Lecture Notes for Chapter 9

Kevin Wainwright

April 26, 2014

1 Optimization of One Variable

1.1 Critical Points

A critical point occurs whenever the firest derivative of a function is equal to zero.
ie.

$$
\begin{aligned}
\text { If } y & =f(x) \\
\text { Then } \frac{d y}{d x} & =f^{\prime}(x)=0 \text { is a critical point }
\end{aligned}
$$

A critical point is a "stationary" value of the function (flat spot). A critical pointcan be:
a) some maximum point
b) some minimum point
c) an inflection point, which is neitehr a max or a min.

1.2 Relative versus Global Points

1.3 The First Derivative Test for a Relative Extremum

$f^{\prime}(x)=0$ is a necessary, but not a sufficient condition to establish an extremum.

Test: if, at $x=x_{0}, f^{\prime}(x)=0$, then the value of $f(x)$ will be:

1. (a) Relative Maximum

$$
\begin{aligned}
\text { if } f^{\prime}(x) & >0 \text { for } x<x_{0} \\
\text { and } f^{\prime}(x) & <0 \text { for } x>x_{0}
\end{aligned}
$$

(b) Relative Minimum

$$
\begin{aligned}
\text { if } f^{\prime}(x) & <0 \text { for } x<x_{0} \\
\text { and } f^{\prime}(x) & >0 \text { for } x>x_{0}
\end{aligned}
$$

(c) Inflection Point
if $f^{\prime}(x)$ has the same sign for $x>x_{0}$ and $x<x_{0}$

Example: Total Revenue Let: $T R=10 q-q^{2}$
Then: $\quad M R=\frac{d T R}{d q}=10-2 q$ where $M R=0$ at $q=5$

$$
\begin{aligned}
\text { Let } & : T R=10 q-q^{2} \\
\text { Then } & : M R=\frac{d T R}{d q}=10-2 q \text { where } M R=0 \text { at } q=5 \\
A R & =\frac{T R}{q} \\
A R & =\frac{10 q-q^{2}}{q} \\
A R & =10-q
\end{aligned}
$$

1

1.4 More on Inflection Points

Inflection points do not occur only when $f^{\prime}(x)=0$

[^0]

Example: Production Function
${ }^{2}$ Insert graph page 6 (x 2)

1.5 Second and Higher Derivatives

$$
\text { Given } y=f(x) \text { is a function of } \mathrm{x}
$$

$$
\text { Then } \frac{d y}{d x}=f^{\prime}(x) \text { is also a function of } \mathrm{x}
$$

We can find the derivative of $f^{\prime}(x) \quad: \quad \frac{d\left(\frac{d y}{d x}\right)}{d x}=\frac{d^{2} y}{d x^{2}}=f^{\prime \prime}(x)$
is the second derivative of $y=f(x)$
Similarly:

$$
\frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}\right)=f^{\prime \prime \prime}(x) \text { or } f^{(3)}(x)
$$

is the third derivative and $f^{(4)}$ is the fourth....and $f^{(n)}(x)$ is the nth derivative.

1.6 Interpretation of the Second Derivative

For a function

$$
y=f(x)
$$

$f^{\prime}(x)$ measures the rate of change of the function
$f^{\prime \prime}(x)$ measures the rate of change of the rate of change of the function

Evaluated at $x=x_{0}$
$f^{\prime}\left(x_{0}\right)>0$ means that the value of the function increases
$f^{\prime}\left(x_{0}\right)<0$ means that the value of the function decreases
Whereas:
$f^{\prime \prime}\left(x_{0}\right)>0$ means that the slope of the curve increases
$f^{\prime \prime}\left(x_{0}\right)<0$ means that the slope of the curve decreases

Example: $t=$ time

$$
\begin{aligned}
\text { if Distance } & =f(t) \\
\text { then Velocity } & =f^{\prime}(t) \\
\text { and Acceleration } & =f^{\prime \prime}(t)
\end{aligned}
$$

1.6.1 Concavity and Convexity

fig (a) Slope of the function always decreasing $\left(f^{\prime \prime}<0\right)$
fig (b)Slope always increasing $\left(f^{\prime \prime}>0\right)$

1.7 Second Derivative Test

Test:

$$
\begin{aligned}
& \text { Given } \begin{aligned}
y & =f(x) \text { and } x=x_{0} \\
\text { If } \quad f^{\prime}\left(x_{0}\right) & =0
\end{aligned}
\end{aligned}
$$

Then: $f\left(x_{0}\right)$ will be:

1. (a) a relative maximum if $f^{\prime \prime}\left(x_{0}\right)<0$
(b) a relative minimum if $f^{\prime \prime}\left(x_{0}\right)>0$
(c) either a maximum, or a minimum, or an inflection point if $f^{\prime \prime}\left(x_{0}\right)=0$

