Lecture Notes for Chapter 8

Kevin Wainwright

April 26, 2014

1 Chapter 8: Comparative Static Analysis of General Function Models

1. General Form

National Income model
1.0.1 Specific
(1) : $Y=C+I_{0}+G_{0}$
(2) : $\quad C=a+b\left(Y=T_{0}\right)$

By substitution

$$
Y=a-b\left(Y-T_{0}\right)+I_{0}+G_{0}
$$

Solution

$$
Y^{e}=\frac{a+I_{0}+G_{0}-b T_{0}}{1-b}
$$

1.0.2 General

$$
\begin{aligned}
Y & =Y\left(C, I_{0}, G_{0}\right) \\
C & =C\left(Y, T_{0}\right) \\
Y & =Y\left(C\left(Y, T_{0}\right), I_{0}, G_{0}\right) \\
Y^{e} & =Y^{e}\left(I_{0}, G_{0}, T_{0}\right)
\end{aligned}
$$

The general form can be expressed as:

$$
Y^{e}=C\left(Y^{e}, T_{0}\right)+I_{0}+G_{0}
$$

$\frac{\partial Y^{e}}{\partial T_{0}}$ has a direct and indirect effect:

$$
\frac{\partial C}{\partial T_{0}} \text { and } \frac{\partial C}{\partial Y^{e}} \frac{\partial Y^{e}}{\partial T_{0}}
$$

1.1 Differentials

$$
\begin{aligned}
\text { Given } y & =f(x) \\
\text { Then } \frac{d y}{d x} & =f^{\prime}(x) \\
\text { But also } \begin{aligned}
& d y=f^{\prime}(x) \quad d x \\
& \text { Change in } \mathrm{Y}
\end{aligned} & d x \text { converter Change in } \mathrm{X}
\end{aligned}
$$

$f \prime(x)$ "converts" a Δ in x into a Δ in Y Example:

$$
\begin{aligned}
y & =x^{2} \Rightarrow d y=2 x d x \\
\text { at } x & =2 ; y=4, \text { if } d x=.01 \text { then } d y=2(2)(0.01)=0.4
\end{aligned}
$$

Therefore: as x $\Delta^{\prime} s$ from 2 to 2.01 then y $\Delta^{\prime} s$ from 4 to 4.04

1.1.1 Differentials and Point Elasticity

From ECON 200
Are Elasticity $=\frac{\Delta Q}{\Delta \frac{Q}{P}}$ or $\frac{\Delta Q P}{\Delta P} \bar{Q}$
Point Elasticity

$$
\epsilon^{d}=\frac{d Q}{d P} \frac{P}{Q}=\frac{\frac{d Q}{d P}}{\frac{Q}{P}}=\frac{\text { Marginal }}{\text { Average }}
$$

Example

$$
\begin{aligned}
\text { Let } Q & =a-b P \\
\text { Then } \frac{d Q}{d P} & =-b \text { and } \frac{P}{Q}=\frac{P}{a-b P}
\end{aligned}
$$

Therefore

$$
\epsilon^{d}=\frac{-b P}{a-b P}
$$

Let $Q=10-2 P$

$$
\text { Then } \begin{aligned}
\epsilon^{d} & =\frac{-2 P}{10-2 P} \\
\epsilon^{d} & =\frac{-P}{5-P}
\end{aligned}
$$

1.2 Total Differentials

Consider the Utility Function:

$$
U=U(x, y)
$$

Totally differentiate

$$
\begin{aligned}
d U & =\frac{\partial U}{\partial x} d x+\frac{\partial U}{\partial y} d y \\
\text { or } d U & =M U_{x} d x+M U_{y} d y
\end{aligned}
$$

$$
\begin{aligned}
\text { Indifference Curve } & : d U=0 \\
M U_{x} d x+M U_{y} d y & =0 \\
M U_{y} d y & =-M U_{x} d x \\
d y & =\frac{-M U_{x}}{M U_{y}} d x \quad\left(\text { iff } M U_{y} \neq 0!!\right) \\
\frac{d y}{d x} & =\frac{-M U_{x}}{M U_{y}}=M R S
\end{aligned}
$$

