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1 Comparative Statistics

1.0.1 Example: "Shift in Demand"

Comparing the value of variables (P,Q) from one equilibrium point to
another equilibrium point

1. Comparative statistics compares the values of P and Q at the
points A and B ONLY!!!

2. Says nothing about the path they follow from A to B

3. Often, we are only interested in the direction variables move (ie.
up or down, bigger or smaller)

1.0.2 Find the Slope of a Non-Linear Function

_ri _AY_y—?J
Slope = I = X% = oo
Since: y = f(z) = %:%

At D: Slope :ﬁ_)ig _ flathy)—f(@1) _ f(mithe)—f(z1)

(z1t+h2)—1 ha
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Limit




1.1 The Limit

_flath)—f(z
Slopo= 1t

for y = f(z) = 2°

(z + h)* — 22

l pr—
Slope Tt h) =z

(2% + 2zh + h?) — 2?
h
2zh + h?

h
= (2 + h)

Let h go to zero (or take the limit)
limh— 0 (2z+h)=22



2z is the lop of 22 at x;
Generally:

f'(x) the derivative

lim h O(AY> _fle+h)—flz) _dy

AX)  (v+h)—z T dr

1.2 Left Hand, Right Hand Limit
1.2.1 Left Hand Limit
Start at © — h
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Slope

fx) = flz—h)
x— (x—h)
22 — (2 — h)?
h
v® — 2° + 2xh — h?
= 2x—h
limh — 02z —h)=2z= f'(z)




1.2.2 Right Hand Limit
Start at x+h

fle+h) - f(x)

(x+h)—=z
B (x + h)? — 22
B h
B 2xh + h?
B h
= 2x+h

limh — 0(2zh+h) =2z = f'(x)

Therefore: RHL = LHL =2z = f‘(x)

1.3 Continuity and Differentiability of a Function
The Result: Right Hand Limit = Left Hand Limit, or

limh — O[f (z1+ h)] =limh — —0[f(x; — h)] for z =

IS NOT ALWAYS TRUE
If it is true then the derivative at © = z; exists. In general, the
derivative of a function exists if:

1. f(x) is a well defined function at x=x; {ie. f(x)=1 and x; =0}

2. limx — zy (f(x)) = f(x1)

3. x7 is the in the domain of f(x)
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1.3.1 Examples of Discontinuous Functions
1.3.2 Rules of Differentiation

1. Constant Function
dy B

If y= f(x) =k Then %—f‘(x):()

2. Power Function

d
If y = ax™ {a,n are constants} Then d—y = anz"!
T

Example

linsert first graph beside #1 on Page 8



(a) y=x* % =2z
(b) y=3x* Z—Z = 1223

(©) y=x! = (~1)a
2

3. Sum-Difference Rule

Tty = f(x) & g(x) then L = L [f(x) £ g(x)] = J'(x) % ¢/(x)

dx T
Examples
(a) Let
flz)=2" g(z) =22
Therefore
Yy = 23 4 2!/
dy 2 1 1/2
el 3r° + 2:15
(b) If
y = f(z) —g(x)
Where
f(z) =22° and g(z) = 2*
Then p
ﬁ = 62° — 42°

2Insert 2nd graph on page 8



4. Product Rule
If

Then

Example: Let

Then

dy
dz AN/

3 Function Case

if
y = [(x)g(zx)h(x)
Then
Z_i _ f/(x)g«(f)h(x)z+f(x>g@)h($z+f<x>g£r)hl($z
Jigh fg'h fah
5. Quotient Rule
If
,_ 1@
g(x)



Then

d g(x)?
Example:
(0 +2)
¥y = 2
x
dy  (32%)(2?) — (2 +2)(2z) 2*—4
de xt 23

Quotient Rule is a special case of PRODUCT RULE.

23+ 2
v - )y
Z—i = (32°+2) (27) + (2" +2) (—207°) =3 -2 —427*
3 _
= 1—4x_3:xx34

6. Chain Rule

Suppose y=1f
and r=g
Then Yy =

b (Z_y) (j_) = [(9(=))g'(2)

AY «— AX «— AZ

Therefore:

Chain effect
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FExample:Let

y = flx)=2a°
T g9(z) = (x + 2)
Then
y=f(g(2) = (x +2)°
And

dy
Y9+ 2
R (z +2)
1.4 Monotonic Functions and the Inverse Func-
tion Rule
If 21 < 29 and f(z1) < f(z2) (for all x), then f(z) is Monotonically
increasing.
If v1 < 9 and f(z1) > f(x2) then f(x) is Monotonically decreas-

ing.
If a function is Monotonic the an inverse function exists. le. If

y = f(x), then z = f~1(y).
Example y = 22 (2 > 0), 2 = VY

1.4.1 Derivative of Inverse Functions

If y = f(z) and 2 = f~'(y), then % = f'(x) and Z—i = f,%x)

