CHAPTER

SEVEN

RULES OF DIFFERENTIATION AND THEIR USE
| IN COMPARATIVE STATICS

The central problem of comparative-static analysis, that of finding a rate of
change, can be identified with the problem of finding the derivative of some
function y = f(x), provided only a small change in x is being considered. Even
though the derivative dy/dx is defined as the limit of the difference quotient
g = g(v) as v = 0, it is by no means necessary to undertake the process of
limit-taking each time the derivative of a function is sought, for there exist various
rules of differentiation (derivation) that will enable us to obtain the desired
derivatives directly. Instead of going into comparative-static models immediately,
therefore, let us begin by learning some rules of differentiation.

7.1 RULES OF DIFFERENTIATION FOR A FUNCTION OF
ONE VARIABLE

First, let us discuss three rules that apply, respectively, to the following types of
function of a single independent variable: y = k (constant function), y = x", and
y = cx" (power functions). All these have smooth, continuous graphs and are
therefore differentiable everywhere.

Constant-Functlon Rule _

The derlvatlve of a constant function y = f(x) = k is identically zero, i.e., is zero

for all values of x. Symbolically, this may be expressed variously as
dy dk

i or E;=O or f(x)=0
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In fact, we may also write these in the form

d

where the derivative symbol has been separated into two parts, d/dx on the one
hand, and y [or f(x) or k] on the other. The first part, d/dx, may be taken as an
operator symbol, which instructs us to perform a particular mathematical opera-
tion. Just as the operator symbol v instructs us to take a square root, the symbol
d/dx represents an instruction to take the derivative of, or to differentiate, (some
function) with respect to the variable x. The function to be operated on (to be
differentiated) is indicated in the second part; here it is y = f(x) =

The proof of the rule is as follows. Given f(x) = k, we have f(N) = k for
any value of N. Thus the value of f'(N)—the value of the derivative at
x = N—as defined in (6.13) will be

f’(N)=1im——-—f(x) IN) _ i K=K mo =0
x—N x—-N x—N 5w
Moreover, since N represents any value of x at all, the result f(N) = 0 can be
immediately generalized to f'(x) = 0. This proves the rule.

It is important to distinguish clearly between the statement f'(x) = 0 and the
similar-looking but different statement f'(x,) = 0. By f’(x) = 0, we mean that the
derivative function f” has a zero value for a/l values of x; in writing f'(x,) = 0, on
the other hand, we are merely associating the zero value of the derivative with a
particular value of x, namely, x = x,,.

As discussed before, the derivative of a function has its geometric counterpart
in the slope of the curve. The graph of a constant function, say, a fixed-cost
function Cp = f(Q) = $1200, is a horizontal straight line with a zero slope

throughout. Correspondingly, the derivative must also be zero for all values of Q:
d._d (O — |

Power-Function Rule

The derivative of a power function y = f(x) = x" is nx" ! Symbohcally, this is
expressed as

d n _ n—1 14 — n—1
(7.1) X =X or f'(x)=nx
.. . dy d
= 3 —_—— = — =
Exqmple 1 The derivative of y = x° is b~ ax x? 3x

Example 2 The derivative of y = x° is d—‘ixg = 9x8,

This rule is valid for any real-valued power of x; that is, the exponent can be
any real number. But we shall prove it only for the case where n is some positive

—
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integer. In the simplest case, that of n = 1, the function is f(x)=x, and
according to the rule, the derivative is :

fx) = Sx=1(x%) = 1

The proof of this result follows easily from the definition of f/(N) in (6.14).
Given f(x) = x, the derivative value at any value of x, say, x = N, is

F(N) = M fim 2= = fim1=1

x—»N X — x=N
Since N represents any value of x, it is permissible to write f'(x) = 1. This proves
the rule for the case of n = 1. As the graphical counterpart of this result, we see
that the function y = f(x) = x plots as a 45° line, and it has a slope of +1
throughout.

For the cases of larger 1ntegers, =2,3,..., let us first note the following
identities:
- N2 .
N =% + N [2 terms on the right]
x3 _ N3
SN - x2 4+ Nx + N2 [3 terms on the right]
(7.2) ———xx:x =x""' 4+ Nx" 2+ N%" 3+ -+ N*!

[n terms on the right]

On the basis of (7.2), we can express the derivative of a power function f(x) = x”
at x = N as follows:

(13)  f(N)= lim e
= )}Ex;v(x" '+ Nx"~ 24 .o+ N by (7.2)]
= lim x" '+ lim Nx" 2+ --- + lim N"!
x—N x»N . . - xoN
[sum limit theorem]
=N"'+ N+ N [a total of  terms]
=pN""!
Again, N is any value of x; thus this last result can be generalized to
F(x) = mx™!

which proves the rule for n, any positive integer.

As mentioned above, this rule applies even when the exponent # in the power
expression x” is not a positive integer. The following examples serve to ﬂlustrate
its application to the latter cases. :
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Example 3 Find the derivative of y = x°. Applying (7.1), we find

i 0 _ -1y

prt i ox =0

Example 4 Find the derivative of y = 1/x3, This involves the reciprocal of a
power, but by rewriting the function as y = x~3, we can again apply (7.1) to get
the derivative:

d -3 _3p-a |73
xr T [_' x* ]
Example 5 Find the derivative of y = yx . A square root is involved in this case,

but since Vx = x'/?, the derivative can be found as follows:

dapn_1 p |- _L
ot T2t Wx

Derivatives are themselves functions of the independent variable x. In
Example 1, for instance, the derivative is dy/dx = 3x2, or f’(x) = 3x?, so that a
different value of x will result in a different value of the derivative, such as

f(y=317=3  f(@2)=302)=12
These specific values of the derivative can be expressed alternatively as

dy dy

dx x=1 =3 dx x=2 =12
but the notations f(1) and f’(2) are obviously preferable because of their
simplicity.

It is of the utmost importance to realize that, to find the derivative values
f'(), f'(2), etc., we must first differentiate the function f(x), in order to get the
derivative function f'(x), and then let x assume specific values in f'(x). To
substitute specific values of x into the primitive function f(x) prior to differentia-
tion is definitely not permissible. As an illustration, if we let x = 1 in the function
of Example 1 before differentiation, the function will degenerate into y = x = 1
—a constant function—which will yield a zero derivative rather than the correct
answer of f'(x) = 3x2.

Power-Function Rule Generalized

When a multiplicative constant ¢ appears in the power function, so that f(x) =
ex”, its derivative is
d i

—ex" = enx"” or f'(x)=cnx"""

This result shows that, in differentiating c¢x”, we can simply retain the multiplica-
tive constant ¢ intact and then differentiate the term x” according to (7.1).
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Example 6 Given y = 2x, we have dy/dx = 2x° = 2.
Example 7 Given f(x) = 4x°, the derivative is f’(x) = 12x2.
Example 8 The derivative of f(x) = 3x"2is f(x) = —6x 3.

For a proof of this new rule, consider the fact that for any value of x, say,
x = N, the value of the derivative of f(x) = ¢x" is

I (€ f(N) iy X7 N (x"—N")
f(N)_xh—EIilv x—N x_r,rzlv x—N _xh_r,rllvc x—N
. . x"—N" .
= lim ¢ im ——— [product limit theorem)
x—»N x—=N X—N
=cli XN [limit of a constant]
‘N x-N © .
= cnN""! [from (7.3)]

In view that N is any value of x, this last result can be generalized immediately to
f(x) = cnx""", which proves the rule.

EXERCISE 7.1

1 Find the derivative of each of the following functions:
(a) y =x" (c)y=7x6 (e) w= —4u'/?
(b) y=163 (d) w=3u"!

2 Find 216 following;: J 4
4a. . - 2 g4 4a b
@ (=% (@) 2w () Gau
LRV 4 2
(b dx7x (d) i
3 Find f’(1) and f’(2) from the following functions:

(a) y = f(x)=18x () f(x)=—5x"* (e) f(w)=6w'"?
(by y = f(x) = ex’ (d) f(x) = ix¥?

4 Graph a function f(x) that gives rise to the derivative function f’(x) = 0. Then graph a
function g(x) characterized by f'(x,) = 0.

7.2 RULES OF DIFFERENTIATION INVOLVING TWO OR MORE
FUNCTIONS OF THE SAME VARIABLE

The three rules presented in the preceding section are each concerned with a
single given function f(x). Now suppose that we have two differentiable functions
of the same variable x, say, f(x) and g(x), and we want to differentiate the sum,
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difference, product, or quotient formed with these two functions. In such circum-
stances, are there appropriate rules that apply? More concretely, given two
functions—say, f(x) = 3x? and g(x) = 9x'>—how do we get the derivative of,
say, 3x? + 9x'2, or the derivative of (3x2)(9x'?)?

Sum-Difference Rule

The derivative of a sum (difference) of two functions is the sum (difference) of the
derivatives of the two functions:

L[10x) £ 8(0)] = S f(x) £ g(x) = f(x) £ ()

The proof of this again involves the application of the definition of a derivative
and of the various limit theorems. We shall omit the proof and, instead, merely
verify its validity and illustrate its application.

Example 1 From the function y = 14x*, we can obtain the derivative dy/dx =
42x2. But 14x3 = 5x* + 9x3, so that y may be regarded as the sum of two
functions f(x) = 5x> and g(x) = 9x3. According to the sum rule, we then have

% = %(5x3 +9x%) = d%sf + %9):3 = 15x% + 27x* = 42x°

which is identical with our earlier result.

This rule, stated above in terms of two functions, can easily be extended to
more functions. Thus, it is also valid to write

£ 17(x) £ 8(x) £ h(x)] = £1(x) £ g(x) £ ()

Example 2 The function cited in Example 1, y = 14x3, can be written as
y = 2x3 + 13x> — x3. The derivative of the latter, according to the sum-difference
rule, is
& _ 4
dx  dx

which again checks with the previous answer.

(2x3 + 13x% — x3) = 6x% + 39x% — 3x? = 42x?

* This rule is of great practical importance. With it at our disposal, it is now
possible to find the derivative of any polynomial function, since the latter is
nothing but a sum of power functions.

Example 3 %(ax2 +bx+c)=2ax+b
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Example 4

%(7x4+2x3—3x+37)=28x3+6x2—3+0=28x3+6x2—3

Note that in the last two examples the constants ¢ and 37 do not really
produce any effect on the derivative, because the derivative of a constant term is
zero. In contrast to the multiplicative constant, which is retained during differenti-
ation, the additive constant drops out. This fact provides the mathematical
explanation of the well-known economic principle that the fixed cost of a firm
does not affect its marginal cost. Given a short-run total-cost function

C=Q%—4Q2+ 100 + 75

the marginal-cost function (for infinitesimal output change) is the limit of the
quotient AC /AQ, or the derivative of the C function:

ac .,

0" 30°— 80 + 10
whereas the fixed cost is represented by the additive constant 75. Since the latter
drops out durmng the process of deriving dC/dQ, the magnitude of the fixed cost
obviously cannot affect the marginal cost.

In general, if a primitive function y = f(x) represents a fotal function, then
the derivative function dy/dx is its marginal function. Both functions can, of
course, be plotted against the variable x graphically; and because of the corre-
spondence between the derivative of a function and the slope of its curve, for each
value of x the marginal function should show the slope of the total function at
that value of x. In Fig. 7.1a, a linear (constant-slope) total function is seen to
have a constant marginal function. On the other hand, the nonlinear (varying-
slope) total function in Fig. 7.1 gives rise to a curved marginal function, which
lies below (above) the horizontal axis when the total function is negatively
(positively) sloped. And, finally, the reader may note from Fig. 7.1¢ (cf. Fig. 6.5)
that “nonsmoothness” of a total function will result in a gap (discontinuity) in
the marginal or derivative function. This is in sharp contrast to the everywhere-
smooth total function in Fig. 7.15 which gives rise to a continuous marginal
function. For this reason, the smoothness of a primitive function can be linked to
the continuity of its derivative function. In particular, instead of saying that a
certain function is smooth (and differentiable) everywhere, we may alternatively
characterize it as a function with a continuous derivative function, and refer to it
as a continuously differentiable function.

Product Rule

The derivative of the product of two (differentiable) functions is equal to the first
function times the derivative of the second function plus the second function



162 COMPARATIVE-STATIC ANALYSIS

Y
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Figure 7.1

times the derivative of the first function:

(7.4)

L [/()8(x)] = 1) L g(x) + () ()

=/(x)g'(x) +g(x)f(x)

Example 5 Find the derivative of y = (2x + 3)(3x2). Let f(x) = 2x + 3 and
g(x) = 3x?. Then it follows that f’(x) = 2 and g’(x) = 6x, and according to (7.4)

the desired dernivative is

%[(u +3)(3x%)] = (2x + 3)(6x) + (3x?)(2) = 18x2 + 18x

This result can be checked by first multiplying out f(x)g(x) and then taking the
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derivative of the product polynomial. The product polynomial is in this case
f(x)g(x) = (2x + 3)3x?) = 6x* + 9x?, and direct differentiation does yield the
same derivative, 18x% + 18x.

The important point to remember is that the derivative of a product of two
functions is not the simple product of the two separate derivatives. Since this
differs from what intuitive generalization leads one to expect, let us produce a
proof for (7.4). According to (6.13), the value of the derivative of f(x)g(x) when
x = N should be

A = i J(x)8(x) - f(N)g(N)
(715)  ZUe)] = lim TN
But, by adding and subtracting f(x)g(N) in the numerator (thereby leaving the
original magnitude unchanged), we can transform the quotient on the right of
(7.5) as follows:

f(x)g(x) —f(x)g(N) + f(x)g(N) — f(N)g(N)
x—N

=f(x)g(x_3: :z?V(N) + g(N)f(x))C :C\([N)

Substituting this for the quotient on the right of (7.5) and taking its limit, we then
get

@15) L (x)s(x)] — &

+ tim g(N) tim J)Z L)

— lim f(x) lim 8X) = &N)
XN x—N

x=

The four limit expressions in (7.5} are easily evaluated. The first one is f(N), and
the third is g( N) (limit of a constant). The remaining two are, according to (6.13),
respectively, g’'( N) and f’(N). Thus (7.5) reduces to

(15 e = AN (N) +g(W) (W)

And, since N represents any value of x, (7.5”) remains valid if we replace every N
symbol by x. This proves the rule.
As an extension of the rule to the case of rhree functions, we have

(16) = [f(x)g(x)h(x)] = /()g()h(x) + f(x)g(x)A(x)
+1(x)g () (x)

In words, the derivative of the product of three functions is equal to the product
of the second and third functions times the derivative of the first, plus the prod-
uct of the first and third functions times the derivative of the second, plus the
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product of the first and second functions times the derivative of the third. This
result can be derived by the repeated application of (7.4). First treat the product
g(x)h(x) as a single function, say, ¢(x), so that the original product of three
functions will become a product of two functions, f(x)¢(x). To this, (7.4) is
applicable. After the derivative of f(x)¢(x) is obtained, we may reapply (7.4) to
the product g(x)h(x) = ¢(x) to get ¢’(x). Then (7.6) will follow. The details are
left to you as an exercise.

The validity of a rule is one thing; its serviceability is something else. Why do
we need the product rule when we can resort to the alternative procedure of
multiplying out the two functions f(x) and g(x) and then taking the derivative of
the product directly? One answer to that question is that the alternative procedure
is applicable only to specific (numerical or parametric) functions, whereas the
product rule is applicable even when the functions are given in the general form.,
Let us illustrate with an economic example.

Finding Marginal-Revenue Function from Average-Revenue Function

If we are given an average-revenue (AR) function in specific form,

‘AR =15- Q)
the marginal-revenue (MR) function can be found by first multiplying AR by Q
to get the total-revenue (R) function:

R = AR - Q*(IS—Q)Q—&_Q)

and then dlfferentlatmg R:

dR
/MR = ag ~ 1520 /
But if the AR funcuon is given in the general form AR = f(Q), then the
total-revenue function will also be in a general form:

R=AR-0=/(0) -0
and therefore the “multiply out” approach will be to no avail. However, because
R is a product of two functions of Q, namely, f(Q) and Q itself, the product rule

may be put to work. Thus we can differentiate R to get the MR function as
follows:

(7.7) MR=—“f(Q) 1+ Q- f(Q)=1(0) +0f(Q)

However, can such a general result tell us anything significant about the MR?
Indeed it can. Recalling that f(Q) denotes the AR function, let us rearrange (7.7)
and write

(7.7) MR - AR = MR - f(Q) = 0f'(Q)
This glves us an important relat10nsh1p between MR and AR: namelyl_tll_gﬂll)
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It remains to examine the expression Qf'(Q). Its first component Q denotes
output and is always nonnegative. The other component, f’(Q), represents the

slope of the AR curve plotted against Q. Since “average revenue” and “price” are

but different names for the same thing:

the AR curve can also be regarded as a curve relating price P to output Q:
P = f(Q). Viewed in this light, the AR curve is simply the inverse of the demand
curve for the product of the firm, i.e., the demand curve plotted after the P and Q
axes are reversed. Under pure competition, the AR curve is a horizontal straight
line, so that f'(Q) = 0 and, from (7.7), MR — AR = O for all possible values of
Q. Thus the MR curve and the AR curve must coincide. Under imperfect
‘competition, on the other hand, the AR curve is normally downward-sloping, as
in Fig. 7.2, so that f(Q) < 0 and, from (7.7"), MR — AR < 0 for all positive
levels of output. In this case, the MR curve must lie below the AR curve,

The conclusion just stated is qualitative in nature; it concerns only the relative
positions of the two curves. But (7.7') also furnishes the guantitative information
that the MR curve will fall short of the AR curve at any output level Q by
precisely the amount Qf’(Q). Let us look at Fig. 7.2 again and consider the
particular output level N. For that output, the expression Qf'(Q) specifically
becomes Nf'(N); if we can find the magnitude of Nf'(N) in the diagram, we shall
know how far below the average-revenue point G the corresponding marginal-
revenue point must lie. T

The magnitude of N is already specified. And f'(N) is simply the slope of the
AR curve at point G (where Q = N), that is, the slope of the tangent line JM_
measured by the ratio of two distances OJ/OM. However, we see that OJ /OM =

AR=P

AR=P ={(Q)

Figure 7.2
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HJ /HG; besides, distance HG is precisely the amount of output under considera-
tion, N. Thus the distance Nf'(N), by which the MR curve must lie below the AR
curve at output N, is

) HI
Nf(N) = HG5= = HJ

Accordingly, if we mark a vertical distance KG = HJ directly below point G, then
point X must be a point on the MR curve. (A simple way of accurately plotting
KG is to draw a straight line passing through point H and parallel to JG; point K
is where that line intersects the vertical line NG.)

The same procedure can be used to locate other points on the MR curve. All
we must do, for any chosen point G’ on the curve, is first to draw a tangent to the
AR curve at G’ that will meet the vertical axis at some point J'. Then draw a
horizontal line from G’ to the vertical axis, and label the intersection with the axis
as H’. If we mark a vertical distance K'G’ = H'J’ directly below point G’, then
the point K’ will be a point on the MR curve. This is the graphical way of
deriving an MR curve from a given AR curve. Strictly speaking, the accurate
drawing of a tangent line requires a knowledge of the value of the derivative at
the relevant output, that is, f'(N); hence the graphical method just outlined
cannot quite exist by itself. An important exception is the case of a linear AR
curve, where the tangent to any point on the curve is simply the given line itself,
so that there is in effect no need to draw any tangent at all. Then the above
graphical method will apply in a straightforward way.

Quotient Rule

The derivative of the quotient of two functions, f(x)/g(x), is

d f(x) _ f(x)g(x) = f(x)g'(x)
dx g(x) g*(x)

In the numerator of the right-hand expression, we find two product terms, each
involving the derivative of only one of the two original functions. Note that f’(x)
appears in the positive term, and g’(x) in the negative term. The denominator
consists of the square of the function g(x); that is, g(x) = [g(x)]>.

Example 6 i(z" ‘13) x4 D) - (2x,2— ) _ 5 :
dx /X + (x + 1) (x + l)
2 - 42
Example 7 i( 25)c )= 5(x2+ 1) 5;((2x) _5(1-x 3
Example 8 i(ax + b) _ 2ax(ex) — (ax? + b)(c)
dx cx (cx)z

c(ax? — b) - ax®—b

(ex)® cx?
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This rule can be proved as follows. For any value of x = N, we have

(1.8) Ed;% - }E“Nf(x)/g(xi —_fI(VN)/g(N)

The quotient expression following the limit sign can be rewritten in the form

f(x)g(N)—f(N)g(x) 1
g(x)g(N) x—N

By adding and subtracting f(N)g(N) in the numerator and rearranging, we can
further transform the expression to

[f(X)g(N) f(N)g(N)+f(N)~g(N)—f(N)g(X)]

g(X)g(N - N
- ! f(x) - f(N) _ g(x) — g(N)
_g(x)g(N)[ (M=5=v - /5=y ]
Substituting this result into (7.8) and taking the limit, we then have
—d—&l = lim —————| lim im ___f(x)—f(N)
& g(x) |y on g(x)g(N)[LNg(N“ x—N
- im 1) i £
= [s(N)f'(N) - f(N)g(N)] [by (6.13)]

(N)

which can be generalized by replacing the symbol N with x, because N represents
any value of x. This proves the quotient rule.

Relationship Between Marginal-Cost and Average-Cost Functions

As an economic application of the quotient rule, let us consider the rate of change
of average cost when output varies.

Given a total-cost function C = C(Q), the average-cost (AC) function will be
a quotient of two functions of Q, since AC = C(Q)/ 0, defined as long as Q > 0.
Therefore, the rate of change of AC with respect to @ can be found by
differentiating AC: ___

(7.9) iC(Q) _lc@)-0-c@)-1] _ é[C’(Q% C(QQ)]

aQ Qo 0>
From this it follows that, for Q >0, .
},’/"—‘ . D
(7.10) d_C(0) 20 iff C'(Q)2 co)

dQ @

\

Q




168 COMPARATIVE-STATIC ANALYSIS

100+

90 —+
|

{ — 2
80 MC = 3Q2 —24Q + 60

AC=Q2-12Q + 60

|
|
|
e e e @
6

Since the derivative C’(Q) represents the marginal-cost (MC) function, and
C(Q)/Q represents the AC function, the economic meaning of (7.10) is: The
slope of the AC curve will be positive, zero, or negative if and only if the
marginal-cost curve lies above, intersects, or lies below the AC curve. This is
illustrated in Fig. 7.3, where the MC and AC functions plotted are based on the
specific total-cost function

C=0"-120%+ 60Q]

To the left of Q = 6, AC is declining, and thus MC lies below it; to the right, the
opposite 1s true. At Q = 6, AC has a slope of zero, and MC and AC have the
same value.* o

The qualitative conclusion in (7.10) is stated explicitly in terms of cost
funcuons However its va11d1ty remams unaifected if we mterpret C(Q) as any
average and marginal functions. Thus this result gives us a general marginal-aver-
age relationship. In particular, we may point out, the fact that MR lies below AR
when AR is downward-sloping, as discussed in connection with Fig. 7.2, i
nothing but a special case of the general result in (7.10). 4

* Note that (7.10) does nor state that, when AC is negatively sloped, MC must also be negatively
sloped. it merely says that AC must exceed MC in that circumstance. At Q = 5 in Fig. 7.3, for
instance, AC is declining but MC is rising, so that their slopes will have opposite signs.
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EXERCISE 7.2

1 Given the total-cost function C = Q% — 5Q% + 14Q + 75, write out a variable-cost
(VC) function. Find the derivative of the VC function, and interpret the economic
meaning of that derivative.

2 Given the average-cost function AC = Q2 — 4Q + 214, find the MC function. Is the
given function more appropriate as a long-run or a short-run function? Why?

3 Differentiate the following by using the product rule:
(@) Ox2=2)3x + 1) (d) (ax — b)(ex?)
(b) Bx + 1)(6x% = 5x) () 2 —3x)1 + x)(x + 2)
(¢) x*(4x +6) (f) (x*+ 3)x~!
/;»‘?i (a) Given AR = 60 — 3(Q, plot the average-revenue curve, and then find the MR curve
by the method used in Fig, 7.2.
(b) Find the total-revenue function and the marginal-revenue function mathematically
. from the given AR function _
(¢) Does the graphically derived MR curve in (g) check with the mathematically
derived MR function in (b)?
(d) Comparing the AR and MR functions, what can you conclude about their relative
slopes?

-5 Provide a mathematical proof for the general result that, given a linear ailerage curve,
the corresponding marginal curve must have the same vertical intercept but will be twice
as steep as the average curve. :
76 Prove the result in (7.6) by first treating g(x) 2(x) as a single function, g(x)A(x) = ¢(x),
and then applying the product rule (7.4). 7

7 Find the derivatives of:

(a) (x* + 3)/x (c) 4x/(x +9)
(b) (x + T/x (d) (ax?* + b)/(cx + d)

8 Given the function f(x) = ax + b, find the derivatives of:
(a) f(x) (b) xf(x) (c) 1/f(x) (d) f(x)/x

7.3 RULES OF DIFFERENTIATION INVOLVING FUNCTIONS OF
DIFFERENT VARIABLES

In the preceding section, we discussed the rules of differentiation of a sum,
difference, product, or quotient of two (or more) differentiable functions of the
same variable. Now we shall consider cases where there are two or more
differentiable functions, each of which has a distinct independent variable.