If (c) then use either the first derivative test or some other test In economics, the second derivative test is sufficient 99% of the time (the other 1% appears on finals)

$$
E V=P \cdot \pi_{1}+(1-P) \pi_{2}
$$

3

[^1]Example: $\quad \mathrm{P}=1 / 2 \quad 1-\mathrm{P}=1 / 2 \quad \pi_{1}=9 \quad \pi_{2}=25$

$$
\begin{aligned}
& E V=(1 / 2)(9)+(1 / 2)(25)=17 \\
& E U=W^{1 / 2}
\end{aligned}
$$

1.7.1 Profit Maximization

Suppose a certain producer is a monopolist

Let : $\quad R=R(Q)$ be his total revenue function
and let : $C=C(Q)$ be his total cost function
Therefore, profits (π) are : $\pi(Q)=R(Q)-C(Q)$
Necessary condition for profit maximization

$$
\frac{d \pi}{d Q}=R^{\prime}(Q)-C^{\prime}(Q)=0
$$

or

$$
\begin{aligned}
M R= & M C \\
& (\text { Min or Max })
\end{aligned}
$$

Sufficient condition for profit maximization

$$
\begin{aligned}
\frac{d^{2} \pi}{d Q^{2}} & =R^{\prime \prime}(Q)-C^{\prime \prime}(Q)<0 \\
\text { or } R^{\prime \prime} & <C^{\prime \prime}
\end{aligned}
$$

4

$$
\begin{aligned}
\pi & =\pi(Q)=R(Q)-C(Q) \\
\frac{d \pi}{d Q} & =\pi^{\prime}=R^{\prime}(Q)-C^{\prime}(Q)=0 \\
\text { or } R^{\prime}(Q) & =C^{\prime}(Q) \quad \mathrm{MR}=\mathrm{MC}
\end{aligned}
$$

[^2]2nd derivative test

$$
\begin{aligned}
\frac{d^{2} \pi}{d Q^{2}}= & R^{\prime \prime}(Q)-C^{\prime \prime}(Q)<0 \\
& \text { or } R^{\prime \prime}(Q)<C^{\prime \prime}(Q)
\end{aligned}
$$

5

Example 1

$$
\begin{aligned}
R(Q) & =1200 Q-2 Q^{2} \\
C(Q) & =Q^{3}-61.25 Q^{2}+1528.5 Q+2000 \\
\pi(Q) & =R(Q)-C(Q) \\
& =-Q^{3}+59.25 Q^{2}-328.5 Q-2000 \\
\frac{d \pi}{d Q} & =-3 Q^{2}+118.5 Q-328.5=0
\end{aligned}
$$

2 Solutions: $Q=3,36.5$
2nd Derivative Test

$$
\frac{d \pi^{2}}{d Q^{2}}=-6 Q+118 \quad\left\{\begin{array}{cc}
>0 & Q=3 \\
<0 & Q=36.5
\end{array}\right.
$$

Example of Concave π from $R-C$ 6

1.8 Nth Derivative Test

Suppose at $x=x_{0}, \quad f^{\prime}\left(x_{0}\right)=0$ and at $x=x_{0}, \quad f^{\prime \prime}\left(x_{0}\right)=0 \quad$ What then?

[^3]Test: Keep differentiating until you come to the first NONZERO derivative. This derivative will be the Nth derivative of $f\left(x_{0}\right)$. Then $f\left(x_{0}\right)$ will be

1. (a) a relative max if N is even and $f^{N}\left(x_{0}\right)<0$
(b) a relative min if N is even and $f^{N}\left(x_{0}\right)>0$
(c) an inflection point if N is odd

Example Evaluate $y=(7-x)^{4}$ at $x=7$

$$
\begin{aligned}
& \Rightarrow f^{\prime}(x)=-4(7-x)^{3} \quad \Rightarrow f^{\prime}(7)=0 \\
& \Rightarrow f^{\prime \prime}(x)=12(7-x)^{2} \Rightarrow f^{\prime \prime}(7)=0 \\
& \Rightarrow f^{3}(x)=-24(7-x) \quad \Rightarrow f^{3}(7)=0 \\
& \Rightarrow f^{4}(x)=24 \quad \Rightarrow f^{4}(7)=24
\end{aligned}
$$

Since $N=4$ is even, and $f^{4}=24>0$, then $f(7)$ is a relative minimum.
Next Week: Read MacLaurin and Taylor series (sect. 9.5) and chapter 11.