Example 1:
d
y = 31+2= -2 =3
dx
1 2 dr 1 1



J®)

gx)

h(x)

Monotonic Functions
(monotonically increasing)

v

Example 2:
d
If: y = z? and & — 94
dx
de 1 1
, . 1)2 ar 1. _12
then: r=y"'" and B 2y =
dx 1 1
SO: —=— ==
dy 2z %

Application: Revenue Functions

Demand Function : @ =10—P
Inverse Demand Function : P =10—-Q

Average Revenue
AR = P =10 — @ Inverse demand function
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Total Revenue

TR = P-Q=(10-Q)Q=10Q -
TR = 10Q — @Q? is a quadratic function

Marginal Revenue
d(TR)
dQ

Given AR =10 —Q and MR = 10 — 2Q) MR falls twice as fast as
AR

Generally:

MR = =10 — 2Q)

TR = aQ — bQ* (general form quadratic)
TR

AR = 0 = a — b(Q) (inverse demand function)
T
MR = d(dQR) = a — 2bQ) (1st derivative)

12



Graphically

1. TR is at a MAX when MR =0
2. MR=10-2Q =0
Q=5
3. TR=10Q — Q* =25
4. AR=10—-Q =5

A

25+

13



1.4.2 Average cost and Marginal Cost

$
A
MC
AC
A
> 0

1. Total Cost = C'(Q)
2. Marginal Cost = d(jl(QQ)

3. Average Cost = %

4. Average costs are minimized when the slop of AC=0 (point A)

14



dAC _ C'(Q)Q - C(Q)

Slope of AC = Quotient Rule

aQ Q?

I O C(Q)]

-0 [C (Q) 0 Factor out Q
1

= — — A
0 [MC — AC]

Slope of AC is:

1. (a) 1i. negative if MC < AC
ii. positive if MC > AC
iii. zero if MC = AC

2 Partial Derivatives

Single variable calculus is really just a ”special case” of multivariable
calculus. For the function y = f(x), we assumed that y was the en-
dogenous variable, z was the exogenous variable and everything else
was a parameter. For example, given the equations

y=a+bx

or
y = ax"
we automatically treated a, b, and n as constants and took the deriv-
ative of y with respect to x (dy/dx). However, what if we decided to
treat x as a constant and take the derivative with respect to one of the
other variables? Nothing precludes us from doing this. Consider the
equation
Yy =ax

15



where
dy
dr
Now suppose we find the derivative of y with respect to a, but TREAT
x as the constant. Then

a

dy
da
Here we just "reversed” the roles played by a and x in our equation.

X

2.1 Partial Derivatives

Suppose y = f(z1, T2, ...2y)

ie. y = 2:10% + 319 + 22179

What is the change in y when we change x; (i = 1,n) hold all other
x‘s constant?

or: Find XA—xyl = 5)_531 = f1 (holding xs, ...z, fixed)

Rule: Treat all other variables as constants and use ordinary rules
of differentation.

Example:

y = 2:13% + 319 + 21129

d

d_xyl = 4dx1 + 2x9(= f1)
dy

— = 34 2x(=

ity +2z1(= fo)

2.2 Two Variable Case:

let z = f(x,y), which means ”z is a function of x and y”. In this
case z is the endogenous (dependent) variable and both x and y are
the exogenous (independent) variables.
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To measure the the effect of a change in a single independent vari-
able (x or y) on the dependent variable (z) we use what is known as
the PARTIAL DERIVATIVE.

The partial derivative of z with respect to x measures the instanta-
neous change in the function as x changes while HOLDING y constant.
Similarly, we would hold x constant if we wanted to evaluate the effect
of a change in y on z. Formally:

° % is the ”partial derivative” of z with respect to x, treating

y as a constant. Sometimes written as f.

° 3—5 is the ”partial derivative” of z with respect to y, treating

x as a constant. Sometimes written as f,.

The ”0” symbol ("bent over” lower case D) is called the ”partial”
symbol. It is interpreted in exactly the same way as g—g from single
variable calculus. The 0 symbol simply serves to remind us that there
are other variables in the equation, but for the purposes of the current

exercise, these other variables are held constant.
EXAMPLES:

z=x4+y 0z/0r=1 0z/0y =1

z=u1xy 0z/0x =y 0z/0y==x

z = 2%y’ 0z/0x = 2(y*)x  0z/0y = 2(z?)y

z=a%P +2x+4y 0z/0x =2xy>+2 0z/0y = 32%y* +4

e REMEMBER: When you are taking a partial derivative you
treat the other variables in the equation as constants!
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2.3 Rules of Partial Differentiation

Product Rule: given z = g(z,y) - h(x,y)

%=g(af,y)%+h(a:,y)-

5 =9g(,y) - G+ hiz,y) -

SISF®

Quotient Rule: given z = Z((sz; and h(x,y) # 0

0z _ hzy)- 22 —g(zy) 2

o = (hay)’
0z _ h(l‘,y)bTZ— (mvy)%
Oy hy)l?