Chain Rule

If we have a function z = f(y), where y is in turn a function of another variable

X, say, y = g(x), then the derivative of z with respect to x is equal to the
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derivative of z with respect to y, times the derivative of y with respect to x.
Expressed symbolically,

7.1y == @ dx =f(y)g(x)

This rule, known as the chain rule, appeals easily to intuition. Given a Ax, there
must result a corresponding A y via the function y = g(x), but this A y will 19/tu_rg
bring about a Az via the function z = f(y). Thus there is a “cham reaction” as

follows
M

viag

Ax = Ay —>Az

The two links in this chain entail two difference quotients, Ay/Ax and Az/Ay,
but when they are multiplied, the Ay will cancel itself out, and we end up with

Az Ay ‘; ES
Ay Ax  Ax

a difference quotient that relates Az to Ax. If we take the limit of these difference
quotients as Ax — 0 (which implies Ay — 0), each difference quotient will turn
into a derivative; i.e., we shall have (dz/dy)dy/dx) = dz/dx. This is prec1se1y
_the result in (7.11).
In view of the function y = g(x), we can express the function z = f(y) as
'z = f[g(x)], where the contiguous appearance of the two function symbols f and
g indicates that this is a composite function (function of a function). It is for this
‘reason that the chain rule is also referred to as the composite-function rule or
function-of-a-function rule. 7
) The extension of the chain rule to three or more functions is straightforward.
If we have z = f( ), y = g(x), and x = h(w), then

dz _iz_ﬂéi_ ’ ’ ’
dw - dy dx dw _f(y)g (x)h (W)

and similarly for cases in which more functions are involved.

Example 1 1f z = 3y?, where y = 2x + 5, then
dz dz dy

& B - @12y =120k +5)

Example 2 1f z = y.— 3, where y = x>, then
dz
dx

= 1(3x?) = 3x?

Example 3 'The usefulness of this rule can best be appreciated when we must
differentiate a function such as z = (x? + 3x — 2)!". Without the chain rule at
our disposal, dz/dx can be found only via the laborious route of first multiplying
out the 17th-power expression. With the chain rule, however, we can take a
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shortcut by defining a new, intermediate variable y = x?* + 3x — 2, so that we get
in effect two functions linked in a chain:

z=y7 and y=x?+3x-2

The derivative dz /dx can then be found as follows:

dz ﬂﬂ 16 - _ 16
o = dydx 17p'%(2x + 3) = 17(x? + 3x 2) (2x + 3)

Example 4 Given a total-revenue function of a firm R = f(Q), where output Q
is a function of labor input L, or Q = g(L), find dR/dL. By the chain rule, we
havc .

AR dRdQ o\ oin e
oL ~dp ar (@)

Translated into_economic terms, dR/dQ is the MR function and dQ/dL is the
marglnal physical-product-c of-labor (MPP,) functign. Similarly, dR/dL has _

the connotation of the marginal- -revenue-product- -of-labor (MRP,). function, Thus
the result shown above constitutes the mathematical statement of the well-known
result in economics that MRP, = MR - MPP;. _

Inverse-Function Rule . \

If the function y = f(x) represents a one-to-one mapping, i.e., if the function is
such that a different value of x will always yield a different value of y, the
function f will have an inverse function x = f~'(y) (read: “x is an inverse function
of y”). Here, the symbol /! is a function symbol which, like the derivative-func-
tion symbol f*, signifies a function related to the function f; it does not mean thg
reciprocal of the function f(x). o

What the existence of an inverse function essentially means is that, in this
case, not only will a given value of x yield a unique value of y [that is, y = f(x)],
but also a given value of y will yield a unique value of x. To take a nonnumerical
instance, we may exemplify the one-to-one mapping by the mapping from the set
of all husbands to the set of all wives in a monogamous society. Each husband
has a unique wife, and each wife has a unique husband. In contrast, the mapping
from the set of all fathers to the set of all sons is not one-to-one, because a father
may have more than one son, albeit each son has a unique father.

When x and y refer specifically to numbers, the property of one-to-one
mapping is seen to be unique to the class of functions known as monotonic
functions. Given a function f(x), if successively larger values of the 1ndependent
variable x always lead to successively larger values of f(x), that s, if

X >x = fla)>f(x) S

then the function f is said to_be an increasing (or monotonically increasing)
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function.* If successive increases in x always lead to successive decreases in f(x),
that is, if

x,>x, = f(x)<f(x,)

on the other hand, the function is said to be a decreasing (or monotonically
decreasing) function. In either of these cases, an inverse function f~ ! exists,
A practical way of ascertaining the monotonicity of a given function y = f(x)
is to check whether the derivative f’(x) always adheres to the same algebraic sign
(not zero) for all values of x. Geometrically, this means that its slope is either
always upward or always downward Thus a firm’s demand curve Q = f(P) that
has a negative slope throughout is monotonic. As such, it has an inverse function
P = f~(Q), which, as mentioned previously, gives the average-revenue curve of
the firm, since P = AR. T ST T

Example 5 The function
[y =sx+25)

'has the denvatrve dy/dx = 5, which is positive regardless of the value of x; thus

the function is monotonic. (In this case it is increasing, because the derivative is
positive.) It follows that an inverse function exists, In the present case, the inverse
function is easily found by solvmg the given equation, y = 5x + 25 for x. The
result is the function . S -1 ¢ '

x=13y-4 kﬁ!:—f”
It is interesting to note that this inverse function is also monotonic, and

increasing, because dx/dy = 1+ > 0 for all values of y.

Generally speaking, if an inverse function exists, the original and the inverse
functions must both be monotonic. Moreover, if /' is the inverse function of f,
then f must be the inverse function of !, that is, f and ! must be inverse
_functions of each other.

It is easy to verify that the graph of y = f(x) and that of x = f~!(y) are one__
and the same, only with the axes reversed. If one lays the x axis of the /' graph
over the x axis of the f graph (and similarly for the y axis), the two curves will
coincide. On the other hand, if the x axis of the f~" graph is laid over the y axis of

* Some writers prefer to define an increasing function as a function with the property that
X, >x, = f(x))=f(x) [with a weak inequality]
and then reserve the term strictly increasing function for the case where
x> x, = f(x))>f(x;y) [with a strict inequality]

Under this usage, an ascending step function qualifies as an increasing (though not strictly increasing)
function, despite the fact that its graph contains horizontal segments. We shall not follow this usage in
the present book. Instead, we shall consider an ascending step function to be, not an increasing
function, but a nondecreasing one. By the same token, we shall regard a descending step function not
as a decreasing function, but as a nonincreasing one.
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the f graph (and vice versa), the two curves will become mirror images of each
other with reference to the 45° 11ne ¢ drawn through the origin. This mirror-image
relationship provides us with an easy way of graphing the inverse function !,
once the graph of the original function f is given. (You should try this with the
two functions in Example 5.)

For inverse functions, the rule of differentiation is‘

o _ 1 oy

dy  dy/dx T oy
This means that the derivative of the inverse function is the reciprocal of the
derivative of the original function; as such, dx /dy must take the same sign as
dy/dx, so that if f is increasing (decreasing), then so must be /™. ! T

" As a verification of this rule, we can refer back to Example 5, where dy/dx
was found to be 5, and dx/dy equal to {. These two derivatives are indeed
reciprocal to each other and have the same sign.

In that simple example, the inverse function is relatively easy to obtain, so
that its derivative dx/dy can be found directly from the inverse function. As the
next example shows, however, the inverse function is sometimes difficult to
express explicitly, and thus direct differentiation may not be practicable. The
usefulness of the inverse-function rule then becomes more fully apparent.

Example 6 Given y = x> + x, find dx/dy. First of all, since

—

= =5x"+1>0 '

dx ﬂ,}
for any value of x, the given function is monotonically increasing, and an inverse
function exists. To solve the given equation for x may not be such an easy task,
but the derivative of the inverse function ¢gg gevertheless be found quickly by use

of the inverse- funcuon rule:

dx _ 1 1

E - dy/dx - 5x4 + 1

The inverse-function rule is, strictly speaking, applicable only when the
function involved is a one-to-one mapping. In fact, however, we do have some
leeway. For instance, when dealing with a U-shaped curve (not monotonic), we
may consider the downward- and the upward-sloping segments of the curve as
representing two separate functions, each with a restricted domain, and each
being monotonic in the restricted domain. To each of these, the inverse-function
fule can then again be applied.

EXERCISE 7.3

1 Giveny = u® + 1, where u = 5 — x?, find dy/dx by the chain rule.
2 Given w = ay” and y = bx? + cx, find dw/dx by the chain rule.
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3 Use the chain rule to find dy/dx for the following:

(@ y=(0Gx*-13)° (b) y =(8x> - 5)° (¢) y = (ax + b)*
4 Given y = (16x + 3) 2, use the chain rule to find dy/dx. Then rewrite the function as
y = 1/(16x + 3)? and find dy/dx by the quotient rule. Are the answers identical?

5 Giveny = 7x + 21, find its inverse function. Then find dy/dx and dx/dy, and verify the
inverse-function rule. Also verify that the graphs of the two functions bear a mirror-image
relationship to each other.

6 Are the followmg functions monotonic?
(@) y=—x*+5 (x>0 (b) y=4x>+ x3 +3x
For each monotonic function, find dx/dy by the inverse-function rule.

7.4 PARTIAL DIFFERENTIATION

Hitherto, we have considered only the derivatives of functions of a single
independent variable. In comparative-static analysis, however, we are likely to
encounter the situation in which several parameters appear in a model, so that the
equilibrium value of each endogenous variable may be a function of more than
one parameter. Therefore, as a final preparation for the application of the concept
of derivative to comparative statics, we must learn how to find the derivative of a
function of more than one varlable ‘

Partial Derivatives
———w

—W”‘
Let us consider a function

(712)  y =f(xp, Xgseees X,)

where the variables x; (i = 1,2,..., n) are all independent of one another, so that
each can vary by 1tse1f w1thout aﬂ“ectmg the others. If the variable x, undergoes a
change Ax, while x,,..., x, all remain fixed, there will be a corresponding change
in y, namely, A y. The difference quotient in this case can be expressed as

Ay f(x HAx, Xy, x,) = f(x), X, X,)
(7.13) QAx. = i ‘

If we take the limit of Ay/Ax, as Ax, — 0, that limit will constitute a derivative.
We call it the partial derivative of y with respect to X, to indicate that all the
other independent variables in the function are held constant when taking thlS
particular derivative. Similar partial derivatives can be defined for infinitesimal
changes in the other independent variables. The process of taking partial denva-
tlves is called parrial differentiation.

" Partial derivatives are assigned distinctive symbols. In lieu of the letter 4 (as
in dy/dx), we employ the symbol 9, which is a variant of the Greek & (lower case
delta). Thus we shall now write dy/dx,, which is read: “the partial derivative of y_
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with respect to x;.” The partial-derivative symbol sometimes is also written as

o, 2o in that case, its d/dx; part can be regarded as an operator symbol

mstructmg us to take the partial derivative of (some function) with respect to the
variable x,. Since the function involved here is denoted in (7.12) by f, it is also
pernu551ble to write 3f/dx,. 7 }
Is there also a part1al -derivative counterpart for the symbol f’(x) that we
used before? The answer is yes. Instead of f’, however, we now use f, f,, ete.,
where the subscript indicates which independent variable (alone) is being allowed )
to vary. If the function in (7.12) happens to be written in terms of unsubscripted
variables, such as y = f(u, v, w), then the partial derivatives may be denoted by
fu, fD, and f, rather than f, f,, and fi-
' In line with these notations, and on the basis of (7.12) and (7.13), we can now
define :

as the first in the set of n partial derivatives of the function f.

Techniques of Partial Differentiation

Partial differentiation differs from the previously discussed differentiation pri-
marily in that we must hold (# — 1) independent variables constant while allow-
ing one variable to vary. Inasmuch as we have learned how to handle constants in
differentiation, the actual differentiation should pose little problem.

Example 1 Given y = f(x,, x,) = 3x? + x;x, + 4x3, find the partial deriva-
tives. When finding dy/dx, (or f,), we must bear in mind that x, is to be treated
as a constant during differentiation. As such, )c2 will drop out in the process if it is_
an ‘additive constant (such as the term 4x2) but will be retained if it is a
multzphcatwe constant (such as_in the term x.x,). Thus we have _.

—~ 9y _
&‘\ o, =f = 6x1 + x\

Similarly, by treating x, as a constant, we find that

4
T =R x e

selves funcuons of the vanables X, ‘and X;. That is, we may wr1te them as two
derived functions -

fl(xpxz) and  f, = f,(x, x;)
For the point (xl, x,) = (1,3) in the domain of the function f, for example, the
partlal derivatives will take the following specific values:

A, 3)—6(1)+3 % and \f2(1 3) 1+8(3)—25
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Example 2 Giveny = f(u,v) = (u + 4)(3u + 2v), the partial derivatives can be
found by use of the product rule. By holding v constant, we have

fi=(u+4)3)+10B3u+2v)=203u+ v+ 6)

Similarly, by holding u constant, we find that
f,=(u+4)(2)+003u+20)=2(u+4)

When u = 2 and v = 1, these derivatives will take the following values:
f,(2,1)y=2(13) = 26 and  £(2,1)=2(6)=12

Example 3 Given y = (3u — 20)/(u? + 3v), the partial derivatives can be
found by use of the quotient rule: —_

dy _ 3w+ 30) —2u(Bu —20)  —3u’+4uv + 9

du (u? + 3v)? (u? + 30)?
9y _ —2w’+3v) —30Bu—20) _ —u(2u+9)
dv (u? + 30)2 (u? + 30)2

Geometric Interpretation of Partial Derivatives

As a special type of derivative, a partial derivative is a measure of the instanta-
neous rates of change of some variable, and in that capacity it again has a
geometric counterpart in the slope of a particular curve.

Let us consider a production function Q = Q(K, L), where Q, K, and L
denote output, capital input, and labor input, respectively. This function is a
particular two-variable version of (7.12), with n = 2. We can therefore define two
partial derivatives dQ/dK (or Qx) and dQ/dL (or Q,). The partial derivative
Q relates to the rates of change in output with respect to infinitesimal changes in
capital, while labor input is held constant. Thus @ symbolizes the marginal-
physical-product-of-capital (MPP) function. Similarly, the partial derivative Q;
is the mathematical representation of the MPP; function.

Geometrically, the production function Q = Q(K, L) can be depicted by a
production surface in a 3-space, such as is shown in Fig. 7.4. The variable Q is
plotted vertically, so that for any point (K, L) in the base plane ( KL plane), the
height of the surface will indicate the output Q. The domain of the function
should consist of the entire nonnegative quadrant of the base plane, but for our
purposes it is sufficient to consider a subset of it, the rectangle OK,BL,. As a
consequence, only a small portion of the production surface is shown in the
figure.

Let us now hold capital fixed at the level K; and consider only variations in
the input L. By setting K = K|,, all points in our (curtailed) domain become
irrelevant except those on the line segment K,B. By the same token, only the
curve K CDA (a cross section of the production surface) will be germane to the
present discussion. This curve represents a total-physical-product-of-labor (TPP; )
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Figure 74

curve for a fixed amount of capital K = K,;; thus we may read from its slope the
rate of change of Q with respect to changes in L while K is held constant. It is
clear, therefore, that the slope of a curve such as K ,CDA represents the geometric
counterpart of the partial derivative Q,. Once again, we note that the slope of a
total (TPP, ) curve is its corresponding marginal (MPP, = Q, ) curve.

It was mentioned earlier that a partial derivative is a function of all the
independent variables of the primitive function. That Q, is a function of L is
immediately obvious from the K,CDA curve itself. When L = L, the value of Q,
1s equal to the slope of the curve at point C; but when L = L,, the relevant slope
is the one at point D. Why is Q, also a function of K? The answer is that K can
be fixed at various levels, and for each fixed level of K, there will result a different
TPP, curve (a different cross section of the production surface), with inevitable
repercussions on the derivative Q;. Hence Q, is also a function of K.

An analogous interpretation can be given to the partial derivative Q. If the
labor input is held constant instead of K (say, at the level of L), the line segment
L, B will be the relevant subset of the domain, and the curve L, 4 will indicate the
relevant subset of the production surface. The partial derivative Qx can then be
interpreted as the slope of the curve L,4—bearing in mind that the K axis
extends from southeast to northwest in Fig. 7.4. It should be noted that Qg is
again a function of both the variables L and K.

EXERCISE 74

1 Find dy/dx, and dy/dx, for each of the following functions:
(@) y = 2x{ = 1lx{x, + 3x} (©)y=Q@2Qx; +3)x, — 2)
(b) y = Tx, + Sx,x3 — 9x3 (d) y=(@x, +3)/(x, -2
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!

2 Find f, and f, from the following: ) 3
@ fop) =45y -y (@ =Tt
2
-1
B f(x ) =& =) =D (D) [x )=

3 From the answers to the preceding problem, find f,(1,2)—the value of the partial
derivative f, when x = | and y = 2—for each function.

4 Given the production function Q = 96K °°L%’, find the MPP;. and MPP, functions. Is
MPPy a function of K alone, or of both K and L? What about MPP,?

5 If the utility function of an individual takes the form

U=U(x,x,)=(x, + 2)2(x2 + 3)3

where U is total utility, and x, and x, are the quantities of two commodities consumed:
(a) Find the marginal-utility function of each of the two commodities.
(b) Find the value of the marginal utility of the first commodity when 3 units of each
commodity are consumed.

7.5 APPLICATIONS TO COMPARATIVE-STATIC ANALYSIS

Equipped with the knowledge of the various rules of differentiation, we can at last
tackle the problem posed in comparative-static analysis: namely, how the equi-
librium value of an endogenous variable will change when there is a change in any
of the exogenous variables or parameters.

Market Model

First let us consider again the simple one-commodity market model of (3.1). That
model can be written in the form of two equations:

Q=a-bP (a,b>0) [demand]
Q= —c+dP (c,d > 0) [supply]
with solutions
= a-+c¢
(7.14) P= b T d
_ad - bc

(7.15) Q= > d

These solutions will be referred to as being in the reduced form: the two
endogenous variables have been reduced to explicit expressions of the four
mutually independent parameters a, b, c, and d.

To find how an infinitesimal change in one of the parameters will affect the
value of P, one has only to differentiate (7.14) partially with respect to each of the
parameters. If the sign of a partial derivative, say, 3P/da, can be determined
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from the given information about the parameters, we shall know the direction in
which P will move when the parameter a changes; this constitutes a qualitative
conclusion. If the magnitude of 3P/da can be ascertained, it will constitute a
quantitative conclusion.

Similarly, we can draw qualitative or quantitative conclusions from the
partial derivatives of Q with respect to each parameter, such as 0 /da. To avoid
misunderstanding, however, a clear distinction should be made between the two
derivatives dQ/da and dQ/da. The latter derivative is a concept appropriate to
the demand function taken alone, and without regard to the supply function. The
derivative dQ/da pertains, on the other hand, to the equilibrium quantity in
(7.15) which, being in the nature of a solution of the model, takes into account the
interaction of demand and supply together. To emphasize this distinction, we
shall refer to the partial derivatives of P and Q with respect to the parameters as
comparative-static derivatives. A

Concentrating on P for the time being, we can get the following four partial
derivatives from (7.14):

_3_13=_1_ [a meter ¢ has th fficient L ]

94 b+ d parame a has the coellicic b+ d

_ CUas _ 5
or =o<b+(c2)+ dl)( <) _ (;iz)g) [quotient rule]
oF _ 1 (_oF

dc b+d da
3_17_0(b+d)—1(a+c)=—(a-!—c)(_t?f_’)

ad (b+d)? C(b+d)\ 9

Since all the parameters are restricted to being positive in the present model, we
can conclude that '

9F _9F . 9P _iP
da  dc ob  dd

For a fuller appreciation of the results in (7.16), let us look at Fig. 7.5, where
each diagram shows a change in one of the parameters. As before, we are plotting
Q (rather than P) on the vertical axis.

Figure 7.5a pictures an increase in the parameter a (to @’). This means a
higher vertical intercept for the demand curve, and inasmuch as the parameter b
(the slope parameter) is unchanged, the increase in @ results in a parallel upward
shift of the demand curve from D to D’. The intersection of D’ and the supply
curve S determines an equilibrium price P’, which is greater than the old
equilibrium price P. This corroborates the result that dP/da > 0, although for
the sake of exposition we have shown in Fig. 7.5a a much larger change in the
parameter a than what the concept of derivative implies.

The situation in Fig. 7.5¢ has a similar interpretation; but since the increase
takes place in the parameter ¢, the result is a parallel shift of the supply curve

(7.16) <0
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instead. Note that this shift is downward because the supply curve has a vertical
intercept of —c; thus an increase in ¢ would mean a change in the intercept, say,
from —2 to —4. The graphical comparative-static result, that P’ exceeds P, again
conforms to what the positive sign of the derivative dP/dc would lead us to
expect.

Figures 7.5b and 7.5d illustrate the effects of changes in the slope parameters
b and d of the two functions in the model. An increase in b means that the slope
of the demand curve will assume a larger numerical (absolute) value; i.e., it will
become steeper. In accordance with the result dP/db < 0, we find a decrease in P
in this diagram. The increase in 4 that makes the supply curve steeper also results
in a decrease in the equilibrium price. This is, of course, again in line with the
negative sign of the comparative-static derivative dP /dd.

Thus far, all the results in (7.16) seem to have been obtainable graphically. If
so, why should we bother to learn differentiation at all? The answer is that the
differentiation approach has at least two major advantages. First, the graphical
technique is subject to a dimensional restriction, but differentiation is not. Even

(Increase in a) - (Increase in b)
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when the number of endogenous variables and parameters is such that the
equilibrium state cannot be shown graphically, we can nevertheless apply the
differentiation techniques to the problem. Second, the differentiation method can
yield results that are on a higher level of generality. The results in (7.16) will
remain valid, regardless of the specific values that the parameters a, b, ¢, and d
take, as long as they satisfy the sign restrictions. So the comparative-static
conclusions of this model are, in effect, applicable to an infinite number of
combinations of (linear) demand and supply functions. In contrast, the graphical
approach deals only with some specific members of the family of demand and
supply curves, and the analytical result derived therefrom is applicable, strictly
speaking, only to the specific functions depicted.

The above serves to illustrate the application of partial differentiation to
comparative-static analysis of the simple market model, but only half of the task
has actually been accomplished, for we can also find the comparative-static
derivatives pertaining to Q. This we shall leave to you as an exercise.

/ —N ational-Income Model

In place of the simple national-income model discussed in Chap. 3, let us study a
slightly enlarged model with three endogenous variables, Y (national income), C
(consumption), and T (taxes):

Y=C+1,+ G,
(717) C=a+B(Y-T) (a>0; 0<B<1)
T=vy+8Y (y>0;, 0<é<1)

The first equation in this system gives the equilibrium condition for national
income, while the second and third equations show, respectively, how C and T are
determined in the model.

The restrictions on the values of the parameters «, B8, v, and & can be
explained thus: a is positive because consumption is positive even if disposable
income (Y — T) is zero; B is a positive fraction because it represents the marginal
propensity to consume; vy is positive because even if Y is zero the government will
still have a positive tax revenue (from tax bases other than income); and finally, 8
i1s a positive fraction because it represents an income tax rate, and as such it
cannot exceed 100 percent. The exogenous variables /, (investment) and G,
(government expenditure) are, of course, nonnegative. All the parameters and
exogenous variables are assumed to be independent of one another, so that any
one of them can be assigned a new value without affecting the others.

This model can be solved for Y by substituting the third equation of (7.17)
into the second and then substituting the resulting equatlon into the first. The
equilibrium income (in reduced form) is

(7.18) Y= =BT 5
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Similar equilibrium values can also be found for the endogenous variables C and
T, but we shall concentrate on the equilibrium income.

From (7.18), there can be obtained six comparative-static derivatives. Among
these, the following three have special policy significance:

ay 1
019 56" T—p+8 > °
Yy —
120 G- B[i 75 <0
Y —Bla-By+I1,+G -BY
(7.21) % = B(Z _l:+ 482)2 o - 1 - BB+ 55 < 0 [by(7.18)]

The partial derivative in (7.19) gives us the government-expenditure multiplier. 1t
has a positive sign here because 8 is less than 1, and 86 is greater than zero. If
numerical values are given for the parameters 8 and 8, we can also find the
numerical value of this multiplier from (7.19). The derivative in (7.20) may be
called the nonincome-tax multiplier, because it shows how a change in vy, the
government revenue from nonincome-tax sources, will affect the equilibrium
income. This multiplier is negative in the present model because the denominator
in (7.20) is positive and the numerator is negative.-Lastly, the partial derivative in
(7.21) represents an income-tax-rate multiplier. For any positive equilibrium
income, this multiplier is also negative in the model.

Again, note the difference between the two derivatives 3Y /3G, and Y /9G,.
The former is derived from (7.18), the expression for the equilibrium income. The
latter, obtainable from the first equation in (7.17), is dY/dG, = 1, which is
altogether different in magnitude and in concept. '

Input-Output Model

The solution of an open input-output model appears as a matrix equation
X = (I — A)"'d. 1f we denote the inverse matrix (I — A)~' by B = [b,;], then,
for instance, the solution for a three-industry economy can be written as X = Bd,
or

=

1 bn b12 b13 dl
21 = bZl bzz bzs dz

(7.22) %
f3 b3 1 b32 b33 d3

What will be the rates of change of the solution values X, with respect to the
exogenous final demands d,, d,, and d,? The general answer 1s that

ax; .
(7.23) Ed_k—__bjk (j, k=1,2,3)
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To see this, let us multiply out Bd in (7.22) and express the solution as

xl bl]dl + blzdz + b|3d3
Xy | = | 6214, + bypd; + byd,

In this system of three equations, each one gives a particular solution value as a
function of the exogenous final demands. Partial differentiation of these will
produce a total of nine comparative-static derivatives:

9%, 9%, 0%,
3d| _bll adz_blZ ad3_b13
, ix, 0x, dx,
(723) adl - b21 ad2 - b22 8d3 - b23
0%; 9%, 0%,
ad] - b3l 3d2 b32 3d3 - b33

This is simply the expanded version of (7.23).
Reading (7.23’) as three distinct columns, we may combine the three dcnva-
tives in each column into a matrix (vector) derivative:

x o |0 i P x| 0w

23" = ¥ =15 - b —— =15
(7 23 ) 8d| ad] {2 21 adz 22 ad3 23
X3 by bs, by

Since the three column vectors in (7.23") are merely the columns of the matrix B,
by further consolidation we can summarize the nine derivatives in a single matrix
derivative dx/dd. Given X = Bd, we can simply write

— b]l blZ b13
9% _ b, b, b,|=8
ad 21 22 23

b31 b32 b33

This is a compact way of denoting all the comparative-static derivatives of our
open input-output model. Obviously, this matrix derivative can easily be extended
from the present three-industry model to the general n-industry case.