Graphically

1
Note: if $d x .0$ then $d y^{\prime} 0$ but both $M U_{x}, M U_{y} .0$ (from Economic Theory). Therefore minus sign (-) in front of $-\frac{M U_{x}}{M U_{y}}$

Example

1.

$$
\begin{aligned}
\text { if } U(x, y) & =x y \\
\text { then } d U & =y d x+x d y \\
\text { and } M R S & =\frac{d y}{d x}=-\frac{y}{x}
\end{aligned}
$$

2.

$$
\begin{aligned}
\text { if } U(x, y) & =x^{2} y^{2} \\
\text { then } d U & =2 x y^{2} d x+2 x^{2} y d y \\
\text { and } M R S & =\frac{d y}{d x}=-\frac{2 x y^{2}}{2 x^{2} y}=-\frac{y}{x}
\end{aligned}
$$

[^0]3.
\[

$$
\begin{aligned}
\text { if } U(x, y) & =x+y \\
\text { then } d U & =d x+d y \\
\text { and } M R S & =\frac{d y}{d x}=-1
\end{aligned}
$$
\]

1.2.1 Total Differentials: Generally

$$
\begin{aligned}
& \text { Let } U=U\left(x_{1}, x_{2}, \ldots x_{n}\right) \\
& \text { Then } d U=\frac{\partial U}{\partial x_{1}} d x_{1}+\frac{\partial U}{\partial x_{2}} d x_{2}+\ldots \frac{\partial U}{\partial x_{n}} d x_{n} \\
& \text { Or } d U=U_{1} d x_{1}+U_{2} d x_{2}+\ldots U_{n} d x_{n} \\
& \text { where } U_{i}=\frac{\partial U}{\partial x_{i}} \text { (the partial derivative) } \\
& \text { If } d x_{2}=d x_{3}=\ldots d x_{n}=0 \\
& \text { Then } d U=\frac{\partial U}{\partial x_{1}} d x_{1}+(0) \\
& \text { Then } \frac{d U}{d x_{1}}=\frac{\partial U}{\partial x_{1}}=U_{1}
\end{aligned}
$$

*The partial derivative of a function is simply the total differential with all but one of the $d x_{i}$'s set equal to zero.

1.2.2 Rules of Differentials

1. $d k=0$
2. $y=a x^{n} \Rightarrow d y=a n x^{n-1} d x$
3. $y=x_{1}+x_{2} \Rightarrow d y=d x_{1}+d x_{2}$
4. $y=x_{1} x_{2} \Rightarrow d y=x_{2} d x_{1}+x_{1} d x_{2}$
5. $y=\frac{x_{1}}{x_{2}} \Rightarrow d y=\frac{x_{2} d x_{1}-x_{1} d x_{2}}{x_{2}^{2}}$

Example

$$
\begin{aligned}
y & =x_{1}^{3}+3 x_{2}^{2}+4 x_{1} x_{2} \\
d y & =\frac{d y}{d x_{1}} d x_{1}+\frac{d y}{d x_{2}} d x_{2} \\
\frac{\partial y}{\partial x_{1}} & =3 x_{1}^{2}+4 x^{2} \\
\frac{\partial y}{\partial x_{2}} & =6 x_{2}+4 x_{1} \\
d y & =\left(3 x_{1}^{2}+4 x^{2}\right) d x_{1}+\left(6 x_{2}+4 x_{1}\right) d x_{2}
\end{aligned}
$$

