Notes for Chapters 6 \& 7

Kevin Wainwright

April 26, 2014

1 Comparative Statistics

1.0.1 Example: "Shift in Demand"

Comparing the value of variables (P, Q) from one equilibrium point to another equilibrium point

1. Comparative statistics compares the values of P and Q at the points A and B ONLY!!!
2. Says nothing about the path they follow from A to B
3. Often, we are only interested in the direction variables move (ie. up or down, bigger or smaller)

1.0.2 Find the Slope of a Non-Linear Function

Slope $=\frac{\text { rise }}{\text { run }}=\frac{\Delta Y}{\Delta X}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Since: $y=f(x) \Longrightarrow \frac{\Delta Y}{\Delta X}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}$
At D: Slope $=\frac{\Delta Y}{\Delta X}=\frac{f\left(x_{1}+h_{2}\right)-f\left(x_{1}\right)}{\left(x_{1}+h_{2}\right)-x_{1}}=\frac{f\left(x_{1}+h_{2}\right)-f\left(x_{1}\right)}{h_{2}}$
At B: $\frac{\Delta Y}{\Delta X}=\frac{f\left(x_{1}+h_{1}\right)-f\left(x_{1}\right)}{h_{1}}$ as $\mathrm{h} \longrightarrow 0$ then $(x+h) \longrightarrow x$ in the Limit

1.1 The Limit

Slope $=\frac{f(x+h)-f(x)}{(x+h)-x}$
for $y=f(x)=x^{2}$

$$
\begin{aligned}
\text { Slope } & =\frac{(x+h)^{2}-x^{2}}{(x+h)-x} \\
& =\frac{\left(x^{2}+2 x h+h^{2}\right)-x^{2}}{h} \\
& =\frac{2 x h+h^{2}}{h} \\
& =(2 x+h)
\end{aligned}
$$

Let h go to zero (or take the limit)
$\lim \mathrm{h} \longrightarrow 0 \quad(2 x+h)=2 x$

$2 x$ is the lop of x^{2} at x_{1}
Generally:
$\lim \mathrm{h} \longrightarrow 0\left(\frac{\Delta Y}{\Delta X}\right)=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{d y}{d x}=f^{\prime}(x)$ the derivative

1.2 Left Hand, Right Hand Limit

1.2.1 Left Hand Limit

Start at $x-h$

Slope

$$
\begin{aligned}
& =\frac{f(x)-f(x-h)}{x-(x-h)} \\
& =\frac{x^{2}-(x-h)^{2}}{h} \\
& =x^{2}-x^{2}+2 x h-h^{2} \\
& =2 x-h \\
\lim h & \longrightarrow 0(2 x-h)=2 x=f^{\prime}(x)
\end{aligned}
$$

1.2.2 Right Hand Limit

Start at $\mathrm{x}+\mathrm{h}$

$$
\begin{aligned}
& =\frac{f(x+h)-f(x)}{(x+h)-x} \\
& =\frac{(x+h)^{2}-x^{2}}{h} \\
& =\frac{2 x h+h^{2}}{h} \\
& =2 x+h \\
\lim h & \longrightarrow 0(2 x h+h)=2 x=f^{\prime}(x)
\end{aligned}
$$

Therefore: $R H L=L H L=2 x=f^{\prime}(x)$

1.3 Continuity and Differentiability of a Function

The Result: Right Hand Limit = Left Hand Limit, or

$$
\lim h \longrightarrow 0\left[f\left(x_{1}+h\right)\right]=\lim h \longrightarrow-0\left[f\left(x_{1}-h\right)\right] \quad \text { for } x=x_{1}
$$

IS NOT ALWAYS TRUE
If it is true then the derivative at $x=x_{1}$ exists. In general, the derivative of a function exists if:

1. $\mathrm{f}(\mathrm{x})$ is a well defined function at $\mathrm{x}=\mathrm{x}_{1}\left\{\right.$ ie. $\mathrm{f}(\mathrm{x})=\frac{1}{x}$ and $\left.\mathrm{x}_{1}=0\right\}$
2. $\lim x \longrightarrow x_{1}(f(x))=f\left(x_{1}\right)$
3. x_{1} is the in the domain of $\mathrm{f}(\mathrm{x})$