Comparative-static derivatives of the input-output model are useful as tools
of economic planning, for they provide the answer to the question: If the
planning targets, as reflected in (d,, d,,..., d,), are revised, and if we wish to
take care of all direct and indirect requirements in the economy so as to be
completely free of bottlenecks, how must we change the output goals of the n
industries?
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EXERCISE 7.5

1 Examine the comparative-static properties of the equilibrium quantity in (7.15), and
check your results by graphic analysis.

2 On the basis of (7.18), find the partial derivatives dY/d3I,, 3Y¥/da, and 3Y/38.
Interpret their meanings and determine their signs.

3 The numerical input-output model (5.21) was solved in Sec. 5.7.
(@) How many comparative-static derivatives can be derived?
(b) Write out these derivatives in the form of (7.23") and (7.23").

7.6 NOTE ON JACOBIAN DETERMINANTS

The study of partial derivatives above was motivated solely by comparative-static
considerations. But partial derivatives also provide a means of testing whether
there exists functional (linear or nonlinear) dependence among a set of »n func-
tions in n variables. This is related to the notion of Jacobian determinants (named
after Jacobi).

Consider the two functions

) =2x, + 3x,
(7.24)
¥y, = 4x + 12x,x, + 9x2

If we get all the four partial derivatives

F
= 8x, + 12x, a—i’z = 12x, + 18x,
2

N _y _5 I

dx, dx, ax,

and arrange them into a square matrix in a prescribed order, called a Jacobian
matrix and denoted by J, and then take its determinant, the result will be what is
known as a Jacobian determinant (or a Jacobian, for short), denoted by |J|:

| n
dx, dx, 2 3
(7.25) V= a9y —’(8x1+12x2) (12x, + 18x,)
dx, Ox,

For economy of space, this Jacobian is sometimes also expressed as

Iy, 1)
d(xy, x,)

More generally, if we have n differentiable functions in » variables, not necessarily

1 =
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linear,

yl =f1(x17 xz,-.., _xn)
(126) V2= (x1 %200 X,)

yn =f"(xl’x2""7 xn)

where the symbol " denotes the nth function (and not the function raised to the
nth power), we can derive a total of n? partial derivatives. Together, they will give
rise to the Jacobian

dyp Iy Iy

ax ax dx

3( Y,y Vgreeos ! 2 n

(7.27) |J|E' oy d) (|70 T
F(xy, Xpsees Xy) 3y 2y 3y,

Ix, 0x, dx,

A Jacobian test for the existence of functional dependence among a set of n
functions is provided by the following theorem: The Jacobian |J| defined in
(7.27) will be identically zero for all values of x,..., x, if and only if the n
functions f',..., f" in (7.26) are functionally (linearly or nonlinearly) dependent.

As an example, for the two functions in (7.24) the Jacobian as given in (7.25)
has the value

|J| = (24x, + 36x,) — (24x, + 36x,) =0

That is, the Jacobian vanishes for all values of x, and x,. Therefore, according to
the theorem, the two functions in (7.24) must be dependent. You can verify that
y, is simply y, squared; thus they are indeed functionally dependent—here
norlinearly dependent.

Let us now consider the special case of linear functions. We have earlier
shown that the rows of the coefficient matrix A of a linear-equation system

agx; +apx; +--+a,x, =d

a,x, +a,x,+--+a,x,=d

are linearly dependent if and only if the determinant |4| = 0. This result can
now be interpreted as a special application of the Jacobian criterion of functional
dependence.

Take the left side of each equation in (7.28) as a separate function of the n
variables x,,..., x,, and denote these functions by y,,..., y,. The partial deriva-
tives of these functions will turn out to be dy,/dx, = a,,, dy,/9x, = ay,, etc., s0
that we may write, in general, dy,/dx; = a,;. In view of this, the elements of the
Jacobian of these n functions will be precisely the elements of the coefficient
matrix A, already arranged in the correct order. That is, we have |J| = |A4|, and



186 COMPARATIVE-STATIC ANALYSIS

thus the Jacobian criterion of functional dependence among y,,..., y,—or, what
amounts to the same thing, functional dependence among the rows of the
coefficient matrix A—is equivalent to the criterion |4| = 0 in the present linear
case,

In the above, the Jacobian was discussed in the context of a system of »n
functions in n variables. It should be pointed out, however, that the Jacobian in
(7.27) is defined even if each function in (7.26) contains more than » variables,
say, n + 2 variables:

.yi=fi(xl"""xn’xn+l’xn+2) (i=1,2,..., n)

In such a case, if we hold any two of the variables (say, x, ., and x, , ,) constant,
or treat them as parameters, we will again have » functions in exactly n variables
and can form a Jacobian. Moreover, by holding a different pair of the x variables
constant, we can form a different Jacobian. Such a situation will indeed be
encountered in Chap. 8 in connection with the discussion of the implicit-function
theorem.

EXERCISE 7.6

1 Use Jacobian determinants to test the existence of functional dependence between the
functions paired below: o

(a) yi = 3x{ + x, (b) y; = 3x} + 2x2

Vo =9x} + 6xP(xy+ 4) + xy(x, + 8) + 12 Y =5x, + 1

2 Consider (7.22) as a set of three functions X, = f'(d,, d,, d5) (with i = 1,2, 3).

(a) Write out the 3 X 3 Jacobian. Does it have some relation to (7.23')? Can we write
|| = |B|?

(b) Since B = (I — A)~', can we conclude that |B| + 0? What can we infer from this
about the three equations in (7.22)?




CHAPTER

| EIGHT

COMPARATIVE-STATIC ANALYSIS OF
GENERAL-FUNCTION MODELS

The study of partial derivatives has enabled us, in the preceding chapter, to
handle the simpler type of comparative-static problems, in which the equilibrium
solution of the model can be explicitly stated in the reduced form. In that case,
partial differentiation of the solution will directly yield the desired comparative-
static information. You will recall that the definition of the partial derivative
requires the absence of any functional relationship among the independent
variables (say, x;), so that x, can vary without affecting the values of x,, x4,..., x,,.
As applied to comparative-static analysis, this means that the parameters and /or
exogenous variables which appear in the reduced-form solution must be mutually
independent. Since these are indeed defined as predetermined data for purposes
of the model, the possibility of their mutually affecting one another is inherently
ruled out. The procedure of partial differentiation adopted in the last chapter is
therefore fully justifiable.

However, no such expediency should be expected when, owing to the inclu-
sion of general functions in a model, no explicit reduced-form solution can be
obtained. In such cases, we will have to find the comparative-static derivatives
directly from the originally given equations in the model. Take, for instance, a
simple national-income model with two endogenous variables Y and C:

Y=C+I,+ G,

C=C(Y,T,) [7,: exogenous taxes]

187
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which is reducible to a single equation (an equilibrium condition)
Y=C(Y,T,)+ 1, + G,

to be solved for Y. Because of the general form of the C function, however, no
explicit solution is available. We must, therefore, find the comparative-static
derivatives directly from this equation. How might we approach the problem?
What special difficulty might we encounter?

Let us suppose that an equilibrium solution ¥ does exist. Then, under certain
rather general conditions (to be discussed later), we may take Y to be a
differentiable function of the exogenous variables I, Gy, and 7. Hence we may
write the equation

Y = Y(IO’GO’ Tn)

even though we are unable to determine explicitly the form which this function
takes. Furthermore, in some neighborhood of the ethbnum value Y, the
following identical equality will hold:

Y=C(Y,T,)+1,+ G,

This type of identity will be referred to as an equilibrium identity because it is
nothing but the equilibrium condition with the Y variable replaced by its
equilibrium value Y. Now that ¥ has entered into the picture, it may seem at first
blush that simple partial differentiation of this identity will yield any desired
comparative-static derivative, say, dY/d7,. This, unfortunately, is not the case.
Since Y is a function of Tj, the two arguments of the C function are not
independent. Specifically, 7; can in this case affect C not only directly, but also
indirectly via Y. Consequently, partial differentiation is no longer appropriate for
our purposes. How, then, do we tackle this situation?

The answer is that we must resort to fotal differentiation (as against partial
differentiation). Based on the notion of total differentials, the process of total
differentiation can lead us to the related concept of total derivative, which
measures the rate of change of a function such as C(Y, T;) with respect to the
argument 7;,, when T also affects the other argument, Y. Thus, once we become
familiar with these concepts, we shall be able to deal with functions whose
arguments are not all independent, and that would remove the major stumbling
block we have so far encountered in our study of the comparative statics of a
general-function model. As a prelude to the discussion of these concepts, how-
ever, we should first introduce the notion of differentials. :

8.1 DIFFERENTIALS

The symbol dy/dx, for the derivative of the function y = f(x), has hitherto been
regarded as a single entity. We shall now reinterpret it as a ratio of two quantities,
dy and dx.
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Differentials and Derivatives

Given a function y = f(x), a specific Ax will call forth a corresponding A y, and
we can use the difference quotient Ay/Ax to represcnt the rate of change of y
w1th Tespect to x. Since it is true that

8.1) - Ay= (—i—x)Ax)

the magnitude of Ay can be found, once the rate of change Ay/Ax and the
variation in x are known. )

When Ax is infinitesimal, Ay will also be infinitesimal, and the difference
quotient Ay/Ax will turn into the derivative dy/dx. Then, if we denote the
infinitesimal changes in x and y, respectively, by dx and dy (in place of Ax and
A y), the identity (8.1) will become

82 ( )dx)or b= f(x)jiy

The symbols dy and dx are called the differentials of y and x, respectively.
Dividing the two identities in (8.2) throughout by dx, we have

, () _ (@ )
(8.2) m_(dx) o (o=l

This result shows that the derivative (dy/dx) = f’(x) may be interpreted as the
quotient of two separate differentials dy and dx.

On the basis of (8.2), once we are given the derivative of a function y = f(x),
dy can immediately be written as f'(x) dx. The derivative f'(x) may thus be
viewed as a “converter” that serves to convert an infinitesimal change dx into a
corresponding change dy.

Example 1 Given y = 3x> + Ix — 5, find dy. The derivative of the function is
dy/dx = 6x + 7; thus the desired differential is

(8.3) dy = (6x + 7) dx |

This result can be used to calculate the change in y resulting from a given
change in x. It should be remembered, however, that the differentials dy and dx
refer to infinitesimal changes only; hence, if we put an x change of substantial
magnitude (Ax) into (8.3), the resulting dy can only serve as an approximation to
the exact value of the corresponding y change (Ay). Let us calculate dy from
(8.3), assuming that x is to change from 5 to 5.01. To do this, we set x = 5 and
dx = 0.01 and substitute these into (8.3). The result is dy = 37(0.01) = 0.37. How
does this figure compare with the actual change in y? When x = 5 (before
change), we can compute from the given function that y = 105, but when
x = 5.01 (after change), we get y = 105.3703. The true change in y is therefore
Ay = 0.3703, for which our answer dy = 0.37 constitutes an approximation with
an error of 0.0003.
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The source of error in the approximation can be illustrated in general by
means of Fig. 8.1. For the given Ax depicted in the figure (distance AC), the true
change in y, or Ay, is the distance CB. Had we used the slope of line AB
(= Ay/Ax = CB/AC) as the relevant rate of change and applied (8.1) to find
Ay, we would have obtained the correct answer: e
Ay CB
Ay—(A )Ax ACAC CB
But, in using (8.3)—a specific version of (8.2)—we actually employed the
derivative dy/dx in lieu of A y/Ax; that is, we used the slope of the tangent line
AD (= CD/AC) instead of the slope of line AB in the calcu]atlon Thus we
obtained the answer

dy = (Zi) Ax = gCAC CD
which differs from the true change CB by an error of DB. This error can, of
course, be expected to become smaller, the smaller is the Ax, that is, the closer the
point B moves toward point 4.

The process of finding the differential dy is called differentiation. Recall that
we have been using this term as a synonym for derivation, without having given
an adequate explanation. In the light of our interpretation of a derivative as a
quotient of two differentials, however, the rationale of the term becomes self-evi-
dent. It is still somewhat ambiguous, though, to use the single term “differentia-
tion” to refer to the process of finding the differential dy as well as to that of
finding the derivative dy/dx. To avoid confusion, the usual practice is to qualify
the word “differentiation” with the phrase “with respect to x” when we take the
derivative dy/dx. It should be clear from (8.2) that, given a function y = f(x), we

y=f(x)

Ay

o

Figure 8.1
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can always (1) transform a known differential dy into the derivative dy/dx by
dividing it by dx and (2) transform a known derivative dy /dx into the differential
dy by multiplying it by dx.

Differentials and Point Elasticity

As an illustration of the application of differentials in economics, let us consider
the notion of the elasticity of a function. For a demand function Q = f(P), for
instance, the elasticity is defined as (AQ/Q) /(AP /P) Now, if the change in P is,
infinitesimal, the expresswns AP and AQ will reduce to the differentials dP and
dQ, and the elasticity measure will then assume the sense of the point elasticity of
demand denoted by ¢, (the Greek letter epsilon, for ¢ elast1c1ty”) *

| | d d dP.J m,,t./”“”
(84)) e =922 40/

B=4p/p T /P R =

Observe that in the expression on the extreme right we have rearranged the
differentials dQ and dP into a ratio dQ/dP, which can be construed as the
derivative, or the marginal function, of the demand function @ = f( P). Since we
can interpret similarly the ratio ¢ /P in the denominator as the average function
of the demand function, the point elasticity of demand ¢, in (8.4) is seen to be the
ratio of the marginal function to the average function of the demand function,

Indeed, this last-described relationship is valid not only for the demand
function but also for any other function, because for any given rotal function
¥ = f(x) we can write the formula for the point elasticity of y with respect to x as

(8.5) g dy / dx margmal function |
) vx T y / X average function

;

As a matter of conventxon the absolute value of the elasticity measure is used
in deciding whether the function is elastic at a particular point. In the case of a
demand function, for instance, we stipulate:

elastic _
The demand is { of unit elasticity} at a point when || % 1.

inelastic Q@
Example 2 Find ¢, if the demand function is Q = 100 — 2P. The margmal
function and the average function of the given demand are®

d 100 - 2P
o1 wmd - P
so their ratio will give us
e = p
4 50-P
* The point-elasticity measure can alternatively be interpreted as the limit of ﬁ%;g = AgﬁiP

as A P — 0, which gives the same result as (8.4).
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As written, the elasticity is shown as a function of P. As soon as a specific
price is chosen, however, the point elasticity will be determinate in magnitude.
When P = 25, for instance, we have ¢, = — 1, or |¢,] = 1, so that the demand
elasticity is unitary at that point. When P = 30, in contrast, we have |g,| = 1.5;
hence, demand is elastic at that price. More generally, it may be verified that we
have |e,| > 1 for 25 <P <50 and |g,) <1 for 0 < P <25 in the present
example. (Can a price P > 50 be considered meaningful here?)

At the risk of digressing a trifle, it may also be added here that the
interpretation of the ratio of two differentials as a derivative—and the consequent
transformation of the elasticity formula of a function into a ratio of its marginal
to its average—makes possible a quick way of determining the point elasticity
graphically. The two diagrams in Fig. 8.2 illustrate the cases, respectively, of a
negatively sloped curve and a positively sloped curve. In each case, the value of
the marginal function at point 4 on the curve, or at x = x, in the domain, is
measured by the slope of the tangent line AB. The value of the average function,
on the other hand, is in each case measured by the slope of line OA (the line
joining the point of origin with the given point 4 on the curve, like a radius
vector), because at point 4 we have y = x,4 and x = Ox,, so that the average is
y/x = xyA/0x, = slope of OA. The elasticity at point 4 can thus be readily
ascertained by comparing the numerical values of the two slopes involved: If AB
is steeper than OA, the function is elastic at point 4; in the opposite case, it 1s
inelastic at 4. Accordingly, the function pictured in Fig. 8.2a is inelastic at 4 (or
at x = x,), whereas the one in diagram b is elastic at 4.

Moreover, the two slopes under comparison are directly dependent on the
respective sizes of the two angles 8, and 8, (Greek letter theta; the subscripts m
and a indicate marginal and average, respectively). Thus we may, alternatively,
compare these two angles instead of the two corresponding slopes. Referring to
Fig. 8.2 again, you can see that 6, < 6, at point 4 in diagram a, indicating that

(0)

Figure 8.2
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‘ o\t = o .

(6)

Figure 8.3

the marginal falls short of the average in numerical value; thus the function is
inelastic at point 4. The exact opposite is true in diagram b.

Sometimes, we are interested in locating a point of unitary elasticity on a
given curve. This can now be done easily. If the curve is negatively sloped, as in
Fig. 8.3a, we should find a point C such that the line OC and the tangent BC will
make the same-sized angle with the x axis, though in the opposite direction. In the
case of a positively sloped curve, as in Fig. 8.3b, one has only to find a point C
such that the tangent line at C, when properly extended, passes through the point
of origin.

We must warn you that the graphical method just described is based on the
assumption that the function y = f(x) is plotted with the dependent variable y on
the vertical axis. In particular, in applying the method to a demand curve, we
should make sure that Q is on the vertical axis. (Suppose that Q is actually plotted
on the horizontal axis. How should our method of reading the point elasticity be
modified?) ‘ ‘

EXERCISE 8.1

1 Find the differential dy, given:
(@) y=—x(x*+3) (b)) y=(x—8)(Ix +5) () y=

x2+1

2 Given the import function M = f(Y), where M is imports and Y is national income,
express the income elasticity of imports &, in terms of the propensities to import.

3 Given the consumption function C = a + bY (witha > 0; 0 < b < I):

(a) Find its marginal function and its average function.

(b) Find the income elasticity of consumption ¢y, and determine its sign, assuming
Y>0. T

(¢) Show that this consumption function is inelastic at all positive income levels.
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4 Find the point elasticity of demand, given Q = k£/P", where k and n are positive
constants.

(a) Does the elasticity depend on the price in this case?

(b) In the special case where n = 1, what is the shape of the demand curve? What is the
point elasticity of demand?

8.2 TOTAL DIFFERENTIALS

The concept of differentials can easily be extended to a function of two or more
independent variables. Consider a saving function

(86) S=S5(v,i)

where S is savings, Y is national income, and / is interest rate. This function is
assumed-—as all the functions we shall use here will be assumed—to be continu--
ous and to possess continuous (partial) derivatives, which is another way of
saying that it is smooth and differentiable everywhere. We know that the partial
derivative dS/dY (or Sy) measures the rate of change of S with respect to an
infinitesimal change in Y or, in short, that it signifies the marginal propensity to
save. As a result, the change in S due to that change in ¥ may be represented by
the expression (dS/dY ) dY, which is comparable to the right-hand expression in
(8.2). By the same token, the change in S resulting from an infinitesimal change in

i can be denoted as ( 8S/8_‘1) di.’ The’ total change in, S will then be egual to

Y di
or, in an alternatlve notatlon,‘
dS SYdY+ Sdz _}

Note that the two partial derivatives Sy and §; again play the role of “converters”
that serve to convert the 1nﬁn11e51rnal changes dY and di, respectively, into a
correspondlng change 4S. The expression dS, being the sum of the changes from
both both sources, is g_alled the total di ﬁ’erentzal of the savmg_ function. And the process
of ﬁndmg such a total dlﬁcrcntlal is called zoral differentiation.

It is p0531b1e of course, that Y maymge while / remains constant. In that
case, di =0, and the total differential will reduce to a partial_differential:
dS = (9S/dY) dY. Dividing both sides by dY, we get

Tas _(dsy N

8Y (dY)

Thus 1t is clear that the partial derivative dS/dY can also be interpreted as the
ratio of two differentials dS and d7, with the proviso that i, the other independent
variable in the function, 1s held constant. In a wholly analogous manner, we can
form another partial differential dS = (35 /di) di when dY = 0, and can then
interpret the partial derivative dS/di as the ratio of the differential S (with Y

{ constant \
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held constant) to the differential di. Note that although 4S and di can now each
stand alone as a differential, the expression dS/di remains as a single entity.
The more general case of a function of n independent variables can be
exemplified by, say, a utility function in the general form
(8.7) U= U(x,, x9,.-., X,)
The total differential of this function can be written as
ou oU N (?U

du = a—xldx' + EdXZ ax

dx,

n

i n
or dU=Uldx1+U2dx2+---+Undxn=‘EUidxi
_i=1 /
in which each term on the right side indicates the amount of change in U resulting
from an 1nﬁn1te51ma change in_one of the independent variables. Economically,
the first term, U dx|) means the marginal utility of the first commodlty times the
increment in consumptlon of that commodity, and similarly for the other terms.
The sum of these thus represents the total change in utility originating from all _
_possible sources of change.

Like any other function, the savmg function (8.6) and the utility function
(8.7) can both be expected to give rise to to elasticity measures similar to that
defined in (8.5). But each elasticity measure must in these instances be defined in
terms of the change in one of the 1ndependent variables only; there will thus be
two such h elasticity measures to the saving function, and n of them to the uuhty
function. These are accordmg._r:[wcalled gamal ‘elasticities. For the saving function,
lﬁjpartlal elast1c1tlcs ics may be written as

T_aspy _asy | 9S/9i _ 9S8 i \ W tes
E‘ S/Y__9YS g_‘S/l "3 S —

For the utility function, the n partial elasticities can be concisely denoted as
follows:

aU x; .
sux‘=8_6 (z=l,2,...,n)

i

EXERCISE 8.2

1 Find the total differential, given:
(a) z =3x*+ xy — 23 (b) U=2x, + 9x,x, + x3

2 Find the total differential, given:

X, b _
@y=-355  ®r=

2x,x,

X, + X,
3 The supply function of a certain commodity is:

Q=a+bP*+ R? (a<0, b>0) [ R: rainfall] .
Find the price elasticity of supply g ., and the rainfall elasticity of supply egz-
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4 How do the two partial elasticities in the last problem vary with P and R? In a
monotonic fashion (assuming positive P and R)?

5 The foreign demand for our exports X depends on the foreign income ¥, and our price
level P: X =Y/ + P~% Find the partial elastlcny of forelgn demand for our exports
with respect to our price level.

8.3 RULES OF DIFFERENTIALS

A straightforward way of finding the total differential dy, given a function
y=f(x;, x;)

is to find the partial derivatives f, and f, and substitute these into the equation
dy = fidx, + f,dx, -

But sometimes it may be more convenient to apply certain rules of differentials
which, in view of their striking resemblance to the derivative formulas studied
before, are exceedingly easy to remember.

Let k be a constant and u and v be two functions of the variables x, and x,.
Then the following rules are valid:*

Rulel dk=0 (cf. constant-function rule) ﬁ(’ ¥ - WM
Rule I d(cu")=cnu" 'du - (cf. powér-function rule) | ‘/( K /
Rule IIl d(u+v)=du+ do (cf. §um—difference rule) v” ‘{/\,
Rule IV d(uv)=vdu + udv (cf. product rule) )

Rule V d(%) = —13( v du — udv) (cf. quotient rule)
0 _ :

Instead of proving these rules here, we shall merely illustrate their practical
application.

Example 1 Find the total differential dy of the function
¥y =5x7 + 3x,

The straightfoward method calls for the evaluation of the partial derivatives
fi = 10x, and f, = 3, which will then enable us to write

dy = f,dx, + f, dx, = 10x,dx, + 3 dx,

* All the rules of differentials discussed in this section are also applicable when u and v are
themselves the independent variables (rather than functions of some other variables x, and X3)
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We may, however, let u = 5x} and v = 3x, and apply the above mentloned rules
to get the identical answer as follows: :
dy =d(5x7) +d(3x,)  [byRulellI]
= 10x,dx, + 3dx, [by Rule I1]

Example 2 Find the total differential of the function
y =3x? + x;x}

Since f; = 6x, + x3 and f, = 2x,x,, the desired differential is.
dy = (6xl + x%) dx, + 2x,x, dx,

By applying the given rules, the same result can be arrived at thus:

dy = d(3x?) + d(x,x3) [by Rule IIT]
= 6x,dx, + x3dx, + x,d(x2) [by Rules II and 1V]
=(6x, + x2) dx, + 2x,x, dx, [by Rule I1]
Example 3 Find the total differential of the function ;L — (e,
y=xl+x2 /(x/ Sl ;ck/ﬁw/ ZW
P T 23
In view of the fact that the partial derivatives in this case are
- (xl + ZX2) l
= —— and = —
fl 2x‘3 f2 2x12

(check these as an exercise), the desired differential is

- (x, + 2x,) 1
dy = ———=dx, + —dx
Y 2x3 : 2x} 2

However, the same result may also be obtained by application of the rules as
follows: .
1 :
dy = 4t [2"1 d(x; + x3) = (x; + x;) d(2x12)] ~ [by Rule V]

1 : .
= ;f[hf(dxl +dx,) — (x, + x;)4x,dx,]  [by Rules I and II]
= 4[ 2x,(x, + 2x2) dx, + 2)c1 dx, |

—{(x, + 2x,)

1
= — 5 =dx; t ——dx,
2x3 2x}
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These rules can naturally be extended to cases where more than two functions
of x, and x, are involved. In particular, we can add the following two rules to the
previous collection:

Rule VI d(u+tv+w)=du+dov+dw
Rule VII d(uvw) = owdu + uwdv + uv dw

To derive Rule V11, we can employ the familiar trick of first letting z = oW,
so that

d(uow) = d(uz) = zdu+ udz  [by Rule IV]
Then, by applying Rule IV again to dz, we get the intermediate result
dz =d(vw) = wdv + vdw
which, when substituted into the preceding equation, will yield
d(uvw) = owdu + u(wdo + vdw) = owdu + uwdv + uv dw
as the desired final result. A similar procedure can be employed to derive Rule VI.