Further Examples

$$
\begin{aligned}
y & =\frac{\left(x_{1}+x_{2}\right)^{2}}{x_{2}^{3}} \\
d y & =\frac{\partial y}{\partial x_{1}} d x_{1}+\frac{\partial y}{\partial x_{2}} d x_{2} \\
\frac{\partial y}{\partial x_{1}} & =\left(\frac{1}{x_{2}^{3}}\right) 2\left(x_{1}+x_{2}\right)(1)=\frac{2\left(x_{1}+x_{2}\right)}{x_{2}^{3}} \\
\frac{\partial y}{\partial x_{2}} & =\frac{\left[x_{2}^{3}\left(x_{1}+x_{2}\right)(2)\right]-\left[\left(x_{1}+x_{2}\right)^{2}(3)\left(x_{2}^{2}\right)\right]}{\left(x_{2}^{3}\right)^{2}} \\
\frac{\partial y}{\partial x_{2}} & =\frac{2 x_{2}^{3}\left(x_{1}+x_{2}\right)-3\left(x_{1}+x_{2}\right)^{2} x_{2}^{2}}{x_{2}^{6}} \\
\frac{\partial y}{\partial x_{2}} & \left.=\frac{2 x_{2}\left(x_{1}+x_{2}\right)-3\left(x_{1}+x_{2}\right)^{2}}{x_{2}^{4}}\right] d x_{2} \\
d y & =\left[\frac{2\left(x_{1}+x_{2}\right)}{x_{2}^{3}}\right] d x_{1}+\left[\frac{2 x_{2}\left(x_{1}+x_{2}\right)-3\left(x_{1}+x_{2}\right)^{2}}{x_{2}^{4}}\right]
\end{aligned}
$$

1.2.3 Cobb-Douglas Production Function

$$
\begin{aligned}
Q & =Q(K, L)=K^{a} L^{b} \\
d Q & =\frac{\partial Q}{\partial K} d K+\frac{\partial Q}{\partial L} d L=M P_{K} d K+M P_{L} d L \\
\frac{\partial Q}{\partial K} & =\left[a K^{a-1} L^{b}\right]=\left[a \frac{K^{a} L^{b}}{K}\right]=\left[a \frac{Q}{K}\right] \\
\frac{\partial Q}{\partial L} & =\left[b K^{a} L^{b-1}\right]=\left[b \frac{K^{a} L^{b}}{L}\right]=\left[b \frac{Q}{L}\right] \\
d Q & =\left[a \frac{K^{a} L^{b}}{K}\right] d K+\left[b \frac{K^{a} L^{b}}{L}\right] d L \\
d Q & =\left[a \frac{d K}{K}+b \frac{d L}{L}\right] \cdot K^{a} L^{b} \\
d Q & =\left[a \frac{d K}{K}+b \frac{d L}{L}\right] \cdot Q \\
\frac{d Q}{Q} & =(a+b) \frac{d S}{S}=\frac{\frac{d Q}{Q}}{\frac{d S}{S}}=(a+b) \quad \text { Elasticity of Scale }
\end{aligned}
$$

1.3 Total Derivatives and the Chain Rule

$$
\text { Let } y=y(x, z) \text { and } x=x(z)
$$

$$
d y=\left(\frac{\partial y}{\partial x}\right) d x+\left(\frac{\partial y}{\partial z}\right) d z \text { and } d x=\frac{d x}{d z} d z
$$

Substitute $d y=\left(\frac{\partial y}{\partial x}\right)\left(\frac{d x}{d z}\right) d z+\left(\frac{\partial y}{\partial z}\right) d z$
Divide by $d z \frac{d y}{d z}=\left(\frac{\partial y}{\partial x} \frac{d x}{d z}+\frac{\partial y}{\partial z}\right) \frac{d z}{d z}\left\{\frac{d z}{d z}=1\right\}$

The Total Derivative $\frac{d y}{d z}$ is:
$\underbrace{\frac{d y}{d z}}_{\text {Total } \Delta \text { in Y from } \Delta \text { in } \mathrm{z}}=\underbrace{\left(\frac{\partial y}{\partial x}\right)\left(\frac{d x}{d z}\right)}_{\text {The indirect effect of } \mathrm{z} \text { on } \mathrm{y} \text { through } \mathrm{x}}+\underbrace{\left(\frac{\partial y}{\partial z}\right)}_{\text {The direct effect of } \mathrm{z} \text { on } \mathrm{y}}$

