CHAPTER

SIX

COMPARATIVE STATICS
AND THE CONCEPT OF DERIVATIVE

The present and the two following chapters will be devoted to the methods of
comparative-static analysis.

6.1 THE NATURE OF COMPARATIVE STATICS

Comparative statics, as the name suggests, is concerned with the comparison of
different equilibrium states that are associated with different sets of values of
parameters and exogenous variables. For purposes of such a comparison, we
always start by assuming a given initial equilibrium state. In the isolated-market
model, for example, such an initial equilibrium will be represented by a de-
terminate price P and a corresponding quantity Q. Similarly, in the simple
national-income model of (3.23), the initial equilibrium will be specified by a
determinate Y and a corresponding C. Now if we let a disequilibrating change
occur in the model—in the form of a variation in the value of some parameter or
exogenous variable—-the initial equilibrium will, of course, be upset. As a result,
the various endogenous variables must undergo certain adjustments. If it is
assumed that a new equilibrium state relevant to the new values of the data can
be defined and attained, the question posed in the comparative-static analysis is:
How would the new equilibrium compare with the old?

It should be noted that in comparative statics we again disregard the process
of adjustment of the variables; we merely compare the initial ( prechange)
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128 COMPARATIVE-STATIC ANALYSIS

equilibrium state with the final ( posrchange) equilibrium state. Also, we again
preclude the possibility of instability of equilibrium, for we assume the new
equilibrium to be attainable, just as we do for the old.

A comparative-static analysis can be either qualitative or quantitative in
nature. If we are interested only in the question of, say, whether an increase in
investment I, will increase or decrease the equilibrium income Y, the analysis will
be qualitative because the direction of change is the only matter considered. But if
we are concerned with the magnitude of the change in Y resulting from a given
change in I, (that is, the size of the investment multiplier), the he analysis will

obviously be quantitative. By obtaining a quantitative answer, however, we can

automatically tell the direction of change from its algebraic sign. Hence the

quantitative analysis always embraces the qualitative.

It should be clear that the problem under consideration is essentially ong of
finding a rate of change: the rate of change of the equilibrium value of an
endogenous variable with respect to the change in a particular parameter or_
exogenous variable. For this reason, the mathematical concept of derivative takes
on preponderant significance in comparative statics, because that concept—the
most fundamental one in the branch of mathematics known as differential calculus
— is directly concerned with the notion of rate of change! Later on, moreover, we
shall find the concept of derivative to be of extreme importance for optimization
problems as well.

6.2 RATE OF CHANGE AND THE DERIVATIVE

Even though our present context is concerned only with the rates of change of the
equilibrium values of the variables in a model, we may carry on the discussion in
a more general manner by considering the rate of change of any variable y in
response to a change in another variable x, where the two variables are related to

7 y=fx) O

Applied in the comparative-static context, the variable y will represent the
equilibrium value of an endogenous variable, and x will be some parameter. Note
that, for a start, we are restricting ourselves to the simple case where there is only
a single parameter or exogenous variable in the model. Once we have mastered
this simplified case, however, the extension to the case of more parameters will
prove relatively easy.

The Difference qul_:‘ll:ggt

Since the notion of “change” figures prominently in the present context, a special
symbol is needed to represent it. When the variable x changes from the value X,
to a new value x,, the change is measured by the difference x, — x,. Hence, using
the symbol A (the Greek capital delta, for “difference”) to denote the change, we

/
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write Ax = x; — x,. Also needed is a way of denoting the value of the function
f(x) at various values of x. The standard practice is to use the notation f(x,) to
represent the value of f(x) when x = x;. Thus, for the function f(x) =5 + x?,
we have f(0) = 5 + 02 = 5; and similarly, f(2) = 5 + 22 = 9, etc.