EXERCISE 83

1 Use the rules of d1fferent1als to find (a) dz from z = 3x? + xy — 2y° and (b) dU from
U =2x, + 9x;x, + x3. Check your answers against those obtained for Exercise 8.2-1.
2 Use the rules of differentials to find dy from the following functions:
Xy 2xx,
(a) y = po—

X+ x, ()y_x]+x2
Check your answers against those obtained for Exercise 8.2-2.
3 Giveny = 3x,(2x; — I)(x3 + 5)
(a) Find dy by Rule VIL
(b) Find the partial differential of y, if dx, = dx; = 0.
(¢) Derive from the above result the partial derivative dy/dx,.

4 Prove Rules II, III, IV, and V, assuming u and v to be the 1ndependent variables (rather
than functions of some other variables).

+84 TOTAL DERIVATIVES

With the notion of differentials at our disposal, we are now equipped to answer
the question posed at the beginning of the chapter, namely, how we find the rate
of change of the function C(Y, T,) with respect to T,, when Y and T are related.
As previously mentioned, the answer lies in the concept of total derlvanve Unlike
a partial derivative, a total derivative does not require the argument Y to remain
constant as T, varies, and can thus allow for the postulated relationship between
_l}le_tw_o_a_rgy__ments :
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Figure 8.4

Finding the Total Derivative

To carry on the discussion in a more general framework, let us consider any
function

(88) y=f(x,w) where x=g(w)

with the three variables y, x, and w related to one another as in Fig. 8.4. In this
figure, which we shall refer to as a channel map, it is clearly seen that w—the
ultimate source of change in this case—can affect y through two channels: (1)
indirectly, via the function g and then f (the straight arrows), and (2) directly, via
the function f (the curved arrow), Whereas the partial derivative [, 1s adequate for
expressing the direct effect alone, a total _derivative is needed 10 express both
effects jointly.

To obtain this total derivative, we first differentiate y totally, to get the total
differential dy = f.dx + f dw. When both sides of this equation are divided by
the differential dw, the result is

f'l_ dx f

dw "dw ‘“dw
_ﬁﬂ+ﬁl [@__1]
T Ox dw aw dw

Since the ratio of two differentials may be interpreted as a derivative, the
expressmn dy/dw on the left may be ‘regarded as some measure of the rate of
change of y with respect to w. Moreover, if the two terms on the right side of (8.9)
can be identified, respectively, as the indirect and direct effects of w on y. then
dy /dw w111 1ndeed be the total denvatlve we are seeking. Now the second term

(8.9)

the curved arrow in Flg 8.4. That the ﬁrst term (%* j_x) measures the 1nd1rect

effect w11 also becgme evident when we analyze it with the help of some arrows as,

follows ¥

3‘ a'x L. . . . .
* The expression % dw is reminiscent of the cham rule {composite-function rule) discussed
x dw

P,
earlier, except that here a pamar derivative appearsjz.ecause f happens to be a funcnon of more than
one variable.

/’—.——'—’
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The change in w (namely, dw) is in the first instance transmitted to the variable x,
and through the resulting change in x (namely, dx) it is relayed to the variable y.
But this is precisely the indirect effect, as depicted by the sequence of straight
arrows in Fig. 8.4. Hence, the expression in (8.9) does indeed represent the desired
total derivative. The process of finding the total derivative dy/dw is referred to as
total differentiation of y with respect to w.

Example 1 Find the total derivative dy/dw, given the function
y=f(x,w)y=3x—w> where x=g(w)=2w?+w+4

By virtue of (8.9), the total derivative should be ;':;/] = HOe]
dy _ 9w =
= 34w+ 1)+ (—2w) = 10w+ 3

As a check, we may substitute the function g into the function f, to get
y=32wl+w+4)—w?=>5w?+ 3w+ 12

which is now a function of w alone. The derivative dy/dw is then easily found to
be 10w + 3, the identical answer.

Example 2 If we have a utility function U = U(c, 5), where ¢ is the amount of
coffee consumed and s is the amount of sugar consumed, and another function
s = g(c) indicating the complementarity between these two goods, then we can
simply write . ___ ' '

[U=Ul¢c, g(c)] |
from which it follows that
| au U ou ., T
de  dc * Bg(C)g,(Q
i

A Variation on the Theme.

The situation is only slightly more complicated when we have

x, = g(w)

6100 st (200

The channel map will now appear as in Fig. 8.5. This time, the variable w can
affect y through three channels: (1) indirectly, via the function g and then f, (2)
again indirectly, via the function 4 and then f, and (3) directly via f. From our

previous experi;nce, these three effects are expected to be expressible, respec-
) dy dx dy dx d ; ..
tively, as 8—;), d_wl’ 9—;}2 d_wz’ and 8—»); This expectation is indeed correct, for

when we take the total differential of y, and then divide both sides by dw, we do
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Figure 8.5

get

b o_pda A dw
(8.11) dw =haw T g e
Oy dx, 9y dx; 9y
dx, dw dx, dw aw

which is comparable to (8.9) above.

Example 3 Let the production function be

Q= Q(K>L’t)

where, aside from the two inputs K and L, there is a third argument ¢, denoting
time. The presence of the ¢ argument indicates that the production function can
shift over time in reflection of technological changes. Thus this is a dynamic
rather than a static production function. Since capital and labor, t00, can change
over time, we may write

K=K(t) and L=L(1)

Then the rate of change of output with respect to time can be expressed, in line
with the total-derivative formula (8.11), as

dQ _ 9QdK 99 dL A 99
dt 90K di AL dt ot

or, in an alternative symbolism,

9 gpx(t) + 0uL(0) + €,

Another Variation on the Theme

When the ultimate source of change, w in (8.10), is replaced by two coexisting
sources, « and v, the situation becomes the following:

x, = g(u,v)

(812)  y=/f(x.xpuv) where)
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While the channel map will now contain more arrows, the principle of its
construction remains the same; we shall, therefore, leave it to you to draw. To
find the total derivative of y with respect to u (while v is held constant), we may
once again resort to taking the total differential of y, and then dividing through
by the differential du, with the result:

d _ dydx | 9y dx,  dydu  dydo
du  0x, du 0x, du du du  dv du

dy dx, dy dx; | dy do . ]
dx, du = dx, du = Ou o = 0 since vis held constant

In view of the fact that we are varying u while holding v constant (as a single
derivative cannot handle changes in u and v both), however, the above result must
be modified in two ways: (1) the derivatives dx,/du and dx,/du on the right
should be rewritten with the partial sign as dx,/du and dx,/du, which is in line
with the functions g and 4 in (8.12); and (2) the ratio dy/du on the left should
also be interpreted as a partial derivative, even though—being derived through
the process of total differentiation of y—it is actually in the nature of a total
derivative. For this reason, we shall refer to it by the explicit name of partial total
derivative, and denote it by §y/§u (with § rather than d), in order to distinguish
it from the simple partial derivative dy/du which, as the above result shows, is
but one of three component terms that add up to the partial total derivative.*
With these modifications, our result becomes

§v _ 9y 5x1+ dy ‘9xz+ﬁl o

B-13) = Gx 7u T 9, du T ou

which is comparable to (8.11). Note the appearance of the symbol dy/du on the
right, which necessitates the adoption of the new symbol §y/8§u on the left to
indicate the broader concept of a partial total derivative. In a perfectly analogous
manner, we can derive the other partial total derivative, § y/§v. Inasmuch as the
roles of u and v are symmetrical in (8.12), however, a simpler alternative is
available to us. All we have to do to obtain §y/8§v is to replace the symbol u in
(8.13) by the symbol v throughout.

The use of the new symbols §y/8u and §y/§v for the partial total deriva-
tives, if unconventional, serves the good purpose of avoiding confusion with the
simple partial derivatives dy/du and dy/dv that can arise from the function f
alone in (8.12). However, in the special case where the f function takes the form of
¥y = f(x,, x,) without the arguments u and v, the simple partial derivatives
dy/du and dy/dv are not defined. Hence, it may not be inappropriate in such a

* An alternative way of denoting this partial total derivative is:

dy dy
du v constant du do=0
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case to use the latter symbols for the partial total derivatives of y with respect to u
and v, since no confusion is likely to arise. Even in that event, though, the use of a
special symbol is advisable for the sake of greater clarity.

Some General Remarks

To conclude this section, we offer three general remarks regarding total derivative
and total differentiation:

1. In the cases we have discussed, the situation involves without exception a
variable that is functionally dependent on a second variable, which is in turn
dependent functionally on a third variable. As a consequence, the notion of a
chain inevitably enters the picture, as evidenced by the appearance of
a product (or products) of two derivative expressions as the component(s) of
a total derivative. For this reason, the total-derivative formulas in (8.9),
(8.11), and (8.13) can also be regarded as expressions of the chain rule, or the
composite-function rule—a more sophisticated version of the chain rule
introduced in Sec. 7.3.

2. The chain of derivatives does not have to be limited to only two “links” (two
derivatives being multiplied); the concept of total derivative should be
extendible to cases where there are three or more links in the composite
function.

3. In all cases discussed, total derivatives—including those which have been
called partial total derivatives—measure rates of change with respect to some
ultimate variables in the chain or, in other words, with respect to certain
variables which are in a sense exogenous and which are not expressed as
functions of some other variables. The essence of the total derivative and of
the process of total differentiation is to make due allowance for all the
channels, indirect as well as direct, through which the effects of a change in
an ultimate variable can possibly be carried to the particular dependent
variable under study. '

EXERCISE 84

1 Find the total derivative dz/dy, given:
(a) z=f(x,y)=2x+ xy — y?, where x = g(y) = 3y?
(b) z=6x>—3xy + 2y?, where x = 1/y
(¢) z=(x+y)}x—2y),wherex=2—Ty

2 Find the total derivative dz/dt, given:
(a) z=x>—8xy— y’,where x=3rand y=1-1¢
(b) z=3u+ vt,where u =2¢*andv =1+ 1
(¢) z=f(x,y,t),wherex=a+ btandy = c + dt
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3 Find the rate of change of output with respect to time, if the production function s
Q = A(t)K*L®, where A(7) is an increasing function of ¢, and K = K, + at, ané
L=1L,+ bt
4 Find the partial total derivatives §W/§u and §W /§uv if:

(a) W=ax?+ bxy + cu, where x = au + fv and y = yu

(b) W= f(x,, x,), where x, = 5u’ + 3v and x, = u — 40°
5 Draw a channel map appropriate to the case of (8.12).

6 Derive the expression for §y/§v formally from (8.12) by taking the total differential of y
and then dividing through by dv.

(8.5 DERIVATIVES OF IMPLICIT FUNCTIONS

The concept of total differentials can also enable us to find the derivatives of
so-called “implicit functions.”

Implicit Functions

A function Igiven in the form of y = f(x), say,

(B.14) [y f(x)=3xt

is called an explicit function, because the variable y is explicitly expressed as a
function of x. If this function is written alternatively in the equivalent form

(8.14) y—-3x*=0 __

however, we no longer have an explicit function. Rather, the function (8.14) is
then only implicitly defined by the equation (8.14’). When we are (only) given an
equation in the form of (8.14"), therefore, the function y = f(x) which it implies,
and whose specific form may not even be known to us, is referred to as an implicit
_function. -
An equation in the form of (8.14") can be denoted in general by F( y, x) = 0,
because its left side is a_function of the two variables y and x. Note that we are
using the capital letter F here to distinguish it from the function f; the function F,
representing the left-side expression in (8.14’), has two arguments, y and” x,
whereas the function f, representing the implicit function, has only one argument,
x. There may, of course, be more than two arguments in the F function. For
instance, we may encounter an equation F(y, x,,..., x,,) = 0. Such an equation
may also define an implicit function y = f(x,,..., x,,)-
The equivocal word “may” in the last sentence was used advise;ily. For,
whereas an explicit function, say, y = f(x), can always be transformed into an
equation F(y, x) = 0 by simply transposing the f(x) expression to the left side of
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the equals sign, the reverse transformation is not always possible. Indeed, in
certain cases, a given equation in the form of F(y, x) = 0 may not implicitly
define a function y = f(x). For instance, the equation x? + y* = 0 is satisfied
only at the point of origin (0,0), and hence yields no meaningful function to
speak of. As another example, the equation

(8.15) F(ﬁy,’x')y =”xz by -9 =00 o o All

implies not a function, but a relation, because (8.15) plots as a circle, as shown in
Fig. 8.6, so that no unique value of y corresponds to each value of x. Note,
however, that if we restrict y to nonnegative values, then we will have the upper
half of the circle only, and that does constitute a function, namely, y =
+ V9 — x2. Similarly, the lower half of the circle, with y values nonpositive,
constitutes another function, y = — V9 — x2. In contrast, neither the left half
nor the right half of the circle can qualify as a function.

In view of this uncertainty, it becomes of interest to ask whether there are
known general conditions under which we can be sure that a given equation in the
form of :

(8.16)  F(y,xy,..., x,)=0

(8.17) oy = f(Xysenns X))

The answer to this lies in the so-called “implicit-function theorem,” which states

does indeed define an implicit function

vy = /942

(upper half)

P ry?=9
(circle)

-3l 2 1o 3 J3 ¥
\ 4 /
\ /
\\ -2+ //y- Vo __£2
\\-._’/ (lower half)
-3

Figure 8.6
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Given (8.16), if (a) the function F has continuous partial derivatives
F,, F,..., F,, and if (b) at a point (), x,,..., X,,o) satisfying the equation
(8 16), F is nonzero, then there exists an m-dimensional neighborhood of
(X050 s mO) N, in which y is an implicitly defined function of the variables
Xpyeeus X, in the form of (8.17). This implicit function satisfies y, =
J(Xyg,- .-, X,0)- It also satisfies the equation (8.16) for every m-tuple (xy,...
x,,) in the neighborhood N—thereby giving (8.16) the status of an identity in
that neighborhood. Moreover, the implicit function f is continuous, and has
continuous partial derivatives f,,..., f, .

Let us apply this theorem to the equation of the circle, (8.15), which contains
only one x variable. First, we can duly verify that F, =2y and F, = 2x are
continuous, as required. Then we note that F, is nonzero except when y = 0, that
is, except at the leftmost point (— 3, 0) and the rightmost point (3, 0) on the circle.
Thus, around any point on the circle except (—3,0) and (3,0), we can construct a
neighborhood in which the equation (8.15) defines an implicit function y = f(x).
This is easily verifiable in Fig. 8.6, where it is indeed possible to draw, say, a
rectangle around any point on the circle—except (—3,0) and (3,0)—such that
the portion of the circle enclosed therein will constitute the graph of a function,
with a unique y value for each value of x in that rectangle.

Several things should be noted about the implicit-function theorem. First, the
conditions cited in the theorem are in the nature of sufficient (but not necessary)
conditions. This means that if we happen to find F, =0 at a point satisfying
(8.16), we cannot use the theorem to deny the ex1stence of an implicit function
around that point. For such a function may in fact exist (see Exercise 8.5- -4).*
Second, even if an implicit function f is assured to exist, the theorem gives no clue
as to the specific form the function f takes. Nor, for that matter, does it tell us the
exact size of the neighborhood N in which the implicit function is defined.
However, despite these limitations, this theorem is one of great importance. For
whenever the conditions of the theorem are satisfied, it now becomes meaningful
to talk about and make use of a function such as (8.17), even if our model may
contain an equation (8.16) which is difficult or impossible to solve explicitly for y
in terms of the x variables. Moreover, since the theorem also guarantees the
existence of the partial derivatives f,,..., f,, it is now also meaningful to talk
about these derivatives of the implicit function.

Derivatives of Implicit Functions

If the equation F(y, xy,..., x,,) = 0 can be solved for y, we can explicitly write
out the function y = f(x,,..., x,,), and find its derivatives by the methods

* On the other hand, if F = 0 in an entire neighborhood, then it can be concluded that no implicit
function is defined in that neighborhood. By the same token if F, = 0 identically, then no implicit
function exists anywhere.
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learned before. For instance, (8.15) can be solved to yield two separate functions
yr= +y9 — x? [upper half of circle]
y = —y9 - x? [lower half of circle]

and their derivatives can be found as follows:

(8.15)

dy* d _
== (0 =) =40 - x?) (- 2x)
- X - X
= = (y*+0)
Vo -xz '
(8.18) o *
b A (9-x)] = —49 - x) V(- 20)
X —X
= = — A#:O
e

But what if the given equation, F(y, X,,..., X,,) = 0, cannot be solved for y
explicitly? In this case, if under the terms of the implicit-function theorem an
implicit function is known to exist, we can still obtain the desired derivatives
without having to solve for y first. To do this, we make use of the so-called
*implicit-function rule”—a rule that can give us the derivatives of every implicit
function defined by the given equation. The development of this rule depends on
the following basic facts: (1) if two expressions are identically equal, their
respective total differentials must be equal;* (2) differentiation of an expression
that involves y, x,,..., x,, will yield an expression involving the differentials
dy, dx,,..., dx,; and (3) if we divide dy by dx,, and let all the other differentials
(dx,,..., dx,) be zero, the quotient can be interpreted as the partial derivative

* Take, for example, the identity

x2=ypr=(x+y)x—y)

This is an identity because the two sides are equal for any values of x and y that one may assign.
Taking the total differential of each side, we have

d(leftside) = 2xdx — 2y dy
d(rightside) = (x —p) d(x +y) + (x +y) d(x -y}
=(x—y)(dx +dy) + (x +y)(dx - dy)

=2xdx—2ydy

The two results are indeed equal. If two expressions are nor identically equal, but are equal only for
certain specific values of the variables, however, their total differentials will not be equal. The equation

xz—y2=x2 +y2-2
for instance, is valid only for y = + 1. The total differentials of the two sides are
d(left side) = 2xdx ~ 2y dy
d(right side) = 2xdx + 2y dy

which are not equal. Note, in particular, that they are not even equal at y = +1.
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dy/dx,; similar derivatives can be obtained if we divide dy by dx,, etc. Applying
these facts to the equation F(y, x,,..., x,,) = O—which, we recall, has the status
of an identity in the neighborhood N in which the implicit function is defined—we
can write dF = d0, or

F,dy + Fydx, + --- + F, dx, = 0

Suppose that only y and x, are allowed to vary (only dy and dx, are nor set equal
to zero). Then the above equauon reduces to F, dy + F,dx, = 0. Upon dividing
through by dx,, and solving for dy/dx,, we then get

@

dxl other variables constant

F,
X F,

By similar means, we can derive all the other partial derivatives of the implicit
function f. These may conveniently be summarized in a general rule—the

implicit-function rule—as follows: Given F(y, x,,..., x,)=0, if an implicit
function y = f(x,,..., x,,) exists, then the partial derivatives of f are

dy F .
(819) E——F (1—1,2,...,171)

i v
In the simple case where the given equation is F(y, x) = 0, the rule gives

, dy F,
(8.19’) o ?;

What this rule states is that, even if the specific form of the implicit function
is not known to us, we can nevertheless find its derivative(s) by taking the
negative of the ratio of a pair of partial derivatives of the F function which
appears in the given equation that defines the implicit function. Observe that F,
always appears in the denominator of the ratio. This being the case, it is not
admissible to have F, = 0. Since the implicit-function theorem specifies that
F, # 0 at the point around which the implicit function is defined, the problem of
a zero denominator is automatically taken care of in the relevant neighborhood of
that point.

Example 1  Find dy/dx for the implicit function defined by (8.14"). Since F( y, x)
takes the form of y — 3x4, we have, by (8.19"),

_=_£l_—ux=uﬁ ] —
dx (\ F.'v' 1

In this particular case, we can easily solve the given equation for y, to get
= 3x* Thus the correctness of the above derivative is easily verified.

Example 2 Find dy/dx for the implicit functions defined by the equation of the
circle (8.15). This time we have F(y, x) = x> + y* ~ 9; thus F, = 2y and F, = 2x.
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By (8.19"), the desired derivative is

& _ _x_ _x x
dx 2y y (y#0)

Earlier, it was asserted that the implicit-function rule gives us the derivative of
every implicit function defined by a given equation. Let us verify this with the two
functions in (8.15") and their derivatives in (8.18). If we substitute y* for y in the
implicit-function-rule result dy/dx = —x/y, we will indeed obtain the derivative
dy™ /dx as shown in (8.18); similarly, the substitution of y~ for y will yield the
other derivative in (8.18). Thus our earlier assertion is duly verified.

Example 3 Find dy/dx for any implicit function(s) that may be defined by the
equation F(y, x,w)=y3x? + w’ + yxw — 3 = 0. This equation is not easily
solved for y. But since F,, F,, and F,, are all obviously continuous, and since
F,=3 y?x? + xw is indeed nonzero at a point such as (1, 1, 1) which satisfies the
given equation, an implicit function y = f(x,w) assuredly exists around that
point at least. It is thus meaningful to talk about the derivative dy/dx. By (8 19),
moreover, we can immediately write
dy _ _E_ _ 2yxtow

Ix F 3p2x? + xw
At the point (1, 1, 1), this derivative has the value — 3.

Example 4 Assume that the equation F(Q, K, L) = 0 implicitly defines a pro-
duction function Q = f(K, L). Let us find a way of expressing the marginal
physical products MPP, and MPP, in relation to the function F. Since the
margmaﬁ)roducts are simply the partial derivatives dQ/dK and dQ/dL, we can
apply the implicit-function rule and write

Q- K _9Q__ 5K
MPP, = K-~ F, and  MPP, =3[ F,
Aside from these, we can obtain yet another partial derivative,
K __L
AL Fy

from the equation F(Q, K, L) = 0. What is the economic meaning of dK/dL?
The partial sign implies that the other variable, Q, is being held constant; it
follows that the changes in K and L described by this derivative are in the nature
of “compensatory” changes designed to keep the output Q constant at a specified
level. These are therefore the type of changes pertaining to movements along a
production isoquant. As a matter of fact, the derivative K/dL is the measure of
the slope of such an isoquant, which is negative in the normal case. The absolute

* The restriction y # 0 is of course perfectly consistent with our earlier discussion of the equation
(8.15) that follows the statement of the implicit-function theorem.
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value of dK/dL, on the other hand, is the measure of the marginal rate of
technical substitution between the two inputs.

Extension to the Simultaneous-Equation Case

The implicit-function theorem also comes in a more general and powerful version
that deals with the conditions under which a set of simultaneous equations

Fl(yl""’yn;xp---,xm) =0
(820) F2(,V|a---,y,,;x|,...,xm)=

......................