1.3.1 Examples of Discontinuous Functions

1.3.2 Rules of Differentiation

1. Constant Function

$$
\text { If } y=f(x)=k \text { Then } \frac{d y}{d x}=f^{\iota}(x)=0
$$

1
2. Power Function

$$
\text { If } y=a x^{n}\{a, n \text { are constants }\} \text { Then } \frac{d y}{d x}=a n x^{n-1}
$$

Example

[^0](a) $\mathrm{y}=\mathrm{x}^{2} \quad \frac{d y}{d x}=2 x$
(b) $\mathrm{y}=3 \mathrm{x}^{4} \frac{d y}{d x}=12 x^{3}$
(c) $\mathrm{y}=\mathrm{x}^{-1} \frac{d y}{d x}=(-1) x^{-2}$

3. Sum-Difference Rule

$$
\text { If } y=f(x) \pm g(x) \text { then } \frac{d y}{d x}=\frac{d}{d x}[f(x) \pm g(x)]=f^{\prime}(x) \pm g^{\prime}(x)
$$

Examples
(a) Let

$$
f(x)=x^{3} \quad g(x)=x^{1 / 2}
$$

Therefore

$$
\begin{aligned}
y & =x^{3}+x^{1 / 2} \\
\frac{d y}{d x} & =3 x^{2}+\frac{1}{2} x^{-1 / 2}
\end{aligned}
$$

(b) If

$$
y=f(x)-g(x)
$$

Where

$$
f(x)=2 x^{3} \text { and } g(x)=x^{4}
$$

Then

$$
\frac{d y}{d x}=6 x^{2}-4 x^{3}
$$

[^1]
4. Product Rule

If

$$
y=f(x) g(x)
$$

Then

$$
\frac{d y}{d x}=f(x) g^{\prime}(x)+f^{\prime}(x) g(x)
$$

Example: Let

$$
f(x)=\left(x^{2}+x\right) \quad g(x)=x^{3}
$$

Then

$$
\begin{aligned}
y & =\left(x^{2}+x\right)+\left(x^{3}\right) \\
\frac{d y}{d x} & =\underbrace{(2 x+1)\left(x^{3}\right)}_{f^{\prime}(x) g(x)}+\underbrace{\left(x^{2}+x\right)\left(3 x^{2}\right)}_{f(x) g^{\prime}(x)}
\end{aligned}
$$

3 Function Case

if

$$
y=f(x) g(x) h(x)
$$

Then

$$
\frac{d y}{d x}=\underbrace{f^{\prime}(x) g(x) h(x)}_{f^{\prime} g h}+\underbrace{f(x) g^{\prime}(x) h(x)}_{f g^{\prime} h}+\underbrace{f(x) g(x) h^{\prime}(x)}_{f g h^{\prime}}
$$

5. Quotient Rule

If

$$
y=\frac{f(x)}{g(x)}
$$

Then

$$
\frac{d y}{d x}=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g(x)^{2}}
$$

Example:

$$
\begin{aligned}
y & =\frac{\left(x^{3}+2\right)}{x^{2}} \\
\frac{d y}{d x} & =\frac{\left(3 x^{2}\right)\left(x^{2}\right)-\left(x^{3}+2\right)(2 x)}{x^{4}}=\frac{x^{3}-4}{x^{3}}
\end{aligned}
$$

Quotient Rule is a special case of PRODUCT RULE.

$$
\begin{aligned}
y & =\frac{\left(x^{3}+2\right)}{x^{2}}=\left(x^{3}+2\right)\left(x^{-2}\right) \\
\frac{d y}{d x} & =\left(3 x^{2}+2\right)\left(x^{-2}\right)+\left(x^{3}+2\right)\left(-2 x^{-3}\right)=3-2-4 x^{-3} \\
& =1-4 x^{-3}=\frac{x^{3}-4}{x^{3}}
\end{aligned}
$$

6. Chain Rule

$$
\begin{array}{cc}
\text { Suppose } & y=f(x) \\
\text { and } & x=g(z) \\
\text { Then } & y=f(g(z))
\end{array}
$$

Therefore:

$$
\frac{d y}{d x}=\left(\frac{d y}{d x}\right)\left(\frac{d x}{d z}\right)=f^{\prime}(g(z)) g^{\prime}(z)
$$

Chain effect

$$
\Delta Y \longleftarrow \Delta X \longleftarrow \Delta Z
$$

Example:Let

$$
\begin{aligned}
& y=f(x)=x^{2} \\
& x=g(z)=(x+2)
\end{aligned}
$$

Then

$$
y=f(g(z))=(x+2)^{2}
$$

And

$$
\frac{d y}{d z}=2(x+2)
$$

1.4 Monotonic Functions and the Inverse Function Rule

If $x_{1}<x_{2}$ and $f\left(x_{1}\right)<f\left(x_{2}\right)$ (for all x), then $f(x)$ is Monotonically increasing.