When x changes from an initial value x, to a new value (x, + Ax), the value
of the function y = f(x) changes from f(x,) to f(x, + Ax). The change in y per
unit of change in x can be represented by the difference quotient

(6.1) g_i_ _ f(xo + A:l f(xo) ;

This quotient, which measures the average rate of change of y, can be calculated if
we know the initial value of x, or x,, and the magnitude of change in x, or Ax.
That is, Ay /Ax is a function of x;, and Ax.

e

Example I Giveny = f(x)= 3x2 — 4, we can write: - /(K) — 6 X t3ax
F(xg) =3(x)" =4 f(xp+ Ax) = 3(x, + Ax)* — 4

Therefore, the difference quotient is

N - /
Ay _ 3(xo+ Ax)’ -4 - (3x2 - 4) _ 6xpAx + 3(Ax)ﬂ, A7 Py L5,
Ax o Ax Ax T oy
’ i
'=6x, + 3Ax '

(6.2)

which can be evaluated if we are given x, and Ax. Let x;, = 3 and Ax = 4; then
the average rate of change of y will be 6(3) + 3(4) = 30. This means that, on the
average, as x changes from 3 to 7, the change in y is 30 units per unit change in x.

The Derivative

Frequently, we are interested in the rate of change of y when Ax is very small. In
such a case, it is possible to obtain an approximation of Ay /Ax by dropping all
the terms in the difference quotient involving the expression Ax. In (6.2), for
instance, if Ax is very small, we may simply take the term 6x, on the right as an
approximation of A y /Ax. The smaller the value of Ax, of course, the closer is the
approximation to the true value of Ay/Ax.

As Ax approaches zero (meaning that it gets closer and closer to, but never
actually reaches, zero), (6x, + 3Ax) will approach the value 6x,, and by the
same token, Ay/Ax will approach 6x, also. Symbolically, this fact is expressed
either by the statement Ay /Ax — 6x0 as Ax — 0, or by the equation

Ay T T
(6.3) AI;TO Ay A1):m (6x0 + 3Ax) 6x0 )

where the symbol hm is read: “The limit of... as Ax approaches 0.” If, as

Ax — 0, the limit of the difference quotient A y/Ax exists, that limit is identified
as the derivative of the function y = f(x).
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Several points should be noted about the derivative. First, a derivative is a
function; in fact, in this usage the word derivative really means a derived function.
The original function y = f(x) is a primitive function, and the derivative is
another function derived from it. Whereas the difference quotient is a function of
xo and Ax, you should observe—from (6.3), for instance—that the derivative is a
function of x, only. This is because Ax is already compelled to approach zero,
and therefore it should not be regarded as another variable in the function. Let us
also add that so far we have used the subscripted symbol x, only in order to stress
the fact that a change in x must start from some specific value of x. Now that this
is understood, we may delete the subscript and simply state that the derivative,
like the primitive function, is itself a function of the independent variable x. That
is, for each value of x, there is a unique corresponding value for the derivative
function.

Second, since the derivative is merely a limit of the difference quotient, which
measures a rate of change of y, the derivative must of necessity also be a measure
of some rate of change. In view of the fact that the change in x envisaged in the
derivative concept is infinitesimal (that is, Ax — 0), however, the rate measured
by the derivative is in the nature of an instanfaneous rate of change.
" Third, there is the matter of notation. Derivative functions are commonly
denoted in two ways. Given a primitive function y = f(x), one way of denoting
its derivative (if 1t exists) is to use the symbol f'( x), or simply f’; this notation is
attributed to the mathematician Lagrange. The other common notation is dy/dx,
devised by the mathematician Leibniz. [Actually there is a third notation, Dy, or
Df(x), but we shall not use it in the following discussion.}] The notation f'(x),
which resembles the notation for the primitive function f(x), has the advantage of
conveying the idea that the derivative is itself a function of x. The reason for
expressing it as f’(x)—rather than, say, ¢(x)—is to emphasize that the function
f' 1s derived from the primitive function f. The alternative notation, dy /dx, serves
instead to emphasize that the value of a derivative measures a rate of change. The
letter d is the counterpart of the Greek A, and dy/dx differs from Ay /Ax chiefly
subsequent discussion, we shall use both of these notations, depending on which
seems the more convenient in a particular context.