Fn(yla"‘7yy,; Xiseoos xm) =
will assuredly define a set of implicit functions*

o= x x,)
821) »=rx..x,)

Yo =M (Xpsens xy)
The generalized version of the theorem states that:

Given the equation system (8.20), if (@) the functions F',..., F" all have
continuous partial derivatives with respect to all the y and x variables, and if
(b) at a point (¥,g,-..5 V05 Xjgs-«-» X)) Satisfying (8.20), the following
Jacobian determinant is nonzero:

oFl aE' o
ayl ayZ ayn
IJI 8(Fl,---, F") ——an —-—an . an # O
= =| 3
a(yl’..‘,yn) y] ay2 ayn
JdF" aF" JF"
Ay, Iy ay,

then there exists an m-dimensional neighborhood of (x,y,..., x,,), N, in
which the variables y,,..., y, are functions of the variables x,,..., x,, in the
form of (8.21). These implicit functions satisfy

Yio =f1(x,0,..., me)

Yo =f"(x10,- s me)

* To view it another way, what these conditions serve to do is to assure us that the » equations in
(8.20) can in principle be solved for the n variables—y,,. .., y,—even if we may not be able to obtain
the solution (8.21) in an explicit form.
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They also satisfy (8.20) for every m-tuple (x,,..., x,,) in the neighborhood N
—thereby giving (8.20) the status of a set of identities as far as this

neighborhood is concerned. Moreover, the implicit functions f',..., f" are
continuous and have continuous partial derivatives with respect to all the x
variables. ‘

As in the single-equation case, it is possible to find the partial derivatives of
the implicit functions directly from the n equations in (8.20), without having to
solve them for the y variables. Taking advantage of the fact that, in the
neighborhood N, (8.20) has the status of identities, we can take the total
differential of each of these, and write dF/ =0 (j = 1,2,..., n). The result is a
set of equations involving the differentials dy,,. .., dy, and dx,,..., dx,,. Specifi-
cally, after transposing the dx, terms to the right of the equals signs, we have

aF! dF! OF!
dy, + dy, + <+ + d
dy & dy, 72 7 ay, I
' aF! aF!
= — (a—x]dx1 + .- +Fmdx’")
dF? 2 dF?
dy, + dy, + + —d
an Ot oy, Y 7,
(8.22)
N L TN
dx, i 9x,, Xm
aF" oF" aF"
dy, + dy, + + d
a | yl 3}’2 y2 ay" yn
dF” JdF" .
= —('—a‘;dxl + -+ 8xmdxm)

Since all the partial derivatives appearing in (8.22) will take specific (constant)
values when evaluated at the point ( ¥,g,- .-, ¥,0; X10s- - - » Xmo)— the point around
which the implicit functions (8.21) are defined—we have here a system of »n linear
equations, in which the differentials dy; (considered to be endogenous) are
expressed in terms of the differentials dx, (considered to be exogenous).
Now, suppose that we let all the differentials dx; be zero except dx, (that is, only
x, is allowed to vary); then all the terms involving dx,,..., dx,, will drop out of
the system. Suppose, further, that we divide each remaining term by dx,; then
there will emerge the expressions dy, /dx,,. .., dv,/dx,. These, however, should be
interpreted as partial derivatives of (8.21) because all the x variables have been
held constant except x,. Thus, by taking the steps just described, we are led to the
desired partial derivatives of the implicit functions. Note that, in fact, we can
obtain in one fell swoop a total of n of these (here, they are dy,/dx,,..., dy,/0x)).
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What results from the above-cited steps is the following linear system:

aF! ( dy, + JF' { dy, T oF' (dy,\ _ _aF'
dy, \ dx, ay, \ dx, dy, \ dx, | dx,
dF* [ dy, dF*( dy, aF*(dy,\ = 9F?
(8.23) ay, (axl ) + dy, \ dx, ot ay, \ dx, T dx,
oF" [ dy, +8F" ay, .“+8F” ay, _ _OF"
dy, \ 9x, dy, \ dx, ay, \ax, | ax

where, for visual clarity, we have placed parentheses around those derivatives for
which we are seeking a solution, to distinguish them from the other derivatives
that are now considered to be constants. In matrix notation, this system can be
written as

ort ar' | oF! ) [ _or!
ay 3y, ay, 9x, 9x,
(7S] N ) i %) _9F?
(8.23) in  n 3y, Ix; ) |=| ox,
gF"  9F"  3F" || ay, _9F"
ay, 9y, ay, il (a_xl) ] | 9x) J

Since the determinant of the coefficient matrix in (8.23") is nothing but the
particular Jacobian determinant |J| which is known to be nonzero under condi-
tions of the implicit-function theorem, and since the system must be nonhomoge-
neous (why?), there should be a unique solution to (8.23’). By Cramer’s rule, this
solution may be expressed analytically as follows:

dy. J,
(8.24) (a—f)=% (j=12,...,n) [see(5.15)]

By a suitable adaptation of this procedure, the partial derivatives of the implicit
functions with respect to the other variables, x,,..., x,,, can also be obtained.

Similar to the implicit-function rule (8.19) for the single-equation case, the
procedure just described calls only for the use of the partial derivatives of the F
functions—evaluated at the point (yg,..., ¥,0; X105 - -» Xmo)—in the calculation
of the partial derivatives of the implicit functions f',..., f*. Thus the matrix
equation (8.23) and its analytical solution (8.24) are in effect a statement of the
simultaneous-equation version of the implicit-function rule.

Note that the requirement |J| # 0 rules out a zero denominator in (8.24), just
as the requirement F, # 0 did in the implicit-function rule (8.19) and (8.19").
Also, the role played by the condition |J| # 0 in guaranteeing a unique (albeit
implicit) solution (8.21) to the general (possibly nonlinear) system (8.20) is very
similar to the role of the nonsingularity condition |A4| # 0 in a linear system
Ax =d. " o

1
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Example 5 Let the national-income model (7.17) be rewritten in the form

(8.25) C-a-B(Y-T)=0

T—-y—-6Y=0
If we take the endogenous variables (Y, C,T) to be (y,, ¥, y3), and take the
exogenous variables and parameters (I, Gy, a, B,v,8) to be (x, xp,..., X¢),

then the left-side expression in each equation can be regarded as a specific F
function, in the form of F/(Y,C,T; I, Gy, a, B, v, 8). Thus (8.25) is a specific
case of (8.20), with n = 3 and m = 6. Since the functions F!, F2, and F?* do have
continuous partial derivatives, and since the relevant Jacobian determinant (the
one involving only the endogenous variables),

dF' aF' 9F!
Yy ac  aT , , 0
dF? 9F* 9F? -

(8.26) |J| = =|—-8 1 Bl=1-B8+Bd
Y 9C  aT s 0 1 ‘
dF> 9F® 4GF?
ay ac T

is always nonzero (both 8 and 8 being restricted to be positive fractions), we can
take Y, C and T to be implicit functions of (1, Gy, a, B, ¥, 8) at and around any
point that satisfies (8.25). But a point that satisfies (8.25) would be an equilibrium
solution, relating to Y, C and T. Hence, what the implicit-function theorem tells
us is that we are justified in writing

Y=f'(1,Gy,a B,7,8)
6=f2(1()a G(),a, B7 Y, 6)
T=f3(10, G()a a, B’ 7’6)

indicating that the equilibrium values of the endogenous variables are implicit
functions of the exogenous variables and the parameters.

The partial derivatives of the implicit functions, such as aY /a1, and 3Y /3G,
are in the nature of comparative-static derivatives. To find these, we need only the
partial derivatives of the F functions, evaluated at the equilibrium state of the
model. Moreover, since n = 3, three of these can be found in one operation.
Suppose we now hold all exogenous variables and parameters fixed except Gj.
Then, by adapting the result in (8.23"), we may write the equation

1 -1 01| oaY/aG, 1
-8 1 Bl aCsaG,| =10
-8 0 1 || 9T/0G, 0

from which three comparative-static derivatives (all with respect to G,) can be
calculated. The first one, representing the government-expenditure multiplier, will
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for instance come out to be

1 -1 0
0 1 B
ay |0 0 1 1
3G, ] - 1-B+pB8 [by (8.26)]

This is, of course, nothing but the result obtained earlier in (7.19). Note, however.
that in the present approach we have worked only with implicit functions, and
have completely bypassed the step of solving the system (8.25) explicitly for Y. C.
and 7. It is this particular feature of the method that will now enable us to tackle
the comparative statics of general-function models which, by their very nature.
can yield no explicit solution.

EXERCISE 8.5

1 Assuming that the equation F(U, x,, x,,..., x,) = 0 implicitly defines a utility function
U=f(X), X3,-.-5 X,)

(@) Find the expressions for dU/3x,, dU/3x,, dx3/dx,, and dx,/0x,,.

(b) Interpret their respective economic meanings.

2 Given the equation I;} ysx) = 0 shown below, is an implicit function y = f(x) defined
around the point (y = 3 x =N

(a) x3 -—2xy+3xy -22=0

(b) 2x%2 + dxy —y* + 67 =10
If your answer is affirmative, find dy/dx by the implicit-function rule, and evaluate it at
the said point.

3 Givenx? + 3xy + 2yz + y? + 2> — 11 = 0, is an implicit function z = f(x, y) defined
around the point (x = 1,y = 2,z = 0)? If so, find dz/dx and 3z/dy by the implicit-func-
tion rule, and evaluate them at that point.

4 By considering the equation F(y, x) = (x — y)> =0 in a neighborhood around the

point of origin, prove that the conditions cited in the 1mphc1t function theorem are not in
the nature of necessary conditions.

5 If the equation F(x, y, z) = 0 implicitly defines each of the three variables as a function
of the other two variables, and if all the derivatives in question exist, find the value of
Gz axdy |

Adx dy 9z -

6 Justify the assertion in the text that the equation system (8.23') must be nonhomoge-
neous.

7 From the national-income model (8.25), find the nonincome-tax multiplier and the
income-tax-rate multiplier by the implicit-function rule. Check your results against (7.20)
and (7.21).
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8.6 COMPARATIVE STATICS OF GENERAL-FUNCTION
MODELS

When we first considered the problem of comparative-static analysis in Chap. 7,
we dealt with the case where the equilibrium values of the endogenous variables
of the model are expressible explicitly in terms of the exogenous variables and
parameters. There, the technique of simple partial differentiation was all we
needed. When a model contains functions expressed in the general form, however,
that technique becomes inapplicable because of the unavailability of explicit
solutions. Instead, a new technique must be employed that makes use of such
concepts as total differentials, total derivatives, as well as the implicit-function
theorem and the implicit-function rule. We shall illustrate this first with a market
model, and then move on to a national-income model.

Market Model

Consider a single-commodity market, where the quantity demanded Q, is a
function not only of price P but also of an exogenously determined income ¥,
The quantity supplied Q,, on the other hand, is a function of price alone. If these
functions are not given in specific forms, our model may be written generally as
follows:

Qd = Qs
(827) Q,=D(P,Y,) (dD/dP <0;3D/dY,> 0)
0, = S(P) (dS/dP > 0)

Both the D and S functions are assumed to possess continuous derivatives or,
in other words, to have smooth graphs. Moreover, in order to ensure economic
relevance, we have imposed definite restrictions on the signs of these derivatives.
By the restriction dS/dP > 0, the supply function is stipulated to be monotoni-
cally increasing, although it is permitted to be either linear or nonlinear. Simi-
larly, by the restrictions on the two partial derivatives of the demand function, we
indicate that it is a decreasing function of price but an increasing function of
income. These restrictions serve to confine our analysis to the “normal” case we
expect to encounter,

In drawing the usual type of two-dimensional demand curve, the income level
is assumed to be held fixed. When income changes, it will upset a given
equilibrium by causing a shift of the demand curve. Similarly, in (8.27), ¥, can
cause a disequilibrating change through the demand function. Here, Y; is the only
exogenous variable or parameter; thus the comparative-static analysis of this
model will be concerned exclusively with how a change in Y, will affect the
equilibrium position of the model.

The equilibrium position of the market is defined by the equilibrium condi-
tion Q, = Q,, which, upon substitution and rearrangement, can be expressed by

(828) D(P,Y,) - S(P)=0
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Even though this equation cannot be solved explicitly for the equilibrium price P.
we shall assume that there does exist a static equilibrium—for otherwise there
would be no point in even raising the question of comparative statics. From our
experience with specific-function models, we have learned to expect P to be a
function of the exogenous variable ¥

(8.29) P=P(Y,)

But now we can provide a rigorous foundation for this expectation by appealing
to the implicit-function theorem. Inasmuch as (8.28) is in the form of F(P, ¥;) = 0.
the satisfaction of the conditions of the implicit-function theorem will guarantee
that every value of ¥, will yield a unique value of P in the neighborhood of a
point satisfying (8.28), that is, in the neighborhood of an (initial or “old”)
equilibrium solution. In that case, we can indeed write the implicit function
P = P(Y,) and discuss its derivative, dP/dY,—the very comparative-static de-
rivative we desire—which is known to exist. Let us, therefore, check those
conditions. First, the function F(P, Y,) indeed possesses continuous derivatives;
this is because, by assumption, its two additive components D( P, Y;) and S(P)
have continuous derivatives. Second, the partial derivative of F with respect to P.
namely, F, = dD/dP — dS/dP, is negative, and hence nonzero, no matter where
it is evaluated. Thus the implicit-function theorem applies, and (8.29) is indeed
legitimate.

According to the same theorem, the equilibrium condition (8.28) can now be
taken to be an identity in some neighborhood of the equilibrium solution.
Consequently, we may write the equilibrium identity

(8.30) D(P,Y,)-S(P)=0

It then requires only a straight application of the implicit-function rule to produce
the comparative-static derivative, dP/d Y,, which, for visual clarity, we shall from
here on enclose in parentheses to distinguish it from the regular derivative
expressions that merely constitute part of the model specification. The result is
dpP
(8.31) ( dYO)
In this result, the expression 9D /3P refers to the derivative 3D /3P evaluated at
the initial equilibrium, i.e., at P = P; a similar interpretation attaches to dS /dP.
In fact, 0D /3Y, must be evaluated at the equilibrium point as well. By virtue of
the sign specifications in (8.27), (dP/dY,) is invariably positive. Thus our
qualitative conclusion is that an increase (decrease) in the income level will always
result in an increase (decrease) in the equilibrium price. If the values which the
derivatives of the demand and supply functions take at the initial equilibrium are
known, (8.31) will, of course, yield a quantitative conclusion also.
The above discussion is concerned with the effect of a change in ¥, on P. Is it
possible also to find out the effect on the equilibrium quantity Q (= @, = Q,)?
The answer is yes. Since, in the equilibrium state, we have Q = S(P), and since

__9F/3Y, _ aD/dv,

dF/oP aD/9P —dS/dP
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P = P(Y,), we may apply the chain rule to get the derivative

i\ _ds(dF s
(8.32) (dYO) = ( dYO) >0 [smce T > 0]

Thus the equilibrium quantity is also positively related to Y in this model. Again,
(8.32) can supply a quantitative conclusion if the values which the various
derivatives take at the equilibrium are known.

The results in (8.31) and (8.32), which exhaust the comparative-static contents
of the model (since the latter contains only one exogenous and two endogenous
variables), are not surprising. In fact, they convey no more than the proposition
that an upward shift of the demand curve will result in a higher equilibrium price
as well as a higher equilibrium quantity. This same proposition, it may seem, -
could have been arrived at in a flash from a simple graphic analysis! This sounds
plausible, but one should not lose sight of the far, far more general character of
the analytical procedure we have used here. The graphic analysis, let us reiterate,
is by its very nature limited to a specific set of curves (the geometric counterpart
of a specific set of functions); its conclusions are therefore, strictly speaking,
relevant and applicable to only that set of curves. In sharp contrast, the formu-
lation in (8.27), simplified as it is, covers the entire set of possible combinations of
negatively sloped demand curves and positively sloped supply curves. Thus it is
vastly more general. Also, the analytical procedure used here can handle many
problems of greater complexity that would prove to be beyond the capabilities of
the graphic approach. o

Simultaneous-Equation Approach

The above analysis of model (8.27) was carried out on the basis of a single
equation, namely, (8.30). Since only one endogenous variable can fruitfully be
incorporated into one equation, the inclusion of P means the exclusion of Q.Asa
result, we were compelled to find (dP/dY,) first and then to infer (dQ/dY,) in a
subsequent step. Now we shall show how P and Q can be studied simultaneously.
As there are two endogenous variables, we shall accordingly set up a two-equation
system. First, letting Q = Q, = Q, in (8.27) and rearranging, we can express our
market model as

F'(P,Q;Y,)=D(P,Y,)—0=0
(8.33) (P,Q;Y,) =D(P.Y,) - Q
F}(P,0;Y)=S(P)-0Q=0

which is in the form of (8.20), with n = 2 and m = 1. It becomes of interest, once
again, to check the conditions of the implicit-function theorem. First, since the
demand and supply functions are both assumed to possess continuous derivatives,
so must the functions F' and F2. Second, the endogenous-variable Jacobian (the
one involving P and Q) indeed turns out to be nonzero, regardless of where it is
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evaluated, because

GF'BF'| | 4D

apP Q 27 1 _dS D

gF?  QF? ds ~dP 9P
_ e 1

aP aQ dp

(834) | = > 0

Hence, if an equilibrium solution (P, Q) exists (as we must assume in order to
make it meaningful to talk about comparative statics), the implicit-functior.
theorem tells us that we can write the implicit functions

(835) P=P(Y,) and Q=0(Y,)

even though we cannot solve for P and Q explicitly. These functions are known to
have continuous derivatives. Moreover, (8.33) will have the status of a pair of
identities in some neighborhood of the equilibrium state, so that we may also
write

D(P,Y,)-Q0=0
(8.36) _ _
S(P)-Q=0
From these, (dP/dY;) and (dQ/dY,) can be found simultaneously.
These two derivatives have as their ingredients the differentials dP, dQ, and
dY,. To bring these differential expressions into the picture, we differentiate each

identity in (8.36) in turn. The result, upon rearrangement, is a linear system in dP
and dQ:

a - aD
ﬁdP —dQ = _B_YOdYO
as - —

—dP —-dQ =0

T =0

This system is linear because dP and dQ (the variables) both appear in the first
degree, and the coefficient derivatives (all to be evaluated at the initial equi-
librium) and dY, (an arbitrary, nonzero change in the exogenous variable) all
represent specific constants. Upon dividing through by dY,, and interpreting the
quotient of two differentials as a derivative, we have the matrix equation*

| (eE _90D
oP ay, 3%,
ds o\ |

L || [ 0
dP ( dy, )

* Without going through the steps of total differentiation and division by d¥;, the same matrix
equation can be obtained from an adaptation of the implicit-function rule (8.23").
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By Cramer’s rule, and using (8.34), we then find the solution to be

aD
CaY, 4D
AN I |
(dYo)_ V1 Y
(8.37) ap oD
A
Sy 45 9D
a0 _ dp B dp dY,
(dYO) - 1/ M

where all the derivatives of the demand and supply functions (including those
appearing in the Jacobian) are to be evaluated at the initial equilibrium. You can
check that the results just obtained are identical with those obtained earlier in
(8.31) and (8.32), by means of the single-equation approach.

Use of Total Derivatives

Both the single-equation and the simultaneous-equation approaches illustrated
above have one feature in common: we take the total differentials of both sides of
an equilibrium identity and then equate the two results. Instead of taking the total
differentials, however, it is possible to take, and equate, the total derivatives of the
two sides of the equilibrium identity with respect to a particular exogenous
variable or parameter.

In the single-equation approach, for instance, the equilibrium identity is

D(P,Y)) - S(P)=0  [from (8.30)]
where P = P(Y,) [from (8.29)]

Taking the total derivative of the equilibrium identity with respect to ¥,—which
takes into account the indirect as well as the direct effects of a change in ¥,—will
therefore give us the equation

op(dP\ oD _ dS(dP
9P \ dY, 3Y, 4P \ v,

indirect effect direct effect indirect effect
of Yoon D of Yoon D of Yoyon§

When this is solved for (dP/dY,), the result is identical with the one in (8.31).
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Figure 8.7

In the simultaneous-equation approach, on the other hand, there is a pair of
equilibrium identities:
D(F’Yo)_QEO .‘
S(P)-Q0=0 [from (8.36)]
where P=P(Y,) Q=0(Y,) [from(8.35)]

The various effects of ¥, are now harder to keep track of, but with the help of the
channel map in Fig. 8.7, the pattern should become clear. This channel map tells
us, for instance, that when differentiating the D function with respect to Y, we
must allow for the indirect effect of Y, upon D through P, as well as the direct
effect of Y| (curved arrow). In differentiating the S function with respect to Y, on
the other hand, there is only the indirect effect (through P) to be taken into
account. Thus the result of totally differentiating the two identities with respect to
Y, 1s, upon rearrangement, the following pair of equations:
aD(dﬁ) (Q)_ aD

ap \ dy, dy,| ay,
ds(dp)_(do\ _,
dP \ dY, dy,

These are, of course, identical with the equations obtained by the total-differential
method, and they lead again to the comparative-static derivatives in (8.37).

National-Income Model

The procedure just illustrated will now be applied to a national-income model,
also to be formulated in terms of general functions. This time, for the sake of
variety, let us abstract from government expenditures and taxes and, instead, add
foreign trade relations into the model. Furthermore, let us include the money
market along with the market for goods.

More specifically, the goods market will be assumed to be characterized by the
following four functions:

1. Investment expenditure / is a decreasing function of interest rate i:
I=1(i) (I'<0)

where I’ = dI /di is the derivative of the investment function.
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2. Saving S is an increasing function of national income Y as well as interest
rate i, with the marginal propensity to save being a positive fraction:

S=5(Y,i) (0<S,<1; §>0)

where S, = dS/0Y (marginal propensity to save) and S, = dS/di are the
partial derivatives.

3. The expenditure on imports M is a function of national income, with the
marginal propensity to import being another positive fraction:

M= M(Y) 0<M <1)
4. The level of exports X is exogenously determined:
X=X,

In the money market, we have two more functions as follows:

5. The quantity demanded of money M, is an increasing function of national
income (transactions demand) but a decreasing function of interest rate
(speculative demand ):

M,=L(Y,i) (Ly>0; L ,<0)

The function symbol L is employed here because the money demand
function is customarily referred to as the liquidity function. The symbol M,
representing money demand, should be carefully distinguished from the
symbol M, for imports.

6. The money supply is exogenously determined, as a matter of monetary policy:

Ms = MsO

Note that I, S, M, and X, representing flow concepts, are all measured per period
of time, as is Y. On the other hand, M, and M, are stock concepts, and they
indicate quantities in existence at some specific point of time. Whether stock or
flow, all the above functions are assumed to have continuous derivatives.

The attainment of equilibrium in this model requires the simultaneous
satisfaction of the equilibrium condition of the goods market (injections =
leakages, or I + X = S + M) as well as that of the money market (demand for
money = supply of money, or M, = M_). On the basis of the general functions
cited above, the equilibrium state may be described by the following pair of
conditions: o
(8.38) I(i)+ X, = S(Y,i) + M(Y) , (

L(Y, l) = MsO

Since the symbols I, S, M, and L can be viewed as function symbols, we have in
effect only two endogenous variables, income Y and interest rate i, plus two
exogenous variables, exports X, (based on foreign decisions) and M, (determined
by the monetary authorities). Thus (8.38) can be expressed in the form of (8.20),
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withn =m = 2.
FUY,i; Xy, Myg)=1(i)+ Xy — S(Y,i)—M(Y)=0
F2(Y,i; Xy, Mo)=L(Y,i)=M,=0

This system satisfies the conditions of the implicit-function theorem, because (1)
F' and F? have continuous derivatives (since all the component functions therein
have continuous derivatives by assumption) and (2) the endogenous-variable
Jacobian is nonzero when evaluated at the initial equilibrium (which we assume to
exist) as well as elsewhere:

AF' /Y 9F'/di

dF?/9Y AF?/di
=—L(Sy+M)-L,(I'-8)>0

Hence the implicit functions

(840) Y=Y(X,,M,) and i=1i(X,, M,)

can be written, even though we are unable to solve for ¥ and i explicitly.
Furthermore, we may take (8.38") to be a pair of identities in some neighborhood
of the equilibrium, so that we may also write '

I(i)+ Xy~ S(Y,i)-M(Y)=0
L(?s i-) _MsO =

From these equilibrium identities, a total of four comparative-static derivatives
will emerge, two relating to X, and the other two relating to M,,. But we shall
derive here only the former two, leaving the other two to be derived by you as an
exercise.

Accordingly, after taking the total differential of each identity in (8.41), we
set dM, equal to zero, so that X, will be the sole disequilibrating factor, Next,
dividing through by dX,, and interpreting each quotient of two differentials as a
partial derivative (partial, because the other exogenous variable M, is being held
constant), we arrive at the matrix equation

(8.38)

—-Sy-M I-S5,
Ly L

(8.39)  |J]|

(8.41)

-Sy—-M I'-~S||(dY/dX -1

(8_42) Y 1 ( ._/ 0) —
Ly L, (9i/ax,) 0
The solution is, by Cramer’s rule and using (8.39),
-1 I'-3§;
( o7 ) 0 L -1

9 Xy 1 /1

(8.43) —Sy-M -1
| ( ai ) _ Ly 0 L,

Xy /1 1
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where all the derivatives on the right side of the equals sign (including those
appearing in the Jacobian) are to be evaluated at the initial equilibrium, that is, at
Y = Y and i = i. When the specific values of these derivatives are known, (8.43)
yields quantitative conclusions regarding the effect of a change in exports.
Without the knowledge of those values, however, we must settle for the qualitative
conclusions that both ¥ and i will increase with exports in the present model.
As in the market model, instead of using total differentials, the option is open
to us to take the rotal derivatives of the equilibrium identities in (8.41) with
respect to the particular exogenous variable under study, X,. In doing so, we
must, of course, bear in mind the implicit solutions (8.40). The various ways in
which X, can affect the different components of the model—as given in (8.41) and
(8.40)—are summarized in the channel map in Fig. 8.8. It should be noted, in
particular, that in differentiating the saving function or the liquidity function with
respect to X, we must allow for two indirect effects—one through i and the other
through Y. With the help of this channel map, we can differentiate the equi-
librium identities totally with respect to X, to get the following pair of equations:

i Y ar e

amg) - slae) st -l -
aY o

bla |+ {ax) -

Since the other exogenous variable, M, is being held constant, the left side of
each of these equations represents the partial total derivative of the left-side
expression in the corresponding equilibrium identity. However, the comparative-
static derivatives (3Y/ dX,) and (3i_/8X0), being derivatives of the implicit
functions (8.40), are just plain partial derivatives. When properly condensed, these

b investment
function

mnction'
Figure 8.8
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two equations reduce exactly to (8.42). So the total-differential method and ux
total-derivative method yield identical results.

You will observe that (3Y/3X,) is in the nature of an export multiplic-
Since the export-induced increase in the equilibrium income will, by virtue of the
import function M = M(Y'), cause imports to rise as well, we can again apply the
chain rule to find the (auxiliary) comparative-static derivative:

?E =M oY = —M'L,
X, aX, [/

The sign of this derivative is positive because M’ > 0. By a perfectly analogous
procedure, we can also find the other auxiliary comparative-static derivatives.
such as (d1/9X,) and (dS/3X,).

Summary of the Procedure

In the analysis of the general-function market model and national-income model.
it is not possible to obtain explicit solution values of the endogenous variables.
Instead, we rely on the implicit-function theorem to enable us to write the implicit
solutions such as

P=P(Yy) and i=1i(X,, M,)

Our subsequent search for the comparative-static derivatives such as (dﬁ/dYO)
and (di/dX,) then rests for its meaningfulness upon the known fact—thanks
again to the implicit-function theorem—that the P and / functions do possess
continuous derivatives.