1.3.1 Chain Rule

$$
\begin{aligned}
y & =y(x, z) \text { but } x=x(z) \\
\text { Therefore } y & =y(x(z), z) \quad\{y=f(z)\}
\end{aligned}
$$

y is a function of one exogenous variable

$$
\begin{aligned}
\frac{d y}{d z}= & \frac{\partial y}{\partial x} \frac{d x}{d z}+\frac{\partial y}{\partial z} \\
& y \text { Indirect } z \underset{\leftarrow}{\leftarrow} z \\
& \text { Direct (z to y) }
\end{aligned}
$$

Example

$$
\begin{array}{rll}
y= & (x+2)^{2}+z x+z^{2} \\
x & =2 z+3 \\
\frac{d y}{d z}= & \frac{\partial y}{\partial x} \frac{d x}{d z}+\frac{\partial y}{\partial z} \frac{d z}{d z} \\
& (1) \frac{\partial y}{\partial x}=[2(x+2)+z] & \text { (2) } \frac{\partial y}{\partial z}=[x+2 z] \\
= & \text { (3) } \frac{d x}{d z}=2 \\
\frac{d y}{d z}= & \underbrace{(2 x+4+2)}_{\frac{\partial y}{\partial x}} \underbrace{(2)}_{\frac{d x}{d z}}+\underbrace{(x+2 z)}_{\frac{\partial y}{\partial x}} &
\end{array}
$$

sub in $x=(2 z+3)$

$$
\begin{aligned}
& \frac{d y}{d z}=(2(2 z+3)+4+2)(2)+((2 z+3)+2 z) \\
& \frac{d y}{d z}=(10 z+20)+(4 z+3)=14 z+23
\end{aligned}
$$

Alternative Method

$$
\begin{aligned}
y & =(x+2)^{2}+z x+z^{2} \\
x & =2 z+3 \\
y & =((2 z+3)+2)^{2}+z(2 z+3)+z^{2} \\
y & =(2 z+5)^{2}+3 z^{2}+3 z \\
\frac{d y}{d z} & =2(2 z+5)(2)+6 z+3 \\
\frac{d y}{d z} & =8 z+20+6 z++3=14 z+23
\end{aligned}
$$

2 approaches for $y=y(x, z)$ and $x=x(z)$
1.

$$
\begin{aligned}
d y & =\frac{\partial y}{\partial x} d x+\frac{\partial y}{\partial z} d z \\
\text { sub in for } d x & =\frac{d x}{d z} d z \\
d y & =\left[\frac{\partial y}{\partial x} \frac{d x}{d z}+\frac{\partial y}{\partial z}\right] d z
\end{aligned}
$$

2.

$$
\begin{aligned}
& \operatorname{sub} x(z) \text { into } y(x, z) \\
& y= y(x(z), z) \\
& y= g(z)^{\prime \prime} \mathrm{g}^{\prime \prime} \text { is a new function } \\
& \frac{d y}{d z}=g^{\prime}(z)
\end{aligned}
$$

Further Examples

$$
\begin{aligned}
y= & y\left(x_{1}, x_{2}, \alpha, \beta\right) \\
\text { and } x_{1}= & x_{1}(\alpha, \beta) \quad x_{2}=x_{2}(\alpha, \beta) \\
d y= & {\left[\left(\frac{\partial y}{\partial x_{1}}\right)\left(\frac{d x_{1}}{d \alpha}\right)+\left(\frac{\partial y}{\partial x_{2}}\right)\left(\frac{d x_{2}}{d \alpha}\right)+\frac{\partial y}{\partial \alpha}\right] d \alpha } \\
& +\left[\left(\frac{\partial y}{\partial x_{1}}\right)\left(\frac{d x_{1}}{d \beta}\right)+\left(\frac{\partial y}{\partial x_{2}}\right)\left(\frac{d x_{2}}{d \beta}\right)+\frac{\partial y}{\partial \beta}\right] d \beta
\end{aligned}
$$

y is a function of 4 variables but only 2 exogenous variables (α, β) Find $\frac{d y}{d \alpha}$, (the total derivative w.r.t. α)