Using these two notations, we may define the derivative of a given function
y = f(x) as follows:

d . A
—ysf'(x)sAgr_ngA—){-

Example 2 Referring to the function y = 3x? — 4 again, we have shown its
difference quotient to be (6.2), and the limit of that quotient to be (6.3). On the
basis of the latter, we may now write (replacing x,, with x):
&
dx
Note that different values of x will give the derivative correspondingly different

=6x or f{x)=6x
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values. For instance, when x = 3, we have f’(x) = 6(3) = 18; but when x = 4, we
find that f'(4) = 6(4) = 24,

EXERCISE 6.2

1 Given the function y = 4x2 + 9:
(a) Find the difference quotient as a function of x and Ax. (Use x in lieu of x,).
(b) Find the derivative dy /dx.
(¢) Find f'(3) and f'(4).

2 Given the function y = 5x2 — 4x:
(a) Find the difference quotient as a function of x and A x.
(b) Find the derivative dy/dx.
(¢) Find f'(2) and f'(3).

3 Given the function y = 5x — 2:

(a) Find the difference quotient Ay /A x. What type of function is it?

(b) Since the expression Ax does not appear in the function A y/Ax above, does it
make any difference to the value of Ay/Ax whether Ax is large or small? Consequently,
what is the limit of the difference quotient as Ax approaches zero?

6.3 THE DERIVATIVE AND THE SLOPE OF A CURVE

Elementary economics tells us that, given a total-cost function C = f(Q), where C
denotes total cost and Q the output, the marginal cost (MC) is defined as the
change in total cost resulting from a unit increase in output; that is, MC =
AC/AQ. It is understood that AQ is an extremely small change. For the case of a
product that has discrete units (integers only), a change of one unit is the smallest
change possible; but for the case of a product whose quantity is a continuous
variable, AQ will refer to an infinitesimal change. In this latter case, it is well
known that the marginal cost can be measured by the slope of the total- cost
curve. But the slope of the total-cost curve is nothing but the limit of the ratlg -
AC/AQ, when AQ approaches zero. Thus the concept of the slope of a curve is
merely the geometric counterpart of the concept of the derivative. Both have to do
with the “marginal” notion so extensively used in economics.

In Fig. 6.1, we have drawn a total-cost curve C, which is the graph of the
(primitive) function C = f(Q). Suppose that we consider Q, as the initial output
level from which an increase in output is measured, then the relevant point on the
cost curve will be A. If output is to be raised to Q, + AQ = Q,, the total cost will
be increased from Gy to G + AE)— = C,; thus AC/AQ = (C, — CO)/(Q2 ,QO)
Geometrically, this is the ratio of two hne segments, EB/AE, or the slope of the

line is particular ratio measures an average rate of change—the average
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c
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Figure 6.1

marginal cost for the particular AQ pictured—and represents a difference quo-
tient. As such, it is a function of the initial value Q, and the amount of change
AQ.

What happens when we vary the magnitude of AQ? If a smaller output
increment is contemplated (say, from Q, to Q, only), then the average marginal
cost will be measured by the slope of the line AD instead. Moreover, as we reduce
the output increment further and further, flatter and flatter lines will result until,
in the limit (as AQ — 0), we obtain the line KG (which is the tangent line to the
cost curve at point 4) as the relevant line. The slope of KG(= HG/KH)
measures the slope of the total-cost curve at point A and represents the limit of
AC/AQ, as AQ — 0, when initial output is at Q = Q,,. Therefore, in terms of the
derivative, the slope of the C = f(Q) curve at point A corresponds to the
particular derivative value f'(Q,).