To facilitate the application of that theorem, we make it a standard practice
to write the equilibrium condition(s) of the model in the form of (8.16) or (8.20).
We then check whether (1) the F function(s) have continuous derivatives and (2)
the value of F, or the endogenous-variable Jacobian determinant (as the case may
be) is nonzero at the initial equilibrium of the model. However, as long as the
individual functions in the model have continuous derivatives—an assumption
which is often adopted as a matter of course in general-function models—the first
condition above is automatically satisfied. As a practical matter, therefore, it is
needed only to check the value of F, or the endogenous-variable Jacobian. And if
it is nonzero at the equilibrium, we may proceed at once to the task of finding the
comparative-static derivatives. :

To that end, the implicit-function rule is of help. For the tingle-equation case,
simply set the endogenous variables equal to its equilibrium value (e.g., set
P = P)in the equilibrium condition, and then apply the rule as stated in (8.19) to
the resulting equilibrium identity. For the simultaneous-equation case, we must
also first set all endogenous variables equal to their respective equilibrium values
in the equilibrium conditions. Then we can either apply the implicit-function rule
as illustrated in (8.24) to the resulting equilibrium identities, or carry out the
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several steps outlined below:

1. Take the total differential of each equilibrium identity in turn.

2. Select one, and only one, exogenous variable (say, X)) as the sole disequi-
librating factor, and set the differentials of all other exogenous variables equal
to zero. Then divide all remaining terms in each identity by d4X,, and
interpret each quotient of two differentials as a comparative-static derivative
—a partial one if the model contains two or more exogenous variables. *

3. Solve the resulting equation system for the comparative-static derivatives
appearing therein, and interpret their economic implications. In this step, if
Cramer’s rule is used, we can take advantage of the fact that, earlier, in
checking the condition |J| + 0, we have in fact already calculated the
determinant of the coefficient matrix of the equation system now being
solved.

4. For the analysis of another disequilibrating factor (another exogenous vari-
able), if any, repeat steps 2 and 3. Although a different group of
comparative-static derivatives will emerge in the new equation system, the
coefficient matrix will be the same as before, and thus the known value of |J|
can again be put to use.

Given a model with m exogenous variables, it will take exactly m applications of
the above-described procedure to catch all the comparative-static derivatives there
are.

EXERCISE 8.6

1 Let the equilibrium condition for national income be
S(YY+T(Y)Y=I(Y)+ G, (8,7, '>0;, +T>1T)

where S, Y, T, I, and G stand for saving, national income, taxes, investment, and
government expenditure, respectively. All derivatives are continuous.

(a) Interpret the economic meanings of the derivatives S, 7", and I".

(b) Check whether the conditions of the implicit-function theorem are satisfied. If so,
write the equilibrium identity.

(¢) Find (dY/dG,) and discuss its economic implications.

2 Let the demand and supply functions for a commodity be
=D(P,Y,) (D,<0; Dy >0)
Q,=S(P.T)) (5,>0; 5,,<0)
* Instead of taking steps 1 and 2, we may equivalently resort to the total-derivative method by

differentiating (both sides of) each equilibrium identity totally with respect to the selected exogenous
variable. In so doing, a channel map will prove to be of help.
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where Y, is income and 7; is the tax on the commodity. All derivatives are continuous.

(a) Write the equilibrium condition in a single equation.

(b) Check whether the implicit-function theorem is applicable. If so, write the equ-
librium identity.

(¢) Find (dP/3Y,) and (8 P/3T,), and discuss their economic implications.

(d) Using a procedure similar to (8.32), find (3Q/3Y,) from the supply function and
(3Q/0T,) from the demand function. (Why not use the demand function for the former,
and the supply function for the latter?)

3 Solve the preceding problem by the simultancous-equation approach.

4 Let the demand and supply functions for a commodity be

JaD aD
Q,=D(P,1,) (313<0, 3—t0>0 and Qs =

where ¢, is consumers’ taste for the commodity, and where both partial derivatives are
continuous.

(a) Write the equilibrium condition as a single equation,

(b) Is the implicit-function theorem applicable?

(¢) How would the equilibrium price vary with consumers’ taste?

5 From the national-income model in (8.38), find (3Y/dM,,) and (9i/dM,,), and
interpret their economic meanings. Use both the total-differential method and the total-
derivative method, and verify that the end results are the same.

6 Consider the following national-income model (with taxes ignored):
Y-C(Y)-I1(i))=Gy=0 (0<C' <1;I'<0)
kY + L(i)—-M,=0 (k= positive constant; L’ < 0)

(a) Is the first equation in the nature of an equilibrium condition?

(b) What is the total quantity demanded for money in this model?

(¢) Analyze the comparative statics of the model when money supply changes (mone-
tary policy) and when government expenditure changes (fiscal policy).

8.7 LIMITATIONS OF COMPARATIVE STATICS

Comparative statics is a useful area of study, because in economics we are often
interested in finding out how a disequilibrating change in a parameter will affect
the equilibrium state of a model. It is important to realize, however, that by its
very nature comparative statics ignores the process of adjustment from the old
equilibrium to the new and also neglects the time element involved in that
adjustment process. As a consequence, it must of necessity also disregard the
possibility that, because of the inherent instability of the model, the new equi-
librium may not be attainable ever. The study of the process of adjustment per se
belongs to the field of economic dynamics. When we come to that, particular
attention will be directed toward the manner in which a variable will change over
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time, and explicit consideration will be given to the question of stability of
equilibrium.

The important topic of dynamics, however, must wait its turn. Meanwhile, in
the next part of the book, we shall undertake to study the problem of opsimiza-
tion, an exceedingly important special variety of equilibrium analysis with atten-
dant comparative-static implications (and complications) of its own.
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CHAPTER

NINE

OPTIMIZATION: A SPECIAL VARIETY
OF EQUILIBRIUM ANALYSIS

When we first introduced the term equilibrium in Chap. 3, we made a broad
distinction between goal and nongoal equilibrium. In the latter type, exemplified
by our study of market and national-income models, the interplay of certain
opposing forces in the model—e.g., the forces of demand and supply in the
market models and the forces of leakages and injections in the income
models—dictates an equilibrium state, if any, in which these opposing forces are
just balanced against each other, thus obviating any further tendency to change.
The attainment of this type of equilibrium is the outcome of the impersonal
balancing of these forces and does not require the conscious effort on the part of
anyone to accomplish a specified goal. True, the consuming households behind
the forces of demand and the firms behind the forces of supply are each striving
for an optimal position under the given circumstances, but as far as the market
itself is concerned. no one is aiming at any particular equilibrium price or
equilibrium quantity (unless, of course, the government happens to be trying to
peg the price). Similarly, in national-income determination, the impersonal bal-
ancing of leakages and injections is what brings about an equilibrium state, and
no conscious effort at reaching any particular goal (such as an attempt to alter an
undesirable income level by means of monetary or fiscal policies) needs to be
involved at all.

231
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In the present part of the book, however, our attention will be turned to the
study of goal equilibrium. in which the equilibrium state is defined as the optimum
position for a given economic unit (a household. a business firm, or even an entire
economy) and in which the said economic unit will be deliberately striving for
attainment of that equilibrium. As a result, in this context—but only in this
context—our earlier warning that equilibrium does not imply desirability will
become irrelevant and immaterial. In this part of the book, our primary focus will
be on the classical techniques for locating optimum positions—those using
differential calculus. More modern developments, known as mathematical pro-
gramming, will be discussed later.

9.1 OPTIMUM VALUES AND EXTREME VALUES

Economics is by and large a science of choice. When an economic project is to be
carried out, such as the production of a specified level of output, there are
normally a number of alternative ways of accomplishing it. One (or more) of
these alternatives will, however, be more desirable than others from the stand-
point of some criterion, and it is the essence of the optimization problem to
choose, on the basis of that specified criterion, the best alternative available.

The most common criterion of choice among alternatives in economics is the
goal of maximizing something (such as maximizing a firm’s profit, a consumer’s
utility, or the rate of growth of a firm or of a country’s economy) or of minimizing
something (such as minimizing the cost of producing a given output). Economi-
cally, we may categorize such maximization and minimization problems under the
general heading of optimization, meaning * the quest for the best.” From a purely
mathematical point of view, however, the terms “maximum” and “minimum” do
not carry with them any connotation of optimality. Therefore, the collective term
for maximum and minimum, as mathematical concepts, is the more matter-of-fact
designation extremum, meaning an extreme value.

In formulating an optimization problem, the first order of business is to
delineate an objective function in which the dependent variable represents the
object of maximization or minimization and in which the set of independent
variables indicates the objects whose magnitudes the economic unit in question
can pick and choose, with a view to optimizing, We shall therefore refer to the
independent variables as choice variables.* The essence of the optimization
process 1s simply to find the set of values of the choice variables that will yield the
desired extremum of the objective function.

For example, a business firm may seek to maximize profit =, that is, to
maximize the difference between total revenue R and total cost C. Since, within
the framework of a given state of technology and a given market demand for the
firm’s product, R and C are both functions of the output level Q, it follows that 7

* They can also be called decision variables, or policy variables.
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is also expressible as a function of Q:

m(Q) = R(Q) - C(Q)
This equation constitutes the relevant objective function, with 7 as the object of
maximization and Q as the (only) choice variable. The optimization problem is
then that of choosing the level of Q such that 7 will be a maximum. Note that the
optimal level of  is by definition its maximal level, but the optimal level of the
choice variable Q is itself not required to be either a maximum or a minimum.

To cast the problem into a more general mold for further discussion (though
still confining ourselves to objective functions of one variable only), let us
consider the general function

y=/(x)
and attempt to develop a procedure for finding the level of x that will maximize

or minimize the value of y. It will be assumed in this discussion that the function f
is continuously differentiable.

9.2 RELATIVE MAXIMUM AND MINIMUM:
FIRST-DERIVATIVE TEST

Since the objective function y = f(x) is stated in the general form, there is no
restriction as to whether it is linear or nonlinear or whether it is monotonic or
contains both increasing and decreasing parts. From among the many possible
types of function compatible with the above objective-function form, we have
selected three specific cases to be depicted in Fig. 9.1. Simple as they may be, the
graphs in Fig. 9.1 should give us valuable insight into the problem of locating the
maximum or minimum value of the function y = f(x).

Relative versus Absolute Extremum

If the objective function is a constant function, as in Fig. 9.1a, all values of the
choice variable x will result in the same value of y, and the height of each point

v v Y
E

B C

Ae < -
D
F
0 * o “ o *
(a) (b) (c)

Figure 9.1
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on the graph of the function (such as 4 or B or C) may be considered a maximum
or, for that matter, a minimum—or, indeed. neither. In this case, there is in effect
no significant choice to be made regarding the value of x for the maximization or
minimization of y.

In Fig. 9.1h. the function is monotonically increasing, and there is no finite
maximum if the set of nonnegative real numbers is taken to be its domain,
However. we may consider the end point D on the left (the y intercept) as
representing a minimum; in fact, it 1s in this case the absolute (or global)
minimum in the range of the function.

The points £ and F in Fig. 9.1¢, on the other hand, are examples of a relative
(or local) extremum, in the sense that each of these points represents an
extremum in the immediate neighborhood of the point only. The fact that point F
is a relative minimum 1is, of course, no guarantee that it is also the global
minimum of the function, although this may happen to be the case. Similarly, a
relative maximum point such as £ may or may not be a global maximum. Note
also that a function can very well have several relative extrema, some of which
may be maxima while others are minima.

In most economic problems that we shall be dealing with, our primary, if not
exclusive, concern will be with extreme values other than end-point values, for
with most such problems the domain of the objective function is restricted to be
the set of nonnegative numbers, and thus an end point (on the left) will represent
the zero level of the choice variable, which is often of no practical interest.
Actually, the type of function most frequently encountered in economic analysis
is that shown in Fig. 9.1¢, or some variant thereof which contains only a single
bend in the curve. We shall therefore continue our discussion mainly with
reference to the search for relarive extrema such as points £ and F. This will,
however, by no means foreclose the knowledge of an absolute maximum if we
want it, because an absolute maximum must be either a relative maximum or one
of the end points of the function. Thus if we know all the relative maxima, it is
necessary only to select the largest of these and compare it with the end points in
order to determine the absolute maximum. The absolute minimum of a function
can be found analogously. Hereafter, the extreme values considered will be
relarive or local ones, unless indicated otherwise.

First-Derivative Test

As a matter of terminology, from now on we shall refer to the derivative of a
function alternatively as its first derivative (short for first-order derivative). The
reason for this will become apparent shortly.

Given a function y = f(x), the first derivative f'(x) plays a major role in our
search for its extreme values. This is due to the fact that, if a relative extremum of
the function occurs at x = x,, then either (1} we have f(x,) = 0, or (2) f'(x;)
does not exist. The second eventuality is illustrated in Fig. 9.2a, where both
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points 4 and B depict relative extreme values of y, and yet no derivative 1s
defined at either of these sharp points. Since in the present discussion we are
assuming that y = f(x) is continuous and possesses a continuous derivative,
however, we are in effect ruling out sharp points. For smooth functions, relative
extreme values can occur only where the first derivative has a zero value. This is
illustrated by points C and D in Fig. 9.2b, both of which represent extreme
values, and both of which are characterized by a zero slope—f'(x,) = 0 and
f'(x,) = 0. It is also easy to see that when the slope is nonzero we cannot possibly
have a relative minimum (the bottom of a valley) or a relative maximum (the peak
of a hill). For this reason, we can, in the context of smooth functions. take the
condition f'(x) =0 as a necessary condition for a relative extremum (either
maximum Or minimum).

We must add, however, that a zero slope, while necessary, is not sufficient to
establish a relative extremum. An example of the case where a zero slope is not
associated with an extremum will be presented shortly. By appending a certain
proviso to the zero-slope condition, however, we can obtain a decisive test for a
relative extremum. This may be stated as follows:

First-derivative test for relative extremum If the first derivative of a function
f(x) at x = x, is f{x,) = 0, then the value of the function at x,,., f(x,), will be

a. A relative maximum if the derivative f'(x) changes its sign from positive to
negative from the immediate left of the point x, to its immediate right.

b. A relative minimum if f’(x) changes its sign from negative to positive from the
immediate left of x,, to its immediate right.

¢. Neither a relative maximum nor a relative minimum if f'(x) has the same sign
on both the immediate left and right of point x,.

Figure 9.2
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Let us call the value x a critical value of x if f'(x,) = 0, and refer to f(x,) as
a stationary value of y (or of the function f). The point with coordinates x, and
f(x,) can, accordingly, be called a stationary point. (The rationale for the word
“stationary” should be self-evident—wherever the slope is zero, the point in
question 1s never situated on an upward or downward incline, but is rather at a
standstill position.) Then, graphically, the first possibility listed in this test will
establish the stationary point as the peak of a hill, such as point D in Fig. 9.25,
whereas the second possibility will establish the stationary point as the bottom of
a valley, such as point C in the same diagram. Note, however, that in view of the
existence of a third possibility, yet to be discussed, we are unable to regard the
condition f'(x) = 0 as a sufficient condition for a relative extremum. But we now
see that, if the necessary condition f'(x) = 0 is satisfied, then the change-of-
derivative-sign proviso can serve as a sufficient condition for a relative maximum
or minimum, depending on the direction of the sign change.

Let us now explain the third possibility. In Fig. 9.3a, the function f is shown
to attain a zero slope at point J (when x = j). Even though f’( j) is zero—which
makes f( /) a stationary value—the derivative does not change its sign from one
side of x = j to the other; therefore, according to the test above, point J gives
neither a maximum nor a minimum, as is duly confirmed by the graph of the
function. Rather, it exemplifies what is known as an inflection point.
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Figure 9.3
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The characteristic feature of an inflection point is that, at that point, the
derivative (as against the primitive) function reaches an extreme value. Since this
extreme value can be either a maximum or a minimum, we have two types of
inflection points. In Fig. 9.3a¢’, where we have plotted the derivative f'(x), we see
that its value is zero when x = j (see point J') but is positive on both sides of
point J'; this makes J’ a minimum point of the derivative function f’(x).

The other type of inflection point is portrayed in Fig 9.3b, where the slope of
the function g(x) increases till the point k is reached and decreases thereafter.
Consequently, the graph of the derivative function g’(x) will assume the shape
shown in diagram &', where point K’ gives a maximum value of the derivative
function g'(x).*

To sum up: A relative extremum must be a stationary value, but a stationary
value may be associated with either a relative extremum or an inflection point. To
find the relative maximum or minimum of a given function, therefore, the
procedure should be first to find the stationary values of the function where
f'(x) =0 and then to apply the first-derivative test to determine whether each of
the stationary values is a relative maximum, a relative minimum, or neither.

Example 1 Find the relative extrema of the function
y=f(x)=x>—12x*+ 36x + 8

First, we find the derivative function to be
f(x)=3x*—24x + 36

To get the critical values, i.e., the values of x satisfying the condition f'(x) = 0,
we set the quadratic derivative function equal to zero and get the quadratic
equation

3x? = 24x + 36 =0

By factoring the polynomial or by applying the quadratic formula. we then obtain
the following pair of roots (solutions):

%, =2 [at which we have //(2) = 0 and f(2) = 40]
%, =6 [at which we have f(6) = 0 and f(6) = 8]

Since f'(2) = f'(6) = 0, these two values of x are the critical values we desire.

It is easy to verify that f/(x) > 0 for x < 2, and f'(x) < 0 for x > 2, in the
immediate neighborhood of x = 2; thus, the corresponding value of the function
f(2) = 40 is established as a relative maximum. Similarly, since f(x) < 0 for
x <6, and f'(x)> 0 for x > 6, in the immediate neighborhood of x = 6, the
value of the function f(6) = 8§ must be a relaive minimum.

* Note that a zero derivative value, while a necessary condition for a relative extremum, is not
required for an inflection point; for the derivative g'( x) has a positive value at x = &, and yet point K
is an inflection point.
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Figure 9.4

The graph of the function of this example is shown in Fig. 9.4. Such a graph
may be used to verify the location of extreme values obtained through use of the
first-derivative test. But, in reality, in most cases “helpfulness” flows in the
opposite direction—the mathematically derived extreme values will help in plot-
ting the graph. The accurate plotting of a graph ideally requires knowledge of the
value of the function at every point in the domain; but as a matter of actual
practice, only a few points in the domain are selected for purposes of plotting,
and the rest of the points typically are filled in by interpolation. The pitfall of this
practice is that, unless we hit upon the stationary point(s) by coincidence, we shall
miss the exact location of the turning point(s) in the curve. Now, with the
first-derivative test at our disposal, it becomes possible to determine these turning
points precisely.

Example 2 Find the relative extremum of the average-cost function

AC=/(Q)= Q" =50 +38

The derivative here i1s f'(Q) = 2Q — 5, a linear function. Setting f'(Q) equal to
zero, we get the linear equation 2Q — 5 = 0, which has the single root Q = 2.5.
This 1s the only critical value in this case. To apply the first-derivative test, let us
find the values of the derivative at, say, Q = 2.4 and @ = 2.6, respectively. Since
f24)= —02 < 0 whereas f(2.6) = 02> 0, we can conclude that the sta-
tionary value AC = f(2.5) = 1.75 represents a relative minimum. The graph of
the function of this example is actually a U-shaped curve, so that the relative
minimum already found will also be the absolute minimum. Our knowledge of the
exact location of this point should be of great help in plotting the AC curve.
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EXERCISE 9.2

1 Find the stationary values of the following {check whether relative maxima or minima or
inflection points), assuming the domain to be the set of all real numbers:

(@) y= —2x"+4x+9 (¢) yv=x"+23

(h) v=5x"+x (d) y =3x" - 6x +2

2 Find the stationary values of the following (check whether relative maxima or minima or
inflection points), assuming the domain to be the interval [0, oo ):

(a) y=x"—3x+5

(M y=1ix"—x"+x+ 10

(¢) v=—x'+45x" —6x+6

3 Show that the function y = x + 1/x (with x # 0) has two relative extrema, one a
maximum and the other a minimum. Is the ““minimum” larger or smaller than the
“maximum”™? How is this paradoxical result possible?

4 Let T = ¢(x) be a roral function (c.g., total product or total cost):

() Write out the expressions for the marginal function M and the average function 4.

(b) Show that, when A4 reaches a relative ¢xtremmum, M and 4 must have the same
value.

(¢) What general principle does this suggest for the drawing of a marginal curve and an
average curve in the same diagram?

(d) What can vou conclude about the clasticity of the total function T at the point
where 4 reaches an extreme value?

9.3 SECOND AND HIGHER DERIVATIVES

Hitherto we have considered only the first derivative f'(x) of a function y = fix )
now let us introduce the concept of second derivative (short for yecond-order
derivative ). and derivatives of even higher orders. These will enable us to develop
alternative criteria for locating the relative extrema of a functon.

Derivative of a Derivative

Since the first derivative f'(x) is itself a function of x. it, too, should be
differentiable with respect to x, provided that 1t 1s continuous and smooth. The
result of this differentiation. known as the second derivative of the function f. is
denoted by

f7(x) where the double prime indicates that f(x) has been differentiated
with respect to x twice. and where the expression ( x) following the
double prime suggests that the second derivative is again a func-
tion of x
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or

d*y . : .
p }2 where the notation stems from the consideration that the second
X L : d (dy ;
derivative means, in fact, Ix ( d—i), hence the ¢ in the numerator

and dx* in the denominator of this symbol

If the second derivative f”(x) exists for all x values in the domain, the function
f(x) is said to be twice differentiable; if, in addition, f'(x) is continuous. the
function f(x) is said to be twice continuously differentiable.*

As a function of x the second derivative can be differentiated with respect to
x again to produce a third derivative, which in turn can be the source of a fourth
derivative, and so on ad infinitum, as long as the differentiability condition is met.
These higher-order derivatives are symbolized along the same line as the second
derivative:

7o), f9x).. .. f" (%) [with superscripts enclosed in ( )]

d3y ddy dny
dx? dx* T dx”

or

n n
vy, where the e
operator symbol instructing us to take the nth derivative of (some function) with
respect to x.

Almost all the specific functions we shall be working with possess continuous
derivatives up to any order we desire; Le., they are continuously differentiable any
number of times. Whenever a general function is used, such as f(x), we always
assume that it has derivatives up to any order we need.

The last of these can also be written as part serves as an

n

Example 1 Find the first through the fifth derivatives of the function
y=f(x)=4x* —x* + 17x? + 3x — 1
The desired derivatives are as follows:
f(x)=16x" — 3x + 34x + 3
f7(x)=48x? — 6x * 34

f(x) = 9x — 6
19(x) = %
fP(x)=0
* The following notations are often used to denote continuity and differentiability of a function:
g Y 3
fec® o fec: /1s a continuous function
fec” or ye . [ is continuously differentiable
fe /1s twice continuously differentiable

The symbol C"' denotes the set of all functions that possess nth-order derivatives which are
continuous in the domain.
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In this particular (polynomial-function) example, each successive derivative
emerges as a simpler expression than the one before, until we reach a fifth
derivative, which is identically zero. This is not generally true, however, of all
types of function, as the next example will show. It should be stressed here that
the statement “ the fifth derivative i1s zero” is not the same as the statement “ the
fiftth derivative does not exist,” which describes an altogether different situation.
Note, also, that f®’(x) = 0 (zero at all values of x) is not the same as f*(x,) = 0
(zero at x, only). :

Example 2 Find the first four derivatives of the rational function

y=g(x)= o (x# D)

These derivatives can be found either by use of the quotient rule, or, after
rewriting the function as y = x(1 + x)~ ', by the product rule:

g(x)=(1+x)
g(x)=-2(1+x)"
g7 (x)=6(1+ )()74
g¥(x)= —24(1 + x)75

-2

(x= 1)

In this case, repeated derivation evidently does not tend to simplify the subse-
quent derivative expressions.

Note that, like the primitive function g(x), all the successive derivatives
obtained are themselves functions of x. Given specific values of x, these derivative
functions will then take specific values. When x = 2, for instance, the second
derivative in Example 2 can be evaluated as

" 5 _ 2

g(2)=-203) "= =
and similarly for other values of x. It is of the utmost importance to realize that to
evaluate this second derivative g”(x) at x = 2, as we did, we must first obtain
g”(x) from g'(x) and then substitute x = 2 into the equation for g”’(x). It is
incorrect to substitute x = 2 into g(x) or g’(x) prior to the differentiation process
leading to g”(x).

Interpretation of the Second Derivative

The derivative function f’(x) measures the rate of change of the function f. By
the same token, the second-derivative function f” is the measure of the rate of
change of the first derivative f; in other words, the second derivative measures
the rate of change of the rate of change of the original function f. To put it
differently, with a given infinitesimal increase in the independent variable x from
a point x = x,

f(xg) >0
['(xq) <0

increase

means that the value of the function tends to {
decrease
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whereas, with regard to the second derivative,

;”Eiog i g} means that the slope of the curve tends to {
0

increase
decrease

Thus a positive first derivative coupled with a positive second derivative at
x = x, implies that the slope of the curve at that point is positive and
increasing— the value of the function is increasing at an increasing rate. Likewise.
a positive first derivative with a negative second derivative indicates that the slope
of the curve is positive but decreasing— the value of the function is increasing at a
decreasing rate. The case of a negative first derivative can be interpreted analo-
gously, but a warning should accompany this case: When f’(x,) < 0 and f”(x)
> 0, the slope of the curve is negative and increasing, but this does not mean that
the slope is changing, say, from (—10) to (—11); on the contrary, the change
should be from (—11), a smaller number, to (- 10), a larger number. In other
words, the negative slope must tend to be less steep as x increases. Lastly, when
f'(x) <0 and f"(x,) < 0, the slope of the curve must be negative and decreas-
ing. This refers to a negative slope that tends to become steeper as x increases.

