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1 Chapter 8: Comparative Static Analy-
sis of General Function Models

1. General Form

National Income model

1.0.1 Specific

(1) : Y = C + I0 +G0

(2) : C = a+ b(Y = T0)

By substitution

Y = a− b(Y − T0) + I0 +G0

Solution

Y e =
a+ I0 +G0 − bT0

1− b
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1.0.2 General

Y = Y (C, I0, G0)

C = C(Y, T0)

Y = Y (C(Y, T0), I0, G0)

Y e = Y e(I0, G0, T0)

The general form can be expressed as:

Y e = C(Y e, T0) + I0 +G0

∂Y e

∂T0
has a direct and indirect effect:

∂C

∂T0
and

∂C

∂Y e

∂Y e

∂T0

1.1 Differentials

Given y = f(x)

Then
dy

dx
= f ′(x)

But also dy
Change in Y

= f ′(x)
A converter

dx
Change in X

f ′(x) "converts" a ∆ in x into a ∆ in Y
Example:

y = x2 ⇒ dy = 2xdx

at x = 2; y = 4, if dx = .01 then dy = 2(2)(0.01) = 0.4

Therefore: as x ∆′s from 2 to 2.01 then y ∆′s from 4 to 4.04
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1.1.1 Differentials and Point Elasticity

From ECON 200
Are Elasticity =

∆Q
Q

∆P
P

or ∆Q
∆P

P
Q

Point Elasticity

εd =
dQ

dP

P

Q
=

dQ
dP
Q
P

=
Marginal
Average

Example

Let Q = a− bP

Then
dQ

dP
= −b and P

Q
=

P

a− bP
Therefore

εd =
−bP
a− bP

Let Q = 10− 2P

Then εd =
−2P

10− 2P

εd =
−P

5− P

1.2 Total Differentials

Consider the Utility Function:

U = U(x, y)

Totally differentiate

dU =
∂U

∂x
dx+

∂U

∂y
dy

or dU = MUxdx+MUydy
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Indifference Curve : dU = 0

MUxdx+MUydy = 0

MUydy = −MUxdx

dy =
−MUx
MUy

dx (iffMUy 6= 0!!)

dy

dx
=
−MUx
MUy

= MRS

Graphically
1

Note: if dx.0 then dy′0 but both MUx,MUy.0 (from Economic
Theory). Therefore minus sign (-) in front of −MUx

MUy

Example

1.

if U(x, y) = xy

then dU = ydx+ xdy

and MRS =
dy

dx
= −y

x

2.

if U(x, y) = x2y2

then dU = 2xy2dx+ 2x2ydy

and MRS =
dy

dx
= −2xy2

2x2y
= −y

x

1Graph page 5 chapter 8
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3.

if U(x, y) = x+ y

then dU = dx+ dy

and MRS =
dy

dx
= −1

1.2.1 Total Differentials: Generally

Let U = U(x1, x2, ...xn)

Then dU =
∂U

∂x1
dx1 +

∂U

∂x2
dx2 + ....

∂U

∂xn
dxn

Or dU = U1dx1 + U2dx2 + ...Undxn

where Ui =
∂U

∂xi
(the partial derivative)

If dx2 = dx3 = ...dxn = 0

Then dU =
∂U

∂x1
dx1 + (0)

Then
dU

dx1
=

∂U

∂x1
= U1

*The partial derivative of a function is simply the total differential
with all but one of the dxi’s set equal to zero.

1.2.2 Rules of Differentials

1. dk = 0

2. y = axn ⇒ dy = anxn−1dx

3. y = x1 + x2 ⇒ dy = dx1 + dx2
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4. y = x1x2 ⇒ dy = x2dx1 + x1dx2

5. y = x1
x2
⇒ dy = x2dx1−x1dx2

x22

Example

y = x3
1 + 3x2

2 + 4x1x2

dy =
dy

dx1
dx1 +

dy

dx2
dx2

∂y

∂x1
= 3x2

1 + 4x2

∂y

∂x2
= 6x2 + 4x1

dy =
(
3x2

1 + 4x2
)
dx1 + (6x2 + 4x1) dx2
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Further Examples

y =
(x1 + x2)

2

x3
2

dy =
∂y

∂x1
dx1 +

∂y

∂x2
dx2

∂y

∂x1
=

(
1

x3
2

)
2 (x1 + x2) (1) =

2 (x1 + x2)

x3
2

∂y

∂x2
=

[
x3

2 (x1 + x2) (2)
]
−
[
(x1 + x2)