Chain Rule: given z = [g(x, y)]"

-1 0
% = n[g(z,y)]" . ot
.
5 =nlg(zy)]" -5

2.4 Further Examples:
For the function U = U(x, y) find the the partial derivates with respect

tox and y
for each of the following examples

Example 1
U= —52° — 122y — 61°

Answer:

oU

— = U, =152 —12y

Ox

ou

- U, = —12z — 30y

18



Example 2

Answer:

Example 3

Answer:
oU
o
oU
Ay
Example 4

Answer:
oU
ox
oU
Ay
Example 5

Answer:
oU
ox
oU
dy

U = Tz%3
oU
ox vy
oU
8_y = Uy = 211’2y2

U = 32%(8z — Ty)

U, = 32%(8) + (8x — Ty)(6x) = 7227 — 422y

U, = 32%(=7) + (8x — Ty)(0) = —212*

U = (52% + Ty)(2z — 4y°)

= U, = (52 + Ty)(2) + (22 — 44°)(10z)
= U, = (52° + Ty)(—12¢°) + (22 — 4y°)(7)
v W
T =y
go= @=9)0) —9%°1) -9y’
’ (x —y)? (x —y)?
U — (v —y)(27y*) — 9y*(-1) _ 27xy* — 18y3
! (z —y)? (x —y)?
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Example 6

U= (z—3y)°
Answer:
ou 24\ 5
5, = Us=3(—3y)7(1) =3z -3y)
g—g = U, =3(z — 3y)*(=3) = —9(x — 3y)*

2.5 A Special Function: Cobb-Douglas

The Cobb-douglas function is a mathematical function that is very
popular in economic models. The general form is

z =%y

and its partial derivatives are
0z/0x = az* 'y’ and 0z/0y = bayb~!
Furthermore, the absolute value of the slope of the level curve of a

Cobb-douglas is given by

0z /0x ay
f M = ——
0z /0y f5 bx

Example: Production Function Let Q = f(K,L)
fr = dQ = Marginal product of labour (A in Q from a A in L)

fx = Q = Marginal product of capital (A in Q from a A in K)

Let Q K @[> (Cobb-Douglas Technology)
Then

MPy, = bK°L'! (for K = K)
MPg = aK* 'L’ (for L=1)

20



Isoquant: A’s in K and L that keep Q = Q
Then

AL -MP;, = —MPy-AK
or
0Q —0Q)
AL|—=]| = | —= | AK
(5) = (5
AK M Py,
= — MRTS —
AL RTS M Py
B NG
T aa—1[pb
— EK(a—a—l—l)Lb—l—b
a
b b K
= —K'L'=-=
a a L

21



Isoquants

Point C: 9¢ = MPy at L = L; and K = K,
Point D: 92 at L = L, and K = K,

Point E: 52 = M Py at L = L

M Pr, = marginal product of labour

M Py = marginal product of capital

22



3 National Income Model

Consider the linear model of a simple economy

Y = C+ 1)+ Gy
C = a+bYy

where Y, C are the endogenous variables and a, b, Iy and G, are the
exogenous variables and parameters.
In Equilibrium:

e a+[0+G0_ a [0 GO
o= I—b  1-b 1-b"1-0

e a—l—b[0+bG0_ a b[o bGO
¢ = 1—b I A

ove _ 1 0C° _ b oli
0Gc =15 o0 — 1% The Multipliers

Yo
ob

Y = (a+[0+G0)(1—b)_1

a@i = (a+Iy+Gy)(1—b)2(~1)(~1)  Chain Rule

oYy e [CL + Iy + G()]
Tl e
o (1-b)

= The income multiplier with respect to a change in the MPC

Y = C+ 1)+ Gy
C = a+bYy

23



Y -C = I)+ Gy

—bY +C = a
1 -1 Y Iy +G
(B ) ()= (")
ye — CL—|—]0—|—G0
1—0
e CL-I—b[o-i—bGo
¢ = 1—b
o _ 1 90 _ b
0G, — 1-b  9G, _ 1-b
oY 0
= = %[(a—l—fo-FGo)(l—b)*l}
= (a+ I+ Go)(1 =b)(~1)(-1)
_ a—+ Iy + Gy
(1—1b)°
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