If $x_{1}<x_{2}$ and $f\left(x_{1}\right)>f\left(x_{2}\right)$ then $f(x)$ is Monotonically decreasing.

If a function is Monotonic the an inverse function exists. Ie. If $y=f(x)$, then $x=f^{-1}(y)$.

Example $y=x^{2} \quad(x \geqslant 0), x=\sqrt{y}$

1.4.1 Derivative of Inverse Functions

If $y=f(x)$ and $x=f^{-1}(y)$, then $\frac{d y}{d x}=f^{\prime}(x)$ and $\frac{d x}{d y}=\frac{1}{f^{\prime}(x)}$

Example 1:

$$
\begin{aligned}
& y=3 x+2 \Rightarrow \frac{d y}{d x}=3 \\
& x=\frac{1}{3} y-\frac{2}{3} \Rightarrow \frac{d x}{d y}=\frac{1}{3}=\frac{1}{\frac{d y}{d x}}
\end{aligned}
$$

Example 2:

$$
\text { If: } \quad y=x^{2} \text { and } \frac{d y}{d x}=2 x
$$

then: $\quad x=y^{1 / 2}$ and $\frac{d x}{d y}=\frac{1}{2} y^{-1 / 2}=\frac{1}{2 y^{1 / 2}}$

$$
\text { so: } \quad \frac{d x}{d y}=\frac{1}{2 x}=\frac{1}{\frac{d y}{d x}}
$$

Application: Revenue Functions

> Demand Function : $\quad Q=10-P$ Inverse Demand Function $: \quad P=10-Q$

Average Revenue

$$
A R=P=10-Q \text { Inverse demand function }
$$

Total Revenue

$$
\begin{aligned}
& T R=P \cdot Q=(10-Q) Q=10 Q-Q^{2} \\
& T R=10 Q-Q^{2} \text { is a quadratic function }
\end{aligned}
$$

Marginal Revenue

$$
M R=\frac{d(T R)}{d Q}=10-2 Q
$$

Given $A R=10-Q$ and $M R=10-2 Q$ MR falls twice as fast as AR.

Generally:

$$
\begin{aligned}
T R & =a Q-b Q^{2} \text { (general form quadratic) } \\
A R & =\frac{T R}{Q}=a-b Q \text { (inverse demand function) } \\
M R & =\frac{d(T R)}{d Q}=a-2 b Q(\text { 1st derivative })
\end{aligned}
$$

Graphically

1. TR is at a MAX when $M R=0$
2. $M R=10-2 Q=0$

$$
Q=5
$$

3. $T R=10 Q-Q^{2}=25$
4. $A R=10-Q=5$

1.4.2 Average cost and Marginal Cost

1. Total Cost $=C(Q)$
2. Marginal Cost $=\frac{d C(Q)}{d Q}$
3. Average Cost $=\frac{C(Q)}{Q}$
4. Average costs are minimized when the slop of $\mathrm{AC}=0$ (point A$)$

$$
\begin{aligned}
\text { Slope of AC } & =\frac{d A C}{d Q}=\frac{C^{\prime}(Q) Q-C(Q)}{Q^{2}} \text { Quotient Rule } \\
& =\frac{1}{Q}\left[C^{\prime}(Q)-\frac{C(Q)}{Q}\right] \text { Factor out } \mathrm{Q} \\
& =\frac{1}{Q}[M C-A C]
\end{aligned}
$$

Slope of AC is:

1. (a) i. negative if $\mathrm{MC}<\mathrm{AC}$
ii. positive if $\mathrm{MC}>\mathrm{AC}$
iii. zero if $\mathrm{MC}=\mathrm{AC}$

2 Partial Derivatives

Single variable calculus is really just a "special case" of multivariable calculus. For the function $y=f(x)$, we assumed that y was the endogenous variable, x was the exogenous variable and everything else was a parameter. For example, given the equations

$$
y=a+b x
$$

or

$$
y=a x^{n}
$$

we automatically treated a, b, and n as constants and took the derivative of y with respect to $\mathrm{x}(d y / d x)$. However, what if we decided to treat x as a constant and take the derivative with respect to one of the other variables? Nothing precludes us from doing this. Consider the equation

$$
y=a x
$$

where

$$
\frac{d y}{d x}=a
$$

Now suppose we find the derivative of y with respect to a, but TREAT x as the constant. Then

$$
\frac{d y}{d a}=x
$$

Here we just "reversed" the roles played by a and x in our equation.

