilibrium. If ¢, < 0, on the other hand, the sign of each derivative in
(11.46) will depend on the relative strength of the negative force and the positive
force in the parenthetical expression on the right.

Next, let the exogenous variable » vary. alone. Then all the terms on the right
of (11.45) will vanish except those involving dr. Dividing through by dr # 0, we
now obtain the following matrix equation

PiQ,.e " PoQabe”H(aa/ar)]_
PyQue " PyQue (85/8r)

with the solution

P()Qa te 8
PyQute "

@) = Q.0 — QbQuh)(P()e ”‘)2
( ar |1

(11.47)

. 2
(0b 1900, — QuQun ) Pre ")
( dr ) /]

Both of these comparative-static derivatives will be negative if Q
indeterminate in sign if Q_, is negative.

By a similar procedure. we may find the effects of changes in the remaining
parameters. Actually, in view of the symmetry between r and ¢ in (11.44) it is
immediately obvious that both (da/d:) and (dbh/dt) must be similar in ap-
pearance to (11.47).

The effects of changes in P, and P, are left to you to analyze. As you will
find, the sign restriction of the second-order sufficient condition will again be
useful in evaluating the comparative-static derivatives, because it can tell us the

45 18 positive, but
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signs of Q,, and Q,, as well as the Jacobian |J| at the initial equilibrium
(optimum). Thus, aside from distinguishing between maximum and minimum, the
second-order condition also has a vital role to play in the study of shifts in
equilibrium positions as well.

EXERCISE 11.7

For the following three problems, assume that Q,, > 0.

1 On the basis of the model described in (11.41) through (11.44), find the comparative-static
derivatives (da/dF,) and (db/dP,,). Interpret the economic meaning of the result. Then
analyze the effects on @ and b of a change in P,,.

2 For the problem of Example 6 in Sec. 11.6:

(@) How many parameters are there? Enumerate them.

(b) Following the procedure described in (11.41) through (11.46), and assuming that the
second-order sufficient condition is satisfied, find the comparative-static derivatives
(8a/dP,) and (9b/3F,). Evaluate their signs and interpret their economic meanings.

(¢) Find (8a/di,) and (3b/di,), evaluate their signs, and interpret their economic
meanings.

3 Show that the results in (11.46) can be obtained alternatively by differentiating the two
identities in (11.44) rotally with respect to P, while holding the other exogenous variables
fixed. Bear in mind that P, can affect @ and b by virtue of (11.43).

4 A Jacobian determinant, as defined in (7.27), is made up of first-order partial deriva-
tives. On the other hand, a Hessian determinant, as defined in Secs. 11.3 and 11.4, has as
its elements second-order partial derivatives. How, then, can it turn out that |J| = |H|, as
in (11.42)?