2 (3)(x2
2)
]

(x3
2)

2

∂y

∂x2
=

2x3
2 (x1 + x2)− 3 (x1 + x2)

2 x2
2

x6
2

∂y

∂x2
=

2x2 (x1 + x2)− 3 (x1 + x2)
2

x4
2

dy =

[
2 (x1 + x2)

x3
2

]
dx1 +

[
2x2 (x1 + x2)− 3 (x1 + x2)

2

x4
2

]
dx2
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1.2.3 Cobb-Douglas Production Function

Q = Q(K,L) = KaLb

dQ =
∂Q

∂K
dK +

∂Q

∂L
dL = MPKdK +MPLdL

∂Q

∂K
=
[
aKa−1Lb

]
=

[
a
KaLb

K

]
=

[
a
Q

K

]
∂Q

∂L
=
[
bKaLb−1

]
=

[
b
KaLb

L

]
=

[
b
Q

L

]
dQ =

[
a
KaLb

K

]
dK +

[
b
KaLb

L

]
dL

dQ =

[
a
dK

K
+ b

dL

L

]
·KaLb

dQ =

[
a
dK

K
+ b

dL

L

]
·Q

dQ

Q
= (a+ b)

dS

S
=

dQ
Q

dS
S

= (a+ b) Elasticity of Scale

1.3 Total Derivatives and the Chain Rule

Let y = y(x, z) and x = x(z)

dy =

(
∂y

∂x

)
dx+

(
∂y

∂z

)
dz and dx =

dx

dz
dz

Substitute dy =

(
∂y

∂x

)(
dx

dz

)
dz +

(
∂y

∂z

)
dz

Divide by dz
dy

dz
=

(
∂y

∂x

dx

dz
+
∂y

∂z

)
dz

dz

{
dz

dz
= 1

}
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The Total Derivative dy
dz is:

dy

dz︸︷︷︸
Total ∆ in Y from ∆ in z

=

(
∂y

∂x

)(
dx

dz

)
︸ ︷︷ ︸

The indirect effect of z on y through x

+

(
∂y

∂z

)
︸ ︷︷ ︸

The direct effect of z on y

1.3.1 Chain Rule

y = y(x, z) but x = x(z)

Thereforey = y(x(z), z) {y = f(z)}

y is a function of one exogenous variable

dy

dz
=

∂y

∂x

dx

dz
+
∂y

∂z
Indirect

y ← x← z
Direct (z to y)
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Example

y = (x+ 2)2 + zx+ z2

x = 2z + 3
dy

dz
=

∂y

∂x

dx

dz
+
∂y

∂z

dz

dz
(1) ∂y

∂x = [2(x+ 2) + z] (2) ∂y
∂z = [x+ 2z] (3) dx

dz = 2

dy

dz
= (2x+ 4 + 2)︸ ︷︷ ︸

∂y
∂x

(2)︸︷︷︸
dx
dz

+ (x+ 2z)︸ ︷︷ ︸
∂y
∂x

sub in x = (2z + 3)
dy

dz
= (2 (2z + 3) + 4 + 2) (2) + ((2z + 3) + 2z)

dy

dz
= (10z + 20) + (4z + 3) = 14z + 23

Alternative Method

y = (x+ 2)2 + zx+ z2

x = 2z + 3

y = ((2z + 3) + 2)2 + z (2z + 3) + z2

y = (2z + 5)2 + 3z2 + 3z
dy

dz
= 2(2z + 5)(2) + 6z + 3

dy

dz
= 8z + 20 + 6z + +3 = 14z + 23

2 approaches for y = y(x, z) and x = x(z)
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1.

dy =
∂y

∂x
dx+

∂y

∂z
dz

sub in for dx =
dx

dz
dz

dy =

[
∂y

∂x

dx

dz
+
∂y

∂z

]
dz

2.

sub x (z) into y(x, z)

y = y (x(z), z)

y = g(z) "g" is a new function
dy

dz
= g′(z)

Further Examples

y = y (x1, x2, α, β)

and x1 = x1(α, β) x2 = x2(α, β)

dy =
[(

∂y
∂x1

) (
dx1
dα

)
+
(
∂y
∂x2

) (
dx2
dα

)
+ ∂y

∂α

]
dα

+
[(

∂y
∂x1

)(
dx1
dβ

)
+
(
∂y
∂x2

)(
dx2
dβ

)
+ ∂y

∂β

]
dβ

y is a function of 4 variables but only 2 exogenous variables (α, β)
Find dy

dα , (the total derivative w.r.t. α)