2.1 Partial Derivatives

Suppose $y=f\left(x_{1}, x_{2}, \ldots x_{n}\right)$
ie. $y=2 x_{1}^{2}+3 x_{2}+2 x_{1} x_{2}$
What is the change in y when we change $\mathrm{x}_{i}(i=1, n)$ hold all other x's constant?
or: Find $\frac{\Delta y}{\Delta x_{1}}=\frac{\partial y}{\partial x_{1}}=f_{1}$ (holding $\mathrm{x}_{2}, \ldots x_{n}$ fixed)
Rule: Treat all other variables as constants and use ordinary rules of differentation.

Example:

$$
\begin{aligned}
y & =2 x_{1}^{2}+3 x_{2}+2 x_{1} x_{2} \\
\frac{d y}{d x_{1}} & =4 x_{1}+2 x_{2}\left(=f_{1}\right) \\
\frac{d y}{d x_{2}} & =3+2 x_{1}\left(=f_{2}\right)
\end{aligned}
$$

2.2 Two Variable Case:

let $z=f(x, y)$, which means " \mathbf{z} is a function of \mathbf{x} and \mathbf{y} ". In this case z is the endogenous (dependent) variable and both x and y are the exogenous (independent) variables.

To measure the the effect of a change in a single independent variable (x or y) on the dependent variable (z) we use what is known as the PARTIAL DERIVATIVE.

The partial derivative of z with respect to x measures the instantaneous change in the function as x changes while $H O L D I N G$ y constant. Similarly, we would hold x constant if we wanted to evaluate the effect of a change in y on z. Formally:

- $\frac{\partial z}{\partial x}$ is the "partial derivative" of z with respect to x, treating y as a constant. Sometimes written as f_{x}.
- $\frac{\partial z}{\partial y}$ is the "partial derivative" of z with respect to y, treating x as a constant. Sometimes written as f_{y}.

The " ∂ " symbol ("bent over" lower case D) is called the "partial" symbol. It is interpreted in exactly the same way as $\frac{d y}{d x}$ from single variable calculus. The ∂ symbol simply serves to remind us that there are other variables in the equation, but for the purposes of the current exercise, these other variables are held constant.
EXAMPLES:

$$
\begin{aligned}
& z=x+y \quad \partial z / \partial x=1 \quad \partial z / \partial y=1 \\
& z=x y \quad \partial z / \partial x=y \quad \partial z / \partial y=x \\
& z=x^{2} y^{2} \quad \partial z / \partial x=2\left(y^{2}\right) x \quad \partial z / \partial y=2\left(x^{2}\right) y \\
& z=x^{2} y^{3}+2 x+4 y \quad \partial z / \partial x=2 x y^{3}+2 \quad \partial z / \partial y=3 x^{2} y^{2}+4
\end{aligned}
$$

- REMEMBER: When you are taking a partial derivative you treat the other variables in the equation as constants!

2.3 Rules of Partial Differentiation

Product Rule: given $z=g(x, y) \cdot h(x, y)$

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=g(x, y) \cdot \frac{\partial h}{\partial x}+h(x, y) \cdot \frac{\partial g}{\partial x} \\
& \frac{\partial z}{\partial y}=g(x, y) \cdot \frac{\partial h}{\partial y}+h(x, y) \cdot \frac{\partial g}{\partial y}
\end{aligned}
$$

Quotient Rule: given $z=\frac{g(x, y)}{h(x, y)}$ and $h(x, y) \neq 0$

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=\frac{h(x, y) \cdot \frac{\partial g}{\partial x}-g(x, y) \cdot \frac{\partial h}{\partial x}}{[h(x, y)]^{2}} \\
& \frac{\partial z}{\partial y}=\frac{h(x, y) \cdot \frac{\partial g}{\partial y}-g(x, y) \cdot \frac{\partial h}{\partial y}}{[h(x, y)]^{2}}
\end{aligned}
$$