Since we have been talking about slopes, it may be useful to continue the
discussion with a graphical illustration. In Fig. 9.5 we have marked out six points
(A, B, C, D, E, and F) on the two parabolas shown; each of these points
illustrates a different combination of first- and second-derivative signs, as follows:

If at the derivative signs are we can illustrate it by
X=X (x>0 f(xp<0 point 4
X = X, fix;)=0 f(x) <0 point B
X=Xy flx) <0 f(x) <0 point €
X=Xy glxy) <0 g ' (xy)> 0 point D
X = Xs gixsy=10 g (x5)> 0 point E
X = Xg4 glxg) >0 g27(xg) > 0 point F

From this, we see that a negative second derivative (the first three cases) is
consistently reflected in an inverse U-shaped curve, or a portion thereof, because
the curve in question is required to have a smaller and smaller slope as x
increases. In contrast, a positive second derivative (the last three cases) con-
sistently points to a U-shaped curve, or a portion thereof, since the curve in
question must display a larger and larger slope as x increases. Viewing the two
curves in Fig. 9.5 from the standpoint of the horizontal axis, we find the one in
diagram « to be concave throughout, whereas the one in diagram b is convex
throughout. Since concavity and convexity are descriptions of how the curve
“bends,” we may now expect the second derivative of a function to inform us
about the curvature of its graph, just as the first derivative tells us about its slope.

Although the words “concave” and “convex” adequately convey the differing
curvature of the two curves in Fig. 9.5, writers today would more specifically label
them as strictly concave and strictly convex, respectively. In line with this terminol-
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(a) (b)

Figure 9.5

ogy, a function whose graph is strictly concave (strictly convex) is called a srrictly
concave (strictly convex) function. The precise geometric characterization of a
strictly concave function is as follows. If we pick any pair of points M and N on
its curve and join them by a straight line, the line segment MN must lie entirely
below the curve, except at points M and N. The characterization of a strictly
convex function can be obtained by substituting the word ““above” for the word
“below” in the last statement. Try this out in Fig. 9.5. If the characterizing
condition is relaxed somewhat, so that the line segment MN is allowed to lie either
below the curve, or along (coinciding with) the curve, then we will be describing
instead a concave function, without the adverb “strictly.” Similarly, if the line
segment MN either lies above, or lies along the curve, then the function is convex,
again without the adverb “strictly.” Note that, since the line segment MN may
coincide with a (nonstrictly) concave or convex curve, the latter may very well
contain a linear segment. In contrast, a strictly concave or convex curve can never
contain a linear segment anywhere. It follows that while a strictly concave
(convex) function i1s automatically a concave (convex) function, the converse is
not true.*

From our earlier discussion of the second derivative, we may now infer that if
the second derivative f”(x) 1s negative for all x, then the primitive function f(x)
must be a strictly concave function. Similarly, f(x) must be strictly convex, if
f”(x) 1s positive for all x. Despite this, it is nor valid to reverse the above
inference and say that, if f(x) is strictly concave (strictly convex), then f"”(x)
must be negative (positive) for all x. This is because, in certain exceptional cases,
the second derivative may have a zero value at a stationary point on such a curve.
An example of this can be found in the function y = f(x) = x*, which plots as a
strictly convex curve, but whose derivatives

fi(x)=4x* f"(x)=12x?

* We shall discuss these concepts further in Sec. 11.5 below.
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indicate that, at the stationary point where x = 0, the value of the second
derivative is f'(0) = 0. Note, however, that at any other point, with x # 0, the
second derivative of this function does have the (expected) positive sign. Aside
from the possibility of a zero value at a stationary point, therefore, the second
derivative of a strictly concave or convex function may be expected in general to
adhere to a single algebraic sign.

For other types of function, the second derivative may take both positive and
negative values, depending on the value of x. In Fig. 9.3a¢ and b, for instance,
both f(x) and g(x) undergo a sign change in the second derivative at their
respective inflection points J and K. According to Fig. 9.3a’, the slope of
f'(x)—that is, the value of f”(x)-—changes from negative to positive at x = J; the
exact opposite occurs with the slope of g’(x)—that is, the value of g”(x)—on the
basis of Fig. 9.3b". Translated into curvature terms, this means that the graph of
f(x) turns from concave to convex at point J, whereas the graph of g(x) has the
reverse change at point K. Consequently, instead of characterizing an inflection
point as a point where the first derivative reaches an extreme value, we may
alternatively characterize it as a point where the function undergoes a change in
curvature or a change in the sign of its second derivative.

An Application

The two curves in Fig. 9.5 exemplify the graphs of quadratic functions, which
may be expressed generally in the form

y=ax*+bx+c (a+0)

From our discussion of the second derivative, we can now derive a convenient
way of determining whether a given quadratic function will have a strictly convex
{U-shaped) or a strictly concave (inverse U-shaped) graph.

Since the second derivative of the quadratic function cited is 42y /dx? = 2a,
this derivative will always have the same algebraic sign as the coefficient a.
Recalling that a positive second derivative implies a strictly convex curve, we can
infer that a positive coefficient a in the above quadratic function gives rise to a
U-shaped graph. In contrast, a negative coefficient a leads to a strictly concave
curve, shaped like an inverted U.

As intimated at the end of Sec. 9.2, the relative extremum of this function will
also prove to be its absolute extremum, because in a quadratic function there can
be found only a single valley or peak, evident in a U or inverted U, respectively.

EXERCISE 9.3

1 Find the second and third derivatives of the following functions:
(a) ax* + bx + ¢ (¢) -1% (x+1)
1+
(h) 6x* —3x—4  (d) 1_’f

(x# 1)
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2 Which of the following quadratic functions are strictly convex?
(a) y=9x> —d4x + 2 (¢) u=9 — x*
(b)y w= —3x2+ 39 (d)y v =28 —3x + x*

3 Draw (a) a concave curve which is not strictly concave, and (b) a curve which qualifies
simultaneously as a concave curve and a convex curve.

4 Given the function y = a — (a, b, c > 0; x = 0), determine the general shape of

X
its graph by examining («) its first and second derivatives, (b) its vertical intercept, and
(¢) the limit of y as x tends to infinity. If this function is to be used as a consumption
function, how should the parameters be restricted in order to make it economically
sensible?

S Draw the graph of a function f(x) such that f'(x) = 0, and the graph of a function g(x)
such that g’(3) = 0. Summarize in one sentence the essential difference between f(x) and
g(x) in terms of the concept of stationary point.

9.4 SECOND-DERIVATIVE TEST

Returning to the pair of extreme points B and £ in Fig. 9.5 and remembering the
newly established relationship between the second derivative and the curvature of
a curve, we should be able to see the validity of the following criterion for a
relative extremum:

Second-derivative test for relative extremum If the first derivative of a function f
at x = x,1s f'(xy) = 0, then the value of the function at x,, f(x,), will be

a. A relative maximum if the second-derivative value at x; is f"'(x,) < 0.
b. A relative minimum if the second-derivative value at x, 1s f"(x,) > 0.

This test is in general more convenient to use than the first-derivative test,
because it does not require us to check the derivative sign to both the left and the
right of x,,. But it has the drawback that no unequivocal conclusion can be drawn
in the event that f”(x,) = 0. For then the stationary value f(x,) can be either a
relative maximum, or a relative minimum, or even an inflectional value.* When
the situation of f”(x,) = 0 is encountered, we must either revert to the first-
derivative test, or resort to another test, to be developed in Sec. 9.6, that involves

* To see that an inflection point is possible when f"”(x,) = 0, let us refer back to Fig. 9.34 and
9.3a’. Point J in the upper diagram is an inflection point, with x = ; as its critical value. Since the
f’(x) curve in the lower diagram attains a minimum at x = j, the slope of f'(x) [i.e., f"(x)] must be
zero at the critical value x = 4. Thus point J illustrates an inflection point occurring when f"(x,) = 0.

To see that a relative extremum is also consistent with /”( x,) = 0, consider the function y = x4,
This function plots as a U-shaped curve and has a minimum, y = 0, attained at the critical value
x = 0. Since the second derivative of this function is f”(x) = 12x2, we again obtain a zero value for
this derivative at the critical value x = 0. Thus this function illustrates a relative extremum occurring
when f"(x,) = 0.
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the third or even higher derivatives. For most problems in economics, however.
the second-derivative test should prove to be adequate for determining a relative
maximum or minimum.

Example 1 Find the relative extremum of the function
v=/f(x)=4x? - x

The first and second derivatives are
f(x)=8x—-1 and f(x)=28

Setting f’(x) equal to zero and solving the resulting equation, we find the (only)
critical value to be ¥ = {, which yields the (only) stationary value f(3) = — ;.
Because the second derivative is positive (in this case it is indeed positive for any
value of x), the extremum is established as a minimum. Indeed, since the given
function plots as a U-shaped curve, the relative minimum is also the absolute

minimum.

Example 2 Find the relative extrema of the function
y=g(x)=x—3x*+2

The first two derivatives of this function are
g'(x) =3x*— 6x and  g’(x)=6x—6

Setting g’(x) equal to zero and solving the resulting quadratic equation, 3x* — 6x
= 0, we obtain the critical values X, = 0 and X, = 2, which in turn yield the two
stationary values:

2(0) =2 [a maximum because g”(0) = —6 < 0]
g(2)= -2 [a minimum because g”’(2) = 6 > 0]

Necessary versus Sufficient Conditions

As was the case with the first-derivative test, the zero-slope condition f'(x) = 0
plays the role of a necessary condition in the second-derivative test. Since this
cendition is based on the first-order derivative, it is often referred to as the
first-order condition. Once we find the first-order condition satisfied at x = x5, the
negative (positive) sign of f'(x,) is sufficient to establish the stationary value in
question as a relative maximum (minimum). These sufficient conditions, which are
based on the second-order derivative, are often referred to as second-order
conditions.

It bears repeating that the first-order condition is necessary, but not sufficient,
for a relative maximum or minimum. (Remember inflection points?) In sharp
contrast, while the second-order condition that f”(x) be negative (positive) at the
critical value x, is sufficient for a relative maximum (minimum), it is not necessary.
[Remember the relative extremum that occurs when f(x,) = 0?] For this reason,
one should carefully guard against the following line of argument: “Since the
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stationary value f(x,) is already known to be a minimum, we must have
f"(x,) > 0.” The reasoning here is faulty because it incorrectly treats the positive
sign of /”(x,,) as a necessary condition for f(x,) to be a minimum,

This 1s not to say that second-order derivatives can never be used in stating
necessary conditions for relative extrema. Indeed they can. But care must then be
taken to allow for the fact that a relative maximum (minimum) can occur not only
when f”(x, ) is negative (positive), but also when f”(x,) is zero. Consequently,
second-order necessary conditions must be couched in terms of weak inequalities:

: : maximum
for a stationary value f(x,) to be a relative [

o , 1t 1s necessary that
| minimum /

<

rxpol = Lo

>

Conditions for Profit Maximization

We shall now present some economic examples of extreme-value problems, i.e.,
problems of optimization.

One of the first things that a student of economics learns is that, in order to
maximize profit, a firm must equate marginal cost and marginal revenue. Let us
show the mathematical derivation of this condition. To keep the analysis on a
general level, we shall work with the total-revenue function R = R({Q) and
total-cost function C = C(Q). both of which are functions of a single variable Q.
From these it follows that a profit function (the objective function) may also be
formulated in terms of Q (the choice variable):

(9.1) 7 =7(Q)=R(Q)-C(Q)
To find the profit-maximizing output level. we must satisfy the first-order

necessary condition for a maximum: d=7 /dQ = 0. Accordingly, let us differentiate
(9.1) with respect to Q and set the resulting derivative equal to zero. The result is

dm _
dQ
=0 iff R(Q)=C(Q)

Thus the optimum output (equilibrium output) Q must satisfy the equation
R(Q) = C’(Q). or MR = MC. This condition constitutes the first-order condi-
tion for profit maximization.

However, the first-order condition may lead to a minimum rather than a
maximum; thus we must check the second-order condition next. We can obtain
the second derivative by differentiating the first derivative in (9.2) with respect to

QO:

(9.2)

— =77(Q) = R(Q) - C"(Q)

<0 iff  RY(Q) < C"(Q)
For an output level Q such that R(Q) = C'(Q). the satisfaction of the second-
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order condition R”(Q) < C”(Q) is sufficient to establish it as a profit-maximizing
output. Economically, this would mean that. if the rate of change of MR is less
than the rate of change of MC at the output where MC = MR, then that output
will maximize profit.

These conditions are illustrated in Fig. 9.6. In diagram ¢ we have drawn a
total-revenue and a total-cost curve, which are seen to intersect twice, at output
levels of Q, and Q,. In the open interval (Q,, Q,), total revenue R exceeds totai
cost C, and thus 7 is positive. But in the intervals [0, 0,) and (Q,, Qs]. where Q.
represents the upper limit of the firm’s productive capacity, = is negative. This
fact 1s reflected in diagram b, where the profit curve—obtained by plotting the
vertical distance between the R and C curves for each level of output—Ilies above
the horizontal axis only in the interval (Q,. Q,).

When we set d7/dQ = 0, in line with the first-order condition, it is our
intention to locate the peak point K on the profit curve, at output Q,, where the
slope of the curve is zero. However, the relative-minimum point M (output Q)
will also offer itself as a candidate, because it, too, meets the zero-slope require-
ment. We shall later resort to the second-order condition to eliminate the
“wrong” kind of extremum.

The first-order condition d7/dQ = 0 is equivalent to the condition R'(Q) =
C'(Q). In Fig. 9.6a, the output level Q, satisfies this, because the R and C curves
do have the same slope at Q, (the tangent lines drawn to the two curves at H and
J are parallel to each other). The same is true for output Q,. Since the equality of
the slopes of R and C means the equality of MR and MC, outputs Q, and Q,
must obviously be where the MR and MC curves intersect, as illustrated in Fig.
9.6¢.

How does the second-order condition enter into the picture? Let us first look
at Fig. 9.6b. At point K, the second derivative of the # function will (barring the
exceptional zero-value case) have a negative value, 7”(Q;) < 0, because the curve
is inverse U-shaped around K; this means that Q; will maximize profit. At point
M, on the other hand, we would expect that 7''(Q,) > 0; thus Q, provides a
relative minimum for # instead. The second-order sufficient condition for a
maxtmum can, of course, be stated alternatively as R"(Q) < C”(Q), that is, that
the slope of the MR curve be less than the slope of the MC curve. From Fig. 9.6¢,
it is immediately apparent that output Q, satisfies this condition, since the slope
of MR is negative while that of MC is positive at point L. But output Q, violates
this condition because both MC and MR have negative slopes, and that of MR is
numerically smaller than that of MC at point N, which implies that R"(Q)) is
greater than C”(Q,) instead. In fact, therefore, output Q, also violates the
second-order necessary condition for a relative maximum, but satisfies the
second-order sufficient condition for a relative minimum.

Example 3 Let the R(Q) and C(Q) functions be

R(Q) = 12000 — 20?
C(Q) = 0% — 61.250% + 1528.50 + 2000
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Figure 9.6
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Then the profit function is
7(Q) = —0Q° + 59.250° — 328.5Q — 2000

where R, C, and = are all in dollar units and Q is in units of (say) tons per week.
This profit function has two critical values, @ = 3 and Q = 36.3, because

an _ 52 RS = _ /3
a0 30° + 118.5Q — 3285 =0 when Q = 1365
But since the second derivative is
2 > () h = 3
9T _ _ep+ngs | when Q
dQ’ | <0 when O = 36.5

the profit-maximizing output is Q = 36.5 (tons per week). (The other output
minimizes profit.) By substituting Q into the profit function, we can find the
maximized profit to be 7 = 7(36.5) = 16,318.44 (dollars per week).

As an alternative approach to the above, we can first find the MR and MC
functions and then equate the two, i.e.. find their intersection. Since

R(Q) = 1200 — 40
C'(Q) =30 — 122.50 + 1528.5

equating the two functions will result in a quadratic equation identical with
dm/dQ = 0 which has yielded the two critical values of QO cited above.

Coefficients of a Cubic Total-Cost Function

In Example 3 above, a cubic function 1s used to represent the total-cost function.
The traditional total-cost curve C = C(Q). as illustrated in Fig. 9.64, is supposed
to contain two wiggles that form a concave segment (decreasing marginal cost)
and a subsequent convex segment (increasing marginal cost). Since the graph of a
cubic function always contains exactly two wiggles, as illustrated in Fig. 9.4, it
should suit that role well. However, Fig. 9.4 immediately alerts us to a problem:
the cubic function can possibly produce a downward-sloping segment in its
graph, whereas the total-cost function. to make economic sense, should be
upward-sloping everywhere (a larger output always entails a higher total cost). If
we wish to use a cubic total-cost function such as

(9.3) C=C(Q)=aQ’+bQ*+cQ+d \

therefore, it 1 essential to place appropriate restrictions on the parameters so as
to prevent the C curve from ever bending downward.

An equivalent way of stating this requirement is that the MC function should
be positive throughout. and this can be ensured only if the absolure minimum of
the MC function turns out to be positive. Differentiating (9.3) with respect to Q.
we obtain the MC function

(94)  MC = C(Q) = 3aQ? + 2bQ + ¢
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which, because it is a quadratic, plots as a parabola as in Fig. 9.6¢. In order for
the MC curve to stay positive (above the horizontal axis) everywhere, it is
necessary that the parabola be U-shaped (otherwise, with an inverse U, the curve
1s bound to extend itself into the second quadrant). Hence the coefficient of the
Q* term in (9.4) has to be positive; i.e., we must impose the restriction ¢ > 0. This
restriction, however, is by no means sufficient, because the minimum value of a
U-shaped MC curve—call it MC_ . (a relative minimum which also happens to
be an absolute minimum)—may still occur below the horizontal axis. Thus we
must next find MC_,  and ascertain the parameter restrictions that would make it
positive.

According to our knowledge of relative extremum, the minimum of MC will
occur where

d
g MC =60 +26=0
The output level that satisfies this first-order condition is
~2b -b
* _ = 7
© 6u 3a

This minimizes (rather than maximizes) MC because the second derivative
d*(MC)/dQ?* = 6a is assuredly positive in view of the restriction @ > 0. The
knowledge of Q* now enables us to calculate MC_; ., but we may first infer the
sign of coefficient b from it. Inasmuch as negative output levels are ruled out, we
see that b can never be positive (given a > 0). Moreover, since the law of
diminishing returns is assumed to set in at a positive output level (that is, MC is
assumed to have an initial declining segment), Q* should be positive (rather than
zero). Consequently, we must impose the restriction b < Q.
It is a simple matter now to substitute the MC-minimizing output Q* into
(9.4) to find that
—p\2 . .
MC,, = 3a(§) + 2b3—: +c= %b—
Thus, to guarantee the positivity of MC_; , we must impose the restriction*
b* < 3ac. This last restriction, we may add, in effect also implies the restriction
¢ > 0. (Why?
* This restriction may also be obtained by the method of completing the square. The MC function
can be successively transformed as follows:

MC = 3aQ? + 2bQ + ¢

5

5 b? b*
—(3uQ +2bQ+3a)~3a+<
3\ 2
=(\/3dQ+ ”_) b dac
3a 3u

Since the squared expression can possibly be zero, the positivity of MC will be ensured—on the
knowledge that ¢ > O—only if »* < 3ac.
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The above discussion has involved the three parameters a, b, and ¢. What
about the other parameter, 4?7 The answer is that there is need for a restriction on
d also, but that has nothing to do with the problem of keeping the MC positive. It
we let Q = 0 1n (9.3), we find that C(0) = d. The role of d is thus to determine
the vertical intercept of the C curve only, with no bearing on its slope. Since the
economic meaning of 4 is the fixed cost of a firm, the appropriate restriction (in
the short-run context) would be d > 0.

In sum. the coefficients of the total-cost function (9.3) should be restricted as
follows (assuming the short-run context):

(9.5) a.c.d>0 b <0 h* < 3ac
As you can readily verify, the C(Q) function in Example 3 does satisfy (9.5).

Upward-Sloping Marginal-Revenue Curve

The marginal-revenue curve in Fig. 9.6¢ is shown to be downward-sloping
throughout. This, of course, is how the MR curve is traditionally drawn for a firm
under imperfect competition. However, the possibility of the MR curve being
partially, or even wholly, upward-sloping can by no means be ruled out a priori.*

Given an average-revenue function AR = f(Q). the marginal-revenue func-
tion can be expressed by

MR = f(Q) + Qf(Q)  [from (7.7)]

The slope of the MR curve can thus be ascertained from the derivative

%MR — F(Q) + £1(Q) + 0f(Q) = 2/(Q) + 0f"(Q)

As long as the AR curve is downward-sloping (as it would be under imperfect
competition), the 2 f'(Q) term is assuredly negative. But the Qf”(Q) term can be
either negative, zero, or positive, depending on the sign of the second derivative of
the AR function, i.e.. depending on whether the AR curve is strictly concave.
linear, or strictly convex. If the AR curve is strictly convex either in its entirety (as
illustrated in Fig. 7.2) or along a specific segment, the possibility will exist that the
(positive) Qf"(Q) term may dominate the (negative) 2 f(Q) term, thereby causing
the MR curve to be wholly or partially upward-sloping.

Example 4 Let the average-revenue function be : _
AR = f(Q) = 8000 — 230 + 1.10° — 0.018Q° \

As can be verified (see Exercise 9.4-7), this function gives rise to a downward-
sloping AR curve, as 1s appropriate for a firm under imperfect competition. Since

MR = f(Q) + Of'(Q) = 8000 — 460 + 3.30? — 0.0720°

* This point is emphatically brought out in John P. Formby. Stephen Layson, and W. James Smith,
“The Law of Demand, Positive Sloping Marginal Revenue, and Multiple Profit Equilibria,” Economic
Inguiry, April 1982, pp. 303-311.
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it follows that the slope of MR is

d )

40 MR = —46 + 6.6Q — 0.216Q

Because this is a quadratic function and since the coefficient of Q7 is negative,
dMR /dQ must plot as an inverse-U-shaped curve against Q. such as shown in
Fig. 9.5a. If a segment of this curve happens to lie above the horizontal axis,
therefore, the slope of MR will take positive values.

Setting d MR /dQ = 0, and applying the quadratic formula, we find the two
zeros of the quadratic function to be Q| = 10.76 and Q, = 19.79 (approximately).
This means that, for values of Q in the open interval (Q,, Q,), the dMR/dQ
curve does lie above the horizontal axis. Thus the marginal-revenue curve indeed
is positively sloped for output levels between Q) and Q.

The presence of a positively sloped segment on the MR curve has interesting
implications. With more bends in its configuration, such an MR curve may
produce more than one intersection with the MC curve satisfying the second-order
sufficient condition for profit maximization. While all such intersections con-
stitute local optima, however, only one of them is the global optimum that the
firm 1s seeking.

EXERCISE 9.4

1 Find the relative maxima and minima of y by the second-derivative test:
- 1 s
(a) y= —2x"+ 8x + 25 (C))'=§x373)c“+5x+3

L3 2 o 2x 1
(Byy=x +6x"+7 (d)}—l_zx (x%z)

2 Mr. Greenthumb wishes to mark out a rectangular flower bed along the side wall of his
house. The other three sides are to be marked by wire netting, of which he has only 32 ft
available. What are the length L and width W of the rectangle that would give him the
largest possible planting area? How do you make sure that your answer gives the largest,
not the smallest area?

3 A firm has the following total-cost and demand functions:
C=10' =707+ 111Q + 50
0=100-P

(a) Does the total-cost function satisfy the coefficient restrictions of (9.5)?
(b) Write out the total-revenue function R in terms of Q.

(¢) Formulate the total-profit function 7 in terms of Q.

(d) Find the profit-maximizing level of output Q.

(e) What is the maximum profit?

4 If coefficient b in (9.3) were to take a zero value, what would happen to the marginal-cost
and total-cost curves?
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5 A quadratic profit function 7(Q) = hQ" + jQ + k is to be used to refiect the followin.
assumptions:

(a) If nothing is produced, the profit will be negative (because of fixed costs).

(b) The profit function is strictly concave.

(¢) The maximum profit occurs at a positive output level Q.
What parameter restrictions are called for?

6 A purely competitive firm has a single variable input L (labor), with the wage rate W
per period. Its fixed inputs cost the firm a total of F dollars per period. The price of the
product is P,.

(a) Write the production function, revenue function, cost function, and profit function
of the firm.

(b) What is the first-order condition for profit maximization? Interpret the condition
economically.

(¢) What economic circumstances would ensure that profit is maximized rather than
minimized?
7 Use the following procedure to verify that the AR curve in Example 4 is negativeh
sloped:

(a) Denote the slope of AR by S. Write an expression for S.

(b) Find the maximum value of S, S_ ., by using the second-derivative test.

(¢) Then deduce from the value of S, ,, that the AR curve is negatively sloped.

max

9.5 DIGRESSION ON MACLAURIN AND TAYLOR SERIES

The time has now come for us to develop a test for relative extrema that can
apply even when the second derivative turns out to have a zero value at the
stationary point. Before we can do that, however, it will first be necessary to
discuss the so-called “expansion™ of a function y = f(x) into what are known,
respectively, as a Maclaurin series (expansion around the point x = 0) and a
Taylor series (expansion around any point x = x).