What if the initial output level is changed from Q, to, say, Q,? In that case,
point B on the curve will replace point 4 as the relevant point, and the slope of
the curve at the new point B will give us the derivative value f'(Q,). Analogous
results are obtainable for alternative initial output levels. In general, the denvatlve
f (Q)—a function of Q—will vary as Q changes. )

6.4 THE CONCEPT OF LIMIT

The derivative dy/dx has been defined as the limit of the difference quotient
Ay/Ax as Ax — 0. If we adopt the shorthand symbols ¢ = Ay/Ax (g for
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quotient) and v = Ax (v for variation), we have

dy .. Ay
dx = AT Ay Jma

In view of the fact that the derivative concept relies heavily on the notion of limit,
it is imperative that we get a clear idea about that notion.

Left-Side Limit and Right-Side Limit

The concept of limit is concerned with the question: “What value does one
variable (say, ¢) approach as another variable (say, v) approaches a specific value
(say, zero)?” In order for this question to make sense, ¢ must, of course, be a
function of v; say, ¢ = g(v). Our immediate interest is in finding the limit of g as
v — 0, but we may just as easily explore the more general case of v = N, where N
is any finite real number. Then, lim ¢ will be merely a special case of lim g

where N = 0. In the course of thev&;gcussion, we shall actually also consider ?l[le
limit of ¢ as v = + oo (plus infinity) or as v — — oo (minus infinity).

When we say v — N, the variable v can approach the number N either from
values greater than N, or from values less than N, If, as v — N from the left side
(from values less than N), g approaches a finite number L, we call L the left-side
limit of g. On the other hand, if L is the number that g tends to as v = N from
the right side (from values greater than N), we call L the right-side limit of g. The
left- and right-side limits may or may not be equal.

The left-side limit of ¢ is symbolized by lirjrvl_ ¢ (the minus sign signifies from

values less than N), and the right-side limil{ is written as 11m g. When—and

U—-‘)

only when—the two limits have a common finite value (say, L), we consider the

limit of g to exist and write it as lim ¢ = L. Note that L must be a finite number.
PR
If we have the situation of hm q = oo (or — 00), we shall consider ¢ to possess no

limit, because lim g = oo means that ¢ > o0 as v — N, and if g will assume '
v—=>N -
ever-increasing values as v tends to N, it would be contradictory to say that g has

a limit. As a convenient way of expressing the fact that ¢ = oc as v = N,
however, people do indeed write lim ¢ = oo and speak of ¢ as having an
“infinite limit.”. oo
~In certain cases, only the limit of one side needs to be considered. In taking
the limit of ¢ as v = + oo, for instance, only the left-side limit of ¢ 1s relevant,
because v can approach +oo only from the left. Similarly, for the case of
v — — o0, only the right-side limit is relevant. Whether the limit of g exists in
these cases will depend only on whether ¢ approaches a finite value as v — + oo,
or as v > — .
It is important to realize that the symbol oo (infinity) is not a number, and
therefore it cannot be subjected to the usual algebraic operations. We cannot have
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3 + oo or 1/00; nor can we write ¢ = oo, which is not the same as g — oo.
However, it is acceptable to express the limit of g as “ = > (as against —) oo, for
this merely indicates that g — oo.

Graphical Illustrations

Let us illustrate, in Fig. 6.2, several possible situations regarding the limit of a
function ¢ = g(v).

Figure 6.2a shows a smooth curve. As the variable v tends to the value N
from either side on the horizontal axis, the variable ¢ tends to the value L. In this
case, the left-side limit is identical with the right-side limit; therefore we can write

lim g = L.

D_)NThe curve drawn in Fig. 6.2b is not smooth; it has a sharp turning point
directly above the point N. Nevertheless, as v tends to N from either side, g again
tends to an identical value L. The limit of ¢ again exists and is equal to L.

Figure 6.2¢ shows what is known as a step function.* In this case, as v tends
to N, the left-side limit of g is L,, but the right-side limit is L,, a different
number. Hence, g does not have a limit as v = N.