1.9 Taylor Series

Consider the function

$$
f(x)=a+b x+c x^{2}+d x^{3}+e x^{4}
$$

Lets evaluate f and its derivatives at the point $x=0$

$$
\begin{array}{rlr}
f(x) & =a+b x+c x^{2}+d x^{3}+e x^{4} & f(0)=a \\
f^{\prime}(x) & =b+2 c x+3 d x^{2}+4 e x^{3} & f^{\prime}(0)=b \\
f^{\prime \prime}(x) & =2 c+6 d x+12 e x^{2} & f^{\prime \prime}(0)=2 c \\
f^{(3)}(x) & =6 d+24 e x & f^{(3)}(0)=6 d \\
f^{(4)}(x) & =24 e & f^{(4)}(0)=24 e \\
\text { OR } a & =f(0) \quad b=f^{\prime}(0) \quad c=\frac{f^{\prime \prime}(0)}{2} & d=\frac{f^{(3)}(0)}{6} \\
e=\frac{f^{4}(0)}{24}
\end{array}
$$

Now sub into $f(x)$ the values of $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$

$$
\begin{aligned}
& f(x)=a+b x+c x^{2}+d x^{3}+e x^{4} \\
& f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2}+\frac{f^{(3)}(0)}{6} x^{3}+\frac{f^{4}(0)}{24} x^{4}
\end{aligned}
$$

Factorials:

$$
\begin{aligned}
n!= & n x(n-1) x(n-2) x \ldots x(3) x(2) x 1 \\
2!= & 2 x 1=2 \\
3!= & 3 x 2 x 1=6 \\
4!= & 4 x 3 x 2 x 1=24 \\
& \text { etc. }
\end{aligned}
$$

Therefore:

$$
f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{(3)}(0)}{3!} x^{3}+\frac{f^{4}(0)}{4!} x^{4}
$$

Taylor Series Expansion

1. In the neighbourhood of $x=x_{0}$ we can approximate some function $g(x)$ with a polynomial function, $f(x)$
2. At point $x=x_{0}$ our approximation should have certain properties that are common to $g(x)$:

Specifically at:

$$
\begin{aligned}
x & =x_{0} \\
f\left(x_{0}\right) & =g\left(x_{0}\right) \\
f^{\prime}\left(x_{0}\right) & =g^{\prime}\left(x_{0}\right) \\
f^{\prime \prime}\left(x_{0}\right) & =g^{\prime \prime}\left(x_{0}\right) \\
f^{3}\left(x_{0}\right) & =g^{3}\left(x_{0}\right) \\
& \cdots \\
f^{n}\left(x_{0}\right) & =g^{n}\left(x_{0}\right)
\end{aligned}
$$

3. Even though we do not know the exact form of $g(x)$ if we know the properties of $g(x)$ at $x=x_{0}$ then we can approximate $g(x)$ with a polynomial.

1.9.1 Polynomial "approximation" of $g(x)$ around $x=x_{0}$

$$
\begin{aligned}
g\left(x_{0}\right) \approx & f(x)=a+b x+c x^{2}+d x^{3}+\ldots \\
f(x)= & \left(g\left(x_{0}\right)\right)+\left(g^{\prime}\left(x_{0}\right)\right)\left(x-x_{0}\right)+\left(\frac{g^{\prime \prime}\left(x_{0}\right)}{2!}\right)\left(x-x_{0}\right)^{2} \\
& +\left(\frac{g^{3}\left(x_{0}\right)}{3!}\right)\left(x-x_{0}\right)^{3}+\ldots
\end{aligned}
$$

if $x=x_{0}$
then

$$
f\left(x_{0}\right)=g\left(x_{0}\right)+g^{\prime}\left(x_{0}\right)(0)+\left(\frac{g^{\prime \prime}\left(x_{0}\right)}{2!}\right)(0)+\ldots
$$

treat $g, g^{\prime}, g^{\prime \prime}, g^{3}$ etc. as constants!

$$
f(x)=g^{\prime}\left(x_{0}\right)+\frac{2 g^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)+\frac{3 g^{3}\left(x_{0}\right)}{3!}\left(x-x_{0}\right)^{2}+\ldots
$$

at $x=x_{0}$

$$
\begin{aligned}
f^{\prime}(x) & =g^{\prime}\left(x_{0}\right) \text { and the other terms drop out } \\
f^{\prime \prime}(x) & =g^{\prime \prime}\left(x_{0}\right)+\frac{6 g^{3}\left(x_{0}\right)}{3!}\left(x-x_{0}\right)+\ldots
\end{aligned}
$$

at $x=x_{0}$

$$
f^{\prime \prime}(x)=g^{\prime \prime}\left(x_{0}\right) \text { and the other terms drop out }
$$

Read the section explaining "The Remainder" of a Taylor Series

[^0]: ${ }^{1}$ Insert graph (x2) on page 4 Chapter 9

[^1]: ${ }^{3}$ not sure how to do the decision tree type of thing on page 13

[^2]: ${ }^{4}$ Insert 3 graphs on page 15

[^3]: ${ }^{5}$ insert graphs on page 16
 ${ }^{6}$ Insert graph page 17