To expand a function y = f(x) around a point x, means, in the present
context, to transform that function into a polynomial form, in which the coefficients
of the various terms are expressed in terms of the derivative values f'(x,). f"(x,).
etc.—all evaluated at the point of expansion x,. In the Maclaurin series, these
will be evaluated at x = 0; thus we have f(0), f”(0), eic., in the coefficients. The
result of expansion may be referred to as a power series because, being a
polynomial, it consists of a sum of power functions.

Maclaurin Series of a Polynomial Function

~

Let us consider first the expansion of a polynomial function of the nth degree,
(9.6) flx)=ay+ax+a,x’+a;x° +a,x*+ - +a,x"
Since this involves the transformation of one polynomial into another, it may

seem a sterile and purposeless exercise, but actually it will serve to shed much
light on the whole idea of expansion.
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Since the power series after expansion will involve the derivatives of various
orders of the function f, let us first find these. By successive differentiation of
(9.6), we can get the derivatives as follows:

f(x)=a, + 2a,x + 3a,x* + da, x> + -+ na,x"!
[7(x) = 2a, + 3(2)ayx + 43agx® + -+ nln— a,x"?
f7(x) =3(2)a, + 43)(2ayx + -+ nln = Dn = 2)a,x" !
F9x)=4(3)(2)as + S(H3)2ax + -+
+n(n— D{(n-2)(n-3)a,x"*

fOx)y=n(n - 1)(n=2)(n=-3)---(3)2)11)a,

Note that each successive differentiation reduces the number of terms by one—the
additive constant in front drops out—until, in the nth derivative, we are left with
a single constant term (a product term). These derivatives can be evaluated at
various values of x: here we shall evaluate them at x = 0, with the result that all
terms involving x will drop out. We are then left with the following exceptionally
neat derivative values:

(9.7 S0 =qa, [(0)=2a, [7(0)=32)a; [P(0)=4(3)(2)a,
FO(0) = n(n — 1(n = 2)(n = 3) - (3)(2)1)a,
If we now adopt a shorthand symbol rn! (read: “n factorial”), defined as
nt=n(n— D(n—=2)-- (3)2)X1) (n = a positive integer)

so that, for example, 2' =2 x 1 =2 and 3! =3 X2 X1 =6, etc. (with 0!
defined as equal to 1), then the result in (9.7) can be rewritten as

B R () Y £ () N ()

4 I 2T 4T 4™ Ty
_f(0)

n n!

Substituting these into (9.6) and utilizing the obvious fact that f(0) = a,. we can
now express the given function f( x) as a new polynomial in which the coefficients
are expressed in terms of derivatives evaluated at x = 0:*

0 £ 110) L, S0
(9.8) fix)= o + T X+ T T xP+ e+ oy
This new polynomial, the Maclaurin series of the polynomial function f(x),
represents the expansion of the function f(x) around zero (x = 0).

[0

X

*Since 0! = 1 and 1! = 1, the first two terms on the right of the equals sign in (9.8) can be written
more simplv as £(0), and f°(0) x. respectivelv. We have included the denominators 0! and 1! here to
call attention to the symmetry among the various terms in the expansion.
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Example 1 Find the Maclaurin series for the function
(9.9)  f(x)=2+4x+ 3x?

This function has the derivatives

f(x)=4+ 6x

f(0) = 4
£7(x) = 6 so that {f"(O) _¢

Thus the Maclaurin series is

1) = £0) + f(0)x + L0 0

=2 + 4x + 3x?

This verifies that the Maclaurin series does indeed correctly represent the given
function.

Taylor Series of a Polynomial Function

More generally, the polynomial function in (9.6) can be expanded around any
point x,,, not necessarily zero. In the interest of simplicity, we shall explain this by
means of the specific quadratic function in (9.9) and generalize the result later.

For the purpose of expansion around a specific point x,, we may first
interpret any given value of x as a deviation from x,. More specifically, we shall
let x = x, + 8, where § represents the deviation from the value x,. Upon such
interpretation, the given function (9.9) and its derivatives will now become

f(x) =2+ 4(xy+8)+3(xy + 8)°
(9.10) f(x)y=4+6(x,+38)
f(x)=6
We know that the expression (x, + §) = x is a variable in the function, but since
X, in the present context is a fixed number, only § can be properly regarded as a
variable in (9.10). Consequently, f(x) is in fact a function of §, say, g(d):
2

g(8) =2+ 4(x, +8) +3(x, + 8) [Ef(x)]
with derivatives

g'(8)=4+6(x,+38) [=/(x)]

g'(8)=16 [=f"(x)]

We already know how to expand g(6) around zero (§ = 0). According to ™
(9.8), such an expansion will yield the following Maclaurin series:

©11)  g(o) =50 £, £70)
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But since we have let x = x, + 4. the fact that § = 0 will imply that x = x;
hence. on the basis of the identity g(§) = f(x), we can write for the case of § = 0:

gl0) = flxy) g0 =f(xy)  g"0)=/"(x,)
Upon substituting these into (9.11), we find the result to represent the expansion
of f(x) around the point x,., because the coefficients involve the derivatives
f(xq) [7(x,). etc., all evaluated at x = x;:

(9.12) f(x)[=g(8)] _ f(o’('o) n f'(lv’::o)(x ~ x,) +f/'(2§f0) (x — Xo)z

You should compare this result—a Taylor series of f(x)-—with the Maclaurin
series of g(8) 1 (9.11).
Since for the specific function under consideration, namely, (9.9), we have
flxy)=2+4x, + 3-"(% f(xg) =4+ 6x, ['lxg) =6
the Taylor-series formula (9.12) will vield

f(*) =24 4x, + 3-’“(2) + (4 + 6»’%)(X - Xo) +9(x — Xo)z

=2+ 4x + 3x°

This verifies that the Taylor series does correctly represent the given function.
The expansion formula in (9.12) can be generalized to apply to the nth-degree
polynomial of (9.6). The generalized Taylor-series formula is

f”(xo)

9:13) f(x):f((;!o)+f,(1)!(0)(x‘xo)+ X (x = x¢) + -
(n)
+£—%('¥_xo)”

This differs from the Maclaurin senes of (9.8) only in the replacement of zero by
x, as the point of expansion and in the replacement of x by the expression
(x — x;). What (9.13) tells us is that. given an nth-degree polynomial f(x), if we
let x = 7 (say) in the terms on the nght of (9.13), select an arbitrary number x,,,
then evaluate and add these terms. we will end up exactly with f(7)—the value of
fixyatx =17

Example 2 Taking x, = 3 as the point of expansion, we can rewrite (9.6)
equivalently as

1 =13+ O -3+ L oy LB gy

Expansion of an Arbitrary Function

Heretofore. we have shown how an nth-degree polynomial function can be
expressed in another nth-degree polynomial form. As it turns out, it is also
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possible to express any arbitrary function ¢(x)—one that is not even necessarily
a polynomial—in a polynomial form similar to (9.13), provided ¢(x) has finite.
continuous derivatives up to the desired order at the expansion point x,,.

According to a mathematical proposition known as Tavlor’s theorem, given
an arbitrary function ¢(x), if we know the value of the function at x = x, [that is.
¢{x,)] and the values of its derivatives at x,, [that is, ¢'(x,). ¢"(x,), etc.], then
this function can be expanded around the point x, as follows (n = a fixed
positive integer arbitrarily chosen):

o (x ¢'(xy)
(9.14)  ¢(x) = 0!“) T (= xg)
" (n)( .
+ ol (2'?()) (X _ X”)Z 4oy ¢ ”(!-)t()) ()( . ,\‘())N . R”
= Pn + Rn

where P, represents the (bracketed) nth-degree polynomial [the first (n + 1) terms
on the right], and R, denotes a remainder. to be explained below.* The presence
of R, distinguishes (9.14) from (9.13), and for this reason (9.14) is called a Tayior
series with remainder. The form of the poiynomial P, and the size of the
remainder R, will depend on the value of #n we choose. The larger the n. the more
terms there will be in P ; accordingly, R, will in general assume a different value
for each different n. This fact explains the need for the subscript n in these two
symbols. As a memory aid, we can identify » as the order of the highest derivative
in P _. (In the special case of n = 0. no derivative will appear in P, at all.)

The appearance of R, in (9.14) is due to the fact that we are here dealing with
an arbitrary function ¢ which cannot always be transformed exactly into the
polynomial form shown in (9.13). Therefore. a remainder term is included as a
supplement to the P, part, in order to represent the difference between ¢(x) and
the polynomial P,. Looked at differentlv, P, may be considered a polynomial
approximation to ¢(x), with the term R as a measure of the error of approxima-
tion. If we choose n = 1. for example, we have

o(x) = [(i)(x(,) + ¢’,(-’(())(~" - x())] + R, =P + R,

where P, consists of n + 1 = 2 terms and constitutes a linear approximation to
¢ (x). If we choose n = 2, a second-power term will appear, so that

, ¢ (x,)
o(x) = |o(xy) +d'(xo)(x — x,) + (2:‘) (x = Xo)2 + R, =P, + R,

where P,, consisting of n + 1 = 3 terms, will be a gquadratic approximation to
¢(x). And so forth.

* The symbol R, (remainder) is not to be confused with the symbol R” ( #-space).
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We should mention, in passing, that the arbitrary function ¢(x) could
obviously encompass the nth-degree polynomial of (9.6) as a special case. For this
latter case, if the expansion is into another nth-degree polynomial, the result of
(9.13) will exactly apply; or in other words, we can use the result in (9.14), with
R, = 0. However, if the given nth-degree polynomial f(x) is to be expanded into
a polynomial of a lesser degree, then the latter can only be considered an
approximation to f(x), and a remainder will appear; accordingly. the result in
(9.14) can be applied with a nonzero remainder. Thus the Taylor series in the
form of (9.14) is perfectly general.

Example 3 Expand the nonpolynomial function

1
1+ x

o(x)

around the point x, = 1, with n = 4. We shall need the first four derivatives of
¢(x), which are

1

¢'(x)= —(1+x)* so that ()= —(2) 2= _T
¢"(x)=2(1 + x) $(1) =207 =
¢ (x)= —6(1+ 1) o7() = —6(2) * ="
oH(x) = 24(1 + x) 91 = 242) 5 =3

Also, we see that ¢(1) = 1. Thus, setting x, =1 in (9.14) and utilizing the
information derived above, we obtain the following Taylor series with remainder:

1 | . s ]
<¢>(x)—~§—z(x—l)+~8*(x—l)—ﬁ(x 1)+32(x—1)+R4
BEIRRE NS B
B IR TR R TR R Y

It is possible, of course, to choose x, = 0 as the point of expansion here. too.
In that case, with x, set equal to zero in (9.14), the expansion will result in a
Maclaurin series with remainder.

Example 4 Expand the quadratic function
o(x)=5+2x+ x*

around x, = 1, with n = 1. This function is, like (9.9) in Example 1, a second-
degree polynomial. But since our assigned task is to expand it into a first-degree
polynomial (n = 1)—i.e., to find a linear approximation to the given quadratic
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function —a remainder term is bound to appear. For this reason, ¢(x) is viewed
as an “arbitrary” function for the purpose of the Taylor expansion.

To carry out this expansion, we need only the first derivative ¢'(x) = 2 + 2x.
Evaluated at x, = 1, the given function and its derivative yield

o{xy) = ¢(1) =8 ¢'(xy)=¢(1) =4
Thus the Taylor series with remainder is

o(x) = o{xy) +¢'(xo)(x — x) + R,

=8+ 4(x—1)+R, =4+ 4x + R,

where the (4 + 4x) term is a linear approximation and the R, term represents the
error of approximation.

In Fig. 9.7, ¢(x) plots as a parabola, and its linear approximation, a straight
line tangent to the ¢(x) curve at the point (1, 8). The occurrence of the point of
tangency at x = 1 is not a matter of coincidence; rather, it is the direct
consequence of the fact that the point of expansion is set at that particular value
of x. This suggests that, when an arbitrary function ¢(x) is approximated by a
polynomial, the latter will give the exact value of ¢(x) at (but only ar) the point
of expansion, with zero error of approximation (R, = 0). Elsewhere, R, is strictly
nonzero and, in fact, shows increasingly larger errors of approximation as we try
to approximate ¢(x) for x values farther and farther away from the point of
expansion Xx.

14

o{x) =5+ 2x +x2 12

4 3 -2 - 0 1 2 3

Figure 9.7
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Lagrange Form of the Remainder

Now we must comment further on the remainder term. According to the
Lagrange form of the remainder, we can express R, as

(n+1)
(9.15) R, = m-——‘i’(n " (1‘;’!) (x — xo)"""

where p is some number between x (the point where we wish to evaluate the
arbitrary function ¢) and x, (the point where we expand the function ¢). Note
that this expression closely resembles the term which should logically follow the
last term in P, in (9.14), except that the derivative involved is here to be evaluated
at a point p instead of x,. Since the point p is not otherwise specified, this formula
does not really enable us to calculate R,; nevertheless, it does have great
analytical significance. Let us therefore illustrate its meaning graphically, al-
though we shall do it only for the simple case of n = 0.

When n = 0, no derivatives whatever will appear in the polynomial part Py;
therefore (9.14) reduces to

p(x)=Py+ Ry=d(x,) +¢'(p)(x — xq4)
or  ¢{x)—o(x)=¢'(p)x— x0)

This result, a simple version of the mean-value theorem, states that the difference
between the value of the function ¢ at x, and at any other x value can be
expressed as the product of the difference (x — x,) and the derivative ¢’ evaluated
at p (with p being some point between x and x;). Let us look at Fig. 9.8, where
the function ¢(x) is shown as a continuous curve with derivative values defined at
all points. Let x, be the chosen point of expansion, and let x be any point on the
horizontal axis. If we try to approximate ¢(x), or distance xB, by ¢(x,), or
distance x, A4, it will involve an error equal to ¢(x) — ¢(x,), or the distance CB.

Figure 9.8
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What the mean-value theorem says is that the error CB—which constitutes the
value of the remainder term R, in the expansion—can be expressed as ¢'( p)(x —
X, ), where p is some point between x and x,. First we locate, on the curve
between points 4 and B, a point D such that the tangent line at D is parallel to
line AB; such a point D must exist, since the curve passes from A to B in a
continuous and smooth manner. Then, the remainder will be

CB

R,=CB = ZEAC = (slope of AB) - AC

= (slope of tangent at D) - AC
= (slope of curve at x = p) - AC = ¢'( p)(x — x;)

where the point p is between x and x,, as required. This demonstrates the
rationale of the Lagrange form of the remainder for the case n = 0. We can
always express R as ¢'( p)(x — x,) because, even though p cannot be assigned a
specific value, we can be sure that such a point exists.

Equation (9.15) provides a way of expressing the remainder term R, but it
does not eliminate R, as a source of discrepancy between ¢(x) and the poly-
nomial P,. However, if it happens that

R,—0asn—> o0 sothat P — ¢(x)asn—>

then it will be possible to make P, as accurate an approximation to ¢(x) as we
desire by choosing a large enough value for n, that is, by including a large enough
number of terms in the polynomial P,.* In this (convenient) event, the Taylor
series is said to be convergent to ¢(x) at the point of expansion. An example of
this will be discussed in Sec. 10.2 below.

EXERCISE 9.5

1 Find the value of the following factorial expressions:
, , 4t 6! (n+2)!
(a) 5! (by 7 (c) r (d) E (e) T

2 Find the first five terms of the Maclaurin series (i.e., choose n = 4 and let x, = 0) for:

1 1 —
(@ o) =7=—  (b) ¢(x) =T~

3 Find the Taylor series, with # = 4 and x, = —2, for the two functions in the preceding
problem.

4 On the basis of the Taylor series with the Lagrange form of the remainder [see (9.14)
and (9.15)], show that at the point of expansion (x = x,) the Taylor series will always give
exactly the value of the function at that point, ¢(x,), not merely an approximation.

* This should be reminiscent of the method of finding the inverse matrix by approximation, as
discussed in Sec. 5.7.
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9.6 NTH-DERIVATIVE TEST FOR RELATIVE EXTREMUM OF
A FUNCTION OF ONE VARIABLE

The expansion of a function into a Taylor (or Maclaurin) series is useful as an
approximation device in the circumstance that R, — 0 as n — oo, but our present
concern is with its application in the development of a general test for a relative
extremum.

Taylor Expansion and Relative Extremum

As a preparatory step for that task, let us redefine a relative extremum as follows:

A function f(x) attains a relative maximum (minimum) value at x, if
f(x) — f(x,) is negative (positive) for values of x in the immediate neighbor-
hood of x,, both to its left and to its right.

This can be made clear by reference to Fig. 9.9, where x| is a value of x to the left
of x,, and x, is a value of x to the right of x,. In diagram a. f(x,) is a relative
maximum; thus f(x,) exceeds both f(x,) and f(x,). In short, f(x) — f(x,) 1is
negative for any value of x in the immediate neighborhood of x,. The opposite is
true of diagram b, where f(x,) is a relative minimum, and thus f(x) — f(xy) > 0.
Assuming f(x) to have finite, continuous derivatives up to the desired order
at the point x = x,, the function f(x)—not necessarily polynomial—can be
expanded around the point x, as a Taylor series. On the basis of (9.14) (after duly
changing ¢ to /), and using the Lagrange form of the remainder, we can write

916)  1(x) = Fx) = xo)x = x) + o) (g

f(”)(X ) n f(n+’)( n—+
+To—(x—x0) +m—1§)—!)(x_x0) i

y=f(x)

Figure 9.9
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If we can determine the sign of the expression f(x) — f(x,) for values of x to the
immediate left and right of x,, we can readily come to a conclusion as to whether
f(xy) 1s an extremum, and if so, whether it is a maximum or a minimum. For this,
it is necessary to examine the right-hand sum of (9.16). Altogether, there are
(n + 1) terms in this sum—~r terms from P, plus the remainder—and thus the
actual number of terms is indefinite, being dependent upon the value of n we
choose. However, by properly choosing #, we can always make sure that there will
exist only a single term on the right, thereby drastically simplifying the task of
evaluating the sign of f(x) — f(x,) and ascertaining whether f(x,) is an ex-
tremum, and if so, which kind.

Some Specific Cases

This will become clearer through some specific illustrations.
Case 1 f’(Xo) *0

If the first derivative at x, is nonzero, let us choose n = 0; then there will be
only n + 1 = 1 term on the right side, implying that only the remainder R, will
be there. That is, we have
100 = 1) = P8 () = e = )
where p is some number between x, and a value of x in the immediate
neighborhood of x,,. Note that p must accordingly be very, very close to x,,.

What is the sign of the expression on the right? Because of the continuity of
the derivative, f'( p) will have the same sign as f'(x,) since, as mentioned above,
p 1s very, very close to x,. In the present case, f'( p) must be nonzero; in fact, it
must be a specific positive or negative number. But what about the (x — x,) part?
When we go from the left of x, to its right, x shifts from a magnitude x, < x,toa
magnitude x, > x, (see Fig. 9.9). Consequently, the expression (x — x,) must
turn from negative to positive as we move, and f(x) — f(x,) = f'(p)x — x4)
must also change sign from the left of x,, to its right. However, this violates our
new definition of a relative extremum; accordingly, there cannot exist a relative
extremum at f(x,) when f'(x,) # O—a fact that is already well known to us.

Case2 ['(xy)=0;/"(x,)+0

In this case, choose n = 1, so that initially there will be n + 1 = 2 terms on
the right. But one of these terms will vanish because f(x,) = 0, and we shall
again be left with only one term to evaluate:

Fx) = flxg) = Fldx — x) + TS (2

=1 (p)x = x,)°  [because f(x,) = 0]
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As before, f”( p) will have the same sign as f"”(x,). a sign that is specified and
unvarying; whereas the (x — x,)> part, being a square, is invariably positive.
Thus the expression f(x) — f(x,) must take the same sign as f"”(x,) and,
according to the above definition of relative extremum, will specify

A relative maximum of f(x)if f”(x,) <0 ,
N . [with f"(xq) = 0]
A relative minimum of f(x ) if f"(x,) > 0

You will recognize this as the second-derivative test introduced earlier.
Case 3 f'(xy) =["(xy) =0, but f"(x,) + 0

Here we are encountering a situation that the second-derivative test 1s
incapable of handling, for f”(x,) is now zero. With the help of the Taylor series,
however, a conclusive result can be established without difficulty.

Let us choose n = 2. then three terms will initially appear on the right. But
two of these will drop out because f(x,) = f"(x,) = 0, so that we again have
only one term to evaluate:

f(x) = fxg) = f(xo)(x = xy) + %f”(x())(x - -"0)2 + %f”'(p)(x - Xo)3
=2/ (p)x = %)

As previously, the sign of f”/( p) is identical with that of f'(x,) because of the
continuity of the derivative and because p is very close to x,. But the (x — x;,)°
part has a varying sign. Specifically, since (x — x,) 1s negative to the left of x, so
also will be (x — x,,)°; yet. to the right of x. the {(x — x,)? part will be positive.
Again there is a change in the sign of f(x) — f(x,) as we pass through x,, which
violates the definition of a relative extremum. However, we know that x, is a
critical value [ f'(x,) = 0], and thus it must give an inflection point, inasmuch as
it does not give a relative extremum.

11

Cased f'(xy)=/[f"(xp)= " = fmil)(xo) = 0, but f(N)(Xo) + 0

This is a very general case, and we can therefore derive a general result from
it. Note that here all the derivative values are zero until we arrive at the Nth one.

Analogously to the preceding three cases, the Taylor series for Case 4 will
reduce to

Again, f™)( p) takes the same sign as f*'(x,), which is unvarying. The sign of
the (x — x,)" part, on the other hand, will vary if N is odd (cf. Cases 1 and 3)
and will remain unchanged (positive) if N is even (cf. Case 2). When N is odd,
accordingly, f(x) — f(x,) will change sign as we pass through the point x,.
thereby violating the definition of a relative extremum (which means that x,, must
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give us an inflection point). But when M is even. f(x) — f(x,) will not change sign
from the left of x,, to its right, and this will establish the stationary value f(x) as
a relative maximum or minimum, depending on whether /'*'(x,) is negative or
positive.

Nth-Derivative Test

At lust, then, we may state the following general test.

Nth-Derivative test for relative extremum of a function of one variable If the first
derivative of a function f(x) at x, 18 f'(x,) = 0 and 1f the first nonzero derivative
value at x, encountered in successive derivation is that of the Nth derivative,
£ (x,) # 0. then the stationary value f(x,) will be

a. A relative maximum if N is an even number and £V (x,) < 0.
b. A relative minimum tf N is an even number but fV'(x,) > 0.
¢. An inflection point if N 1s odd.

[t should be clear from the above statement that the Nth-derivative test can
work if and only if the function f(x) is capable of yielding. sooner or later, a
nonzero derivative value at the critical value x,,. While there do exist exceptional
functions that fail to satisfy this condition. most of the functions we are likely to
encounter will indeed produce nonzero f'¥'(x,) in successive differentiation.*
Thus the test should prove serviceable in most instances.

Example 1 Examine the function y = (7 — x)* for its relative extremum. Since
f'(x)y= —4&7 — x) is zero when x = 7. we take x = 7 as the critical value for
testing, with v = 0 as the stationary value of the function. By successive deriva-
tion (continued until we encounter a nonzero derivative value at the point x = 7),

I f(x) 18 a constant function. for instance. then obviouslv f/{x) = [“(x)= .+ = (), so that no
nonzero derivative value can ever be found. This, however, is a trivial case. since a constant function
requires no test for extremum anywav. As a nontrivial example. consider the function

fo ' (for x # 0)

pom=

Lo (for x = 0)

where the function v = ¢ ' 7 iy an exponential function, vet to be introduced (Chap. 10). By itsclf.
v = ¢ ' 7 ix discontinuous at v = 0, because v = 0 is not in the domain (division by zero is

undefined). However. since lim v = 0, we can, by appending the stipulation that v = 0 for x = 0, fill

the gap n the domain and \th:r)eby obtain a continuous function. The graph of this function shows
that it attains a minimum at x = (. But 1t turns out that. at x = 0. all the derivatives (up to any order)
have zero values. Thus we are unable to appiv the Nth-derivative test to confirm the graphically
ascertainable fact that the function has a minimum at v = 0. For further discussion of this exceptional
case. see R Courant. Differential and Integral Caleulus (translated by E. J. McShane). Interscience.
New York. vol. I, 2d ed.. 1937, pp. 196. 197, and 336.



OPTIMIZATION: A SPECIAL VARIETY OF EQUILIBRIUM ANALYSIS 267

we get
f(x)=12(7 — x)? so that (=0
fx) = =240 = x) f7(M=90
[P (x)=124 [Ty =24

Since 4 is an even number and since f*'(7) is positive, we conclude that the point
(7.0) represents a relative minimum.

As is easily verified, this function plots as a strictly convex curve. Inasmuch
as the second derivative at x = 7 is zero (rather than positive), this example serves
to illustrate our earlier statement regarding the second derivative and the curva-
ture of a curve (Sec. 9.3) to the effect that, while a positive f’(x) for all x does
imply a strictly convex f(x), a strictly convex f(x) does not imply a positive f"( x)
for all x. More importantly, it also serves to illustrate the fact that, given a strictly
convex (strictly concave) curve, the extremum found on that curve must be a
minimum (maximum), because such an extremum will either satisfy the second-
order sufficient condition, or, failing that, satisfy another (higher-order) sufficient
condition for a minimum (maximum).

EXERCISE 9.6

1 Find the stationary values of:

(@) y = x° (hy y=—-x* () y=x"+5
Determine by the Nth-derivative test whether they represent relative maxima, relative
minima, or inflection points.

2 Find the stationary values of the following functions:
(a) y=(x- 1" +16 (hyy=(x-2° () y=03-x)+7
Use the Mth-derivative test to determine the exact nature of these stationary values.