Lastly, in Fig. 6.2d, as v tends to N, the left-side limit of g is — oo, whereas
the right-side limit is + oo, because the two parts of the (hyperbolic) curve will
fall and rise indefinitely while approaching the broken vertical line as an asymp-

tote. Again, lim g does not exist. On the other hand, if we are considering a
v— N
different sort of limit in diagram d, namely, lim g, then only the left-side limit
v+
has relevance, and we do find that limit to exist: “lim g = M. Analogously, you

can verify that lim ¢ = M as well. e T

It is also pogsibleOo to apply the concepts of left-side and right-side limits to the
discussion of the marginal cost in Fig. 6.1. In that context, the variables g and v
will refer, respectively, to the quotient AC /AQ and to the magnitude of AQ, with
all changes being measured from point 4 on the curve. In other words, g will refer
to the slope of such lines as AB, AD, and KG, whereas v will refer to the length of
such lines as Q,Q, (= line AE) and Q,Q, (= line AF). We have already seen
that, as v approaches zero from a positive value, ¢ will approach a value equal to
the slope of line KG. Similarly, we can establish that, if AQ approaches zero from

. * This name is easily explained by the shape of the curve. But step functions can be expressed
algebraically, too. The one illustrated in Fig. 6.2¢ can be expressed by the equation

L, (for0 <v <N)
77 L, (for N < v)

Note that, in each subset of its domain described above, the function appears as a distinct constant
function, which constitutes a “step” in the graph.

In economics, step functions can be used, for instance, to show the various prices charged for
different quantities purchased (the curve shown in Fig. 6.2 ¢ pictures quantity discount) or the various
tax rates applicable to different income brackets.
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Figure 6.2

a negative value (i.e., as the decrease in output becomes less and less), the quotient
AC/AQ, as measured by the slope of such lines as R4 (not drawn), will also
approach a value equal to the slope of line KG. Indeed, the situation here is very
much akin to that illustrated in Fig. 6.2a. Thus the slope of KG in Fig. 6.1 (the
counterpart of L in Fig. 6.2) is indeed the limit of the quotient g as v tends to
zero, and as such it gives us the marginal cost at the output level Q = Q,,.
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Evaluation of a Limit

Let us now illustrate the algebraic evaluation of a limit of a given function
q = g(v).

Example 1 Given ¢ =2 + ¢%, find lim g. To take the left-side limit, we sub-
v—=0

stitute the series of negative values — 1, — {5, — 1&,... (in that order) for v and

find that (2 + v?) will decrease steadily and approach 2 (because v? will gradually
approach 0). Next, for the right-side limit, we substitute the series of positive
. values 1, 15, y65,... (in that order) for v and find the same limit as before.
Inasmuch as the two limits are identical, we consider the limit of g to exist and

write lim g = 2.
v—0

It is tempting to regard the answer just obtained as the outcome of setting

v =0 in the equation ¢ =2 + v?, but this temptation should in general be

resisted. In evaluating lim g, we only let v tend to N but, as a rule, do not let
N

v = N. Indeed, we can &lﬁte legitimately speak of the limit of ¢ as v — N, even if
N is not in the domain of the function g = g(v). In this latter case, if we try to set
v = N, g will clearly be undefined.

Example 2 Given ¢ = (1 — v?)/(1 — v), find lim ¢. Here, N = 1 is not in the

domain of the function, and we cannot set v u=_’11 because that would involve
division by zero. Moreover, even the limit-evaluation procedure of letting v — 1,
as used in Example 1, will cause difficulty, for the denominator (1 — v) will
approach zero when v — 1, and we will still have no way of performing the
division in the limit. '

One way out of this difficulty is to try to transform the given ratio to a form
in which v will not appear in the denominator. Since v — 1 implies that v + 1, so
that (1 — v) is nonzero, it is legitimate to divide the expression (1 — v?) by
(1 — v), and write*

* The division can be performed, as in the case of numbers, in the following manner:

I+0o

l—vll - o2

1-v

U—Uz
0—02

Alternatively, we may resort to factoring as follows:

1-0*  (1+0)(1-0v)
l1-v 1—-v

=l+v (v+1)