Chain Rule: given $z=[g(x, y)]^{n}$

$$
\begin{aligned}
\frac{\partial z}{\partial x} & =n[g(x, y)]^{n-1} \cdot \frac{\partial g}{\partial x} \\
\frac{\partial z}{\partial y} & =n[g(x, y)]^{n-1} \cdot \frac{\partial g}{\partial y}
\end{aligned}
$$

2.4 Further Examples:

For the function $U=U(x, y)$ find the the partial derivates with respect to x and y
for each of the following examples

Example 1

$$
U=-5 x^{3}-12 x y-6 y^{5}
$$

Answer:

$$
\begin{aligned}
& \frac{\partial U}{\partial x}=U_{x}=15 x^{2}-12 y \\
& \frac{\partial U}{\partial y}=U_{y}=-12 x-30 y^{4}
\end{aligned}
$$

Example 2

$$
U=7 x^{2} y^{3}
$$

Answer:

$$
\begin{aligned}
& \frac{\partial U}{\partial x}=U_{x}=14 x y^{3} \\
& \frac{\partial U}{\partial y}=U_{y}=21 x^{2} y^{2}
\end{aligned}
$$

Example 3

$$
U=3 x^{2}(8 x-7 y)
$$

Answer:

$$
\begin{aligned}
& \frac{\partial U}{\partial x}=U_{x}=3 x^{2}(8)+(8 x-7 y)(6 x)=72 x^{2}-42 x y \\
& \frac{\partial U}{\partial y}=U_{y}=3 x^{2}(-7)+(8 x-7 y)(0)=-21 x^{2}
\end{aligned}
$$

Example 4

$$
U=\left(5 x^{2}+7 y\right)\left(2 x-4 y^{3}\right)
$$

Answer:

$$
\begin{aligned}
& \frac{\partial U}{\partial x}=U_{x}=\left(5 x^{2}+7 y\right)(2)+\left(2 x-4 y^{3}\right)(10 x) \\
& \frac{\partial U}{\partial y}=U_{y}=\left(5 x^{2}+7 y\right)\left(-12 y^{2}\right)+\left(2 x-4 y^{3}\right)(7)
\end{aligned}
$$

Example 5

$$
U=\frac{9 y^{3}}{x-y}
$$

Answer:

$$
\begin{aligned}
& \frac{\partial U}{\partial x}=U_{x}=\frac{(x-y)(0)-9 y^{3}(1)}{(x-y)^{2}}=\frac{-9 y^{3}}{(x-y)^{2}} \\
& \frac{\partial U}{\partial y}=U_{y}=\frac{(x-y)\left(27 y^{2}\right)-9 y^{3}(-1)}{(x-y)^{2}}=\frac{27 x y^{2}-18 y^{3}}{(x-y)^{2}}
\end{aligned}
$$

Example 6

$$
U=(x-3 y)^{3}
$$

Answer:

$$
\begin{aligned}
& \frac{\partial U}{\partial x}=U_{x}=3(x-3 y)^{2}(1)=3(x-3 y)^{2} \\
& \frac{\partial U}{\partial y}=U_{y}=3(x-3 y)^{2}(-3)=-9(x-3 y)^{2}
\end{aligned}
$$

2.5 A Special Function: Cobb-Douglas

The Cobb-douglas function is a mathematical function that is very popular in economic models. The general form is

$$
z=x^{a} y^{b}
$$

and its partial derivatives are

$$
\partial z / \partial x=a x^{a-1} y^{b} \quad \text { and } \quad \partial z / \partial y=b x^{a} y^{b-1}
$$

Furthermore, the absolute value of the slope of the level curve of a Cobb-douglas is given by

$$
\frac{\partial z / \partial x}{\partial z / \partial y}=M R S=\frac{a}{b} \frac{y}{x}
$$