1. set $d \beta=0$ (the second term drops out)
2. divide by $d \alpha$

$$
\frac{d y}{d \alpha}=\left[\left(\frac{\partial y}{\partial x_{1}} \frac{d x_{1}}{d \alpha}\right)+\left(\frac{\partial y}{\partial x_{2}} \frac{d x_{2}}{d \alpha}\right)+\frac{\partial y}{\partial \alpha}\right] \frac{d \alpha}{d \alpha} \quad\left(\frac{d \alpha}{d \alpha}=1\right)
$$

1.3.2 Differentials and Derivatives

$$
\begin{aligned}
y & =y(x) \\
d y & =y^{\prime}(x) d x \\
\text { or } d y & =\frac{d y}{d x} d x
\end{aligned}
$$

Divide both sides by dx

$$
\frac{d y}{d x} \quad=\quad \frac{d y}{d x}
$$

LHS: is a ratio of two differentials

RHS: is NOT a ratio of two differentials.
RHS is the derivative $\frac{d y}{d x}=y^{\prime}(x)$

1.4 Implicit Functions

Explicit Function

$$
y=f(x)
$$

Rewritten as an Implicit Function

$$
y-f(x)=0
$$

In General:

$$
\begin{aligned}
& F(y, x)=0 \\
& F(y, x)=k \text { (where } \mathrm{k} \text { is some constant or parameter }
\end{aligned}
$$

Any explicit function, $\mathrm{y}=\mathrm{f}(\mathrm{x})$, can be expressed as an implicit function, $\mathrm{F}(\mathrm{y}, \mathrm{x})=0$, however, not all implicit functions can be expressed as explicit functions directly.

An implicit function: $F\left(y, x_{1}, \ldots x_{n}\right)=0$ may define y as a function of $\mathrm{x}_{1}, \ldots x_{n}$, yet cannot be solved directly for $y=f\left(x_{1}, \ldots, x_{n}\right)$ (this may hold only over a limited range of F , but not everywhere).

We can tell if $F\left(y, x_{1}, \ldots x_{n}\right)$ does indeed implicitly define y as a function of $x_{1}, \ldots x_{n}$ by us of the IMPLICIT FUNCTION THEOREM.

THEOREM:

1. (a) if F has continuous partial derivatives $F_{y}, F_{1}, F_{2}, \ldots F_{n}$ and
(b) at the point we are interested in $F_{y} \neq 0$ at $y=y_{0}$

Then at $y=y_{0} \mathrm{~F}$ implicitly defines y as a function of $x_{1}, \ldots x_{n}$. (at some value $y=y_{0} \mathrm{~F}=0$ is an identity)

Suppose:

$$
F\left(y, x_{1}, x_{2}\right)=0
$$

(if the values of y, x_{1}, x_{2} are the onesthat satisfy this equiation, then this equation is an identity)

However, this function cannot be solved explicity for

$$
y=f\left(x_{1}, x_{2}\right)
$$

We can still find

$$
\frac{\partial y}{\partial x_{1}} \text { and } \frac{\partial y}{\partial x_{2}}
$$

Through the use of Total Differentials

$$
d F=F_{y} d y+F_{1} d x_{1}+F_{2} d x_{2}=0
$$

Let $d x_{2}=0$
Then

$$
\begin{aligned}
F_{y} d y+F_{1} d x_{1} & =0 \\
F_{y} d y & =-F_{1} d x_{1} \\
\frac{\partial y}{\partial x} & =\left.\frac{d y}{d x_{1}}\right|_{d x_{2}=0}=\frac{-F_{1}}{F_{y}} \quad\left\{F_{y} \neq 0\right\}
\end{aligned}
$$