1. set dβ = 0 (the second term drops out)

2. divide by dα

dy

dα
=

[(
∂y

∂x1

dx1

dα

)
+

(
∂y

∂x2

dx2

dα

)
+
∂y

∂α

]
dα

dα
(
dα

dα
= 1)
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1.3.2 Differentials and Derivatives

y = y(x)

dy = y′(x)dx

or dy =
dy

dx
dx

Divide both sides by dx

dy

dx
LHS: is a ratio of
two differentials

=
dy

dx
RHS: is NOT a ratio of two differentials.

RHS is the derivative dy
dx = y′(x)

1.4 Implicit Functions

Explicit Function
y = f(x)

Rewritten as an Implicit Function

y − f(x) = 0

In General:

F (y, x) = 0

F (y, x) = k (where k is some constant or parameter

Any explicit function, y=f(x), can be expressed as an implicit func-
tion, F(y,x)=0, however, not all implicit functions can be expressed as
explicit functions directly.
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An implicit function: F (y, x1, ...xn) = 0 may define y as a function
of x1, ...xn, yet cannot be solved directly for y = f(x1, ..., xn) (this may
hold only over a limited range of F, but not everywhere).
We can tell if F (y, x1, ...xn) does indeed implicitly define y as a

function of x1, ...xn by us of the IMPLICIT FUNCTION THEOREM.
THEOREM:

1. (a) if F has continuous partial derivatives Fy, F1, F2, ...Fn and

(b) at the point we are interested in Fy 6= 0 at y = y0

Then at y = y0 F implicitly defines y as a function of x1, ...xn.(at
some value y = y0 F=0 is an identity)
Suppose:

F (y, x1, x2) = 0

(if the values of y, x1, x2 are the onesthat satisfy this equiation, then
this equation is an identity)
However, this function cannot be solved explicity for

y = f(x1, x2)

We can still find
∂y

∂x1
and

∂y

∂x2

Through the use of Total Differentials

dF = Fydy + F1dx1 + F2dx2 = 0

Let dx2 = 0
Then

Fydy + F1dx1 = 0

Fydy = −F1dx1

∂y

∂x
=

dy

dx1

∣∣∣∣ dx2=0
=
−F1

Fy
{Fy 6= 0}
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1.4.1 Implicit Function Rule

Given:
F (y, x1, ...xn) = 0

Then:

∂y

∂xi
= −Fi

Fy
The partial derivative is interpreted as a ratio of two differentials


=

Fy 6=0︷︸︸︷
∂F

∂xi
∂F
∂y


Example:

Ū = U(y, x) = x1/2y1/2

For dU = 0

dy

dx
= −Ux

Uy
= −

(1
2x
− 12y

1
2 )

(1
2x

1
2y−

1
2 )

= −y
x

= MRS

Explicitly:

y =
Ū 2

x

{
Ū 2 = constant

}
dy

dx
= −Ū

2

x2
= −

(
Ū 2

x

)
1

x
= −y

x

Or:

∂F

∂y1
dy1 +

∂F

∂y2
dy2 =

(
− ∂F
∂x1

dx1

)
+

(
− ∂F
∂x2

dx2

)
∂G

∂y1
dy1 +

∂G

∂y2
dy2 =

(
− ∂G
∂x1

dx1

)
+

(
− ∂G
∂x2

dx2

)
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In Matrix Form:

A
(2x2)[
∂F
∂y1

∂F
∂y2

∂G
∂y1

∂G
∂y2

]
︸ ︷︷ ︸

”Jacobian”

X
(2x1)[
dy1

dy2

]
=

d
(2x1)[

− ∂F
∂x1
dx1 − ∂F

∂x2
dx2

− ∂G
∂x1
dx1 − ∂G

∂x2
dx2

]

Test for existance by the Determinant

|J | =
(
∂F

∂y1

)(
∂G

∂y2

)
−
(
∂F

∂y2

)(
∂G

∂y1

)
6= 0

If |J | = 0 then y1 and y2 are not functions of x1 and x2

|J | = 0 is the same as fy 6= in single equation case.

Jacobian: Matrix of "Partial Derivatives" with respect ot the "En-
dogenous variables" where the partial derivative and are treated as
constants.
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