Example: Production Function Let $Q=f(K, L)$
$f_{L}=\frac{d Q}{d K}=$ Marginal product of labour (Δ in Q from a Δ in L)
$f_{K}=\frac{d Q}{d K}=$ Marginal product of capital (Δ in Q from a Δ in K)
Let $Q=K^{a} L^{b}$ (Cobb-Douglas Technology)
Then

$$
\begin{array}{ll}
M P_{L}=b K^{a} L^{b-1} & (\text { for } K=\bar{K}) \\
M P_{K}=a K^{a-1} L^{b} & (\text { for } L=\bar{L})
\end{array}
$$

Isoquant: Δ 's in K and L that keep $Q=\bar{Q}$
Then

$$
\begin{gathered}
\Delta L \cdot M P_{L}=-M P_{K} \cdot \Delta K \\
\text { or } \\
\begin{aligned}
\Delta L\left(\frac{\partial Q}{\partial L}\right) & =\left(\frac{-\partial Q}{\partial K}\right) \Delta K \\
\frac{\Delta K}{\Delta L} & =M R T S=\frac{M P_{L}}{M P_{K}} \\
= & \frac{b K^{a} L^{b-1}}{a K^{a-1} L^{b}} \\
= & \frac{b}{a} K^{(a-a+1)} L^{b-1-b} \\
= & \frac{b}{a} K^{1} L^{-1}=\frac{b}{a} \frac{K}{L}
\end{aligned}
\end{gathered}
$$

Point C: $\frac{\partial Q}{\partial L}=M P_{L}$ at $L=L_{1}$ and $K=K_{0}$
Point D: $\frac{\partial Q}{\partial L}$ at $L=L_{2}$ and $K=K_{0}$
Point E: $\frac{\partial Q}{\partial K}=M P_{K}$ at $L=L_{0}$
$M P_{L}=$ marginal product of labour
$M P_{K}=$ marginal product of capital

3 National Income Model

Consider the linear model of a simple economy

$$
\begin{aligned}
Y & =C+I_{0}+G_{0} \\
C & =a+b Y
\end{aligned}
$$

where Y, C are the endogenous variables and a, b, I_{0} and G_{0} are the exogenous variables and parameters.

In Equilibrium:

$$
\begin{gathered}
Y^{e}=\frac{a+I_{0}+G_{0}}{1-b}=\frac{a}{1-b}+\frac{I_{0}}{1-b}+\frac{G_{0}}{1-b} \\
C^{e}=\frac{a+b I_{0}+b G_{0}}{1-b}=\frac{a}{1-b}+\frac{b I_{0}}{1-b}+\frac{b G_{0}}{1-b} \\
\frac{\partial Y^{e}}{\partial G_{0}}=\frac{1}{1-b} \quad \frac{\partial C^{e}}{\partial G_{0}}=\frac{b}{1-b} \quad \text { The Multipliers }
\end{gathered}
$$

$$
\frac{\partial Y^{e}}{\partial b} ?
$$

$$
Y^{e}=\left(a+I_{0}+G_{0}\right)(1-b)^{-1}
$$

$$
\frac{\partial Y^{e}}{\partial b}=\left(a+I_{0}+G_{0}\right)(1-b)^{-2}(-1)(-1) \quad \text { Chain Rule }
$$

$$
\frac{\partial Y^{e}}{\partial b}=+\left[\frac{a+I_{0}+G_{0}}{(1-b)^{2}}\right]
$$

$=$ The income multiplier with respect to a change in the MPC

$$
\begin{aligned}
& Y=C+I_{0}+G_{0} \\
& C=a+b Y
\end{aligned}
$$

$$
\begin{gathered}
Y-C=I_{0}+G_{0} \\
-b Y+C=a \\
\left(\begin{array}{cc}
1 & -1 \\
-b & 1
\end{array}\right)\binom{Y}{C}=\binom{I_{0}+G_{0}}{a} \quad|A|=1-b \\
Y^{e}=\frac{a+I_{0}+G_{0}}{1-b} \\
C^{e}=\frac{a+b I_{0}+b G_{0}}{1-b} \\
\frac{\partial Y}{\partial b}=\frac{\partial}{\partial b}\left[\left(a+I_{0}+G_{0}\right)(1-b)^{-1}\right] \\
= \\
=\frac{\left.\partial+I_{0}+G_{0}\right)(1-b)^{-2}(-1)(-1)}{(1-b)^{2}}
\end{gathered}
$$

[^0]: ${ }^{1}$ insert first graph beside $\# 1$ on Page 8

[^1]: ${ }^{2}$ Insert 2 nd graph on page 8