1.4.1 Implicit Function Rule

Given:

$$
F\left(y, x_{1}, \ldots x_{n}\right)=0
$$

Then:

$$
\frac{\partial y}{\partial x_{i}}=-\frac{F_{i}}{F_{y}} \quad\{=\frac{\overbrace{\frac{\partial F}{\partial x_{i}}}^{F_{y} \neq 0}}{\frac{\partial F}{\partial y}}\}
$$

Example:

$$
\bar{U}=U(y, x)=x^{1 / 2} y^{1 / 2}
$$

For $d U=0$

$$
\frac{d y}{d x}=-\frac{U_{x}}{U_{y}}=-\frac{\left(\frac{1}{2} x^{-\frac{1}{2}} y^{\frac{1}{2}}\right)}{\left(\frac{1}{2} x^{\frac{1}{2}} y^{-\frac{1}{2}}\right)}=-\frac{y}{x}=M R S
$$

Explicitly:

$$
\begin{aligned}
y & =\frac{\bar{U}^{2}}{x}\left\{\bar{U}^{2}=\text { constant }\right\} \\
\frac{d y}{d x} & =-\frac{\bar{U}^{2}}{x^{2}}=-\left(\frac{\bar{U}^{2}}{x}\right) \frac{1}{x}=-\frac{y}{x}
\end{aligned}
$$

Or:

$$
\begin{aligned}
& \frac{\partial F}{\partial y_{1}} d y_{1}+\frac{\partial F}{\partial y_{2}} d y_{2}=\left(-\frac{\partial F}{\partial x_{1}} d x_{1}\right)+\left(-\frac{\partial F}{\partial x_{2}} d x_{2}\right) \\
& \frac{\partial G}{\partial y_{1}} d y_{1}+\frac{\partial G}{\partial y_{2}} d y_{2}=\left(-\frac{\partial G}{\partial x_{1}} d x_{1}\right)+\left(-\frac{\partial G}{\partial x_{2}} d x_{2}\right)
\end{aligned}
$$

In Matrix Form:

$$
\begin{array}{cc}
A & X \\
(2 x 2) & d \\
\underbrace{(2 x 1)}_{" J \text { Jacobian" }} \begin{array}{cc}
{\left[\begin{array}{ll}
\frac{\partial F}{\partial y_{1}} & \frac{\partial F}{\partial y_{2}} \\
\frac{\partial G}{\partial y_{1}} & \frac{\partial G}{\partial y_{2}}
\end{array}\right]}
\end{array} \begin{array}{l}
(2 x 1) \\
{\left[\begin{array}{l}
d y_{1} \\
d y_{2}
\end{array}\right]=\left[\begin{array}{ll}
-\frac{\partial F}{\partial x_{1}} d x_{1} & -\frac{\partial F}{\partial x_{2}} d x_{2} \\
-\frac{\partial G}{\partial x_{1}} d x_{1} & -\frac{\partial G}{\partial x_{2}} d x_{2}
\end{array}\right]}
\end{array} .
\end{array}
$$

Test for existance by the Determinant

$$
|J|=\left(\frac{\partial F}{\partial y_{1}}\right)\left(\frac{\partial G}{\partial y_{2}}\right)-\left(\frac{\partial F}{\partial y_{2}}\right)\left(\frac{\partial G}{\partial y_{1}}\right) \neq 0
$$

If $|J|=0$ then y_{1} and y_{2} are not functions of x_{1} and x_{2} $|J|=0$ is the same as $f_{y} \neq$ in single equation case.

Jacobian: Matrix of "Partial Derivatives" with respect ot the "Endogenous variables" where the partial derivative and are treated as constants.

[^0]: ${ }^{1}$ Graph page 5 chapter 8