COMPARATIVE STATICS AND THE CONCEPT OF DERIVATIVE 137

In this new expression for ¢, there is no longer a denominator with v in it. Since
(1 + v) = 2 as v — 1 from either side, we may then conclude that lim g = 2.

v—1

Example 3 Given ¢ = (2v + 5)/(v + 1), find lim g¢. The variable v again
-+
appears in both the numerator and the denominator. If we let o — + oo in both,

the result will be a ratio between two infinitely large numbers, which does not
have a clear meaning. To get out of the difficulty, we try this time to transform
the given ratio to a form in which the variable v will not appear in the
numerator.* This, again, can be accomplished by dividing out the given ratio.
Since (2v + 5) is not evenly divisible by (v + 1), however, the result will contain
a remainder term as follows:

20+ 5 3
= —— =2+ —F
v+ 1 v+ 1
But, at any rate, this new expression for g no longer has a numerator with v in it.
Noting that the remainder 3/(v + 1) = 0 as v = + oo, we can then conclude

that lim ¢ = 2.

v— +00

There also exist several useful theorems on the evaluation of limits. These will
be discussed in Sec. 6.6.

Formal View of the Limit Concept

The above discussion should have conveyed some general ideas about the concept
of limit. Let us now give it a more precise definition. Since such a definition will
make use of the concept of neighborhood of a point on a line (in particular, a
specific number as a point on the line of real numbers), we shall first explain the
latter term.

For a given number L, there can always be found a number (L — a,) < L
and another number (L + a,) > L, where a, and a, are some arbitrary positive
numbers. The set of all numbers falling between (L — a,) and (L + a,) is called
the interval between those two numbers. If the numbers (L — a,) and (L + a,)
are included in the set, the set is a closed interval, if they are excluded, the set is
an open interval. A closed interval between (L — a,) and (L + a,) is denoted by
the bracketed expression

[L-—a,L+a,]={q|L—-—a, <q<L+a,) /
and the corresponding open interval is denoted with parentheses:
(64 (L—-a,L+a,)={q|L-a, <q<L+a,)

* Note that, unlike the v — 0 case, where we want to take v out of the denominator in order to
avoid division by zero, the v = oo case is better served by taking v out of the numerator. As v - oo,

an expression containing v in the numerator will become infinite but an expression with v in the
denominator will, more conveniently for us, approach zero and quietly vanish from the scene.
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Thus, [ ] relate to the weak inequality sign < , whereas ( ) relate to the strict
inequality sign < . But in both types of intervals, the smaller number (L — a,) is
always listed first. Later on, we shall also have occasion to refer to half-open and
half-closed intervals such as (3, 5] and [6, o0), which have the following meanings:

(3,5]={x13<xx5 [6,0)=(x]|6<x< o)

Now we may define a neighborhood of L to be an open interval as defined in
(6.4), which 1s an interval “covering” the number L.* Depending on the magni-
tudes of the arbitrary numbers a, and a,, it is possible to construct various
neighborhoods for the given number L. Using the concept of neighborhood, the
limit of a function may then be defined as follows:

As v approaches a number N, the limit of ¢ = g(v) is the number L, if, for
every neighborhood of L that can be chosen, however small, there can be
found a corresponding neighborhood of N (excluding the point v = N) in the
domain of the function such that, for every value of v in that N-neighbor-
hood, its image lies in the chosen L-neighborhood.

This statement can be clarified with the help of Fig. 6.3, which resembles Fig.
6.2a. From what was learned about the latter figure, we know that lim ¢ = L in

Fig. 6.3. Let us show that L does indeed fulfill the new definition of a l_1’r]rvut As the
first step, select an arbitrary small neighborhood of L, say, (L — a,, L + a,).
(This should have been made even smaller, but we are keeping it relatively large
to facilitate exposition.) Now construct a neighborhood of N, say, (N — b,
N + b,), such that the two neighborhoods (when extended into quadrant 1) will
together define a rectangle (shaded in diagram) with two of its corners lying on
the given curve. It can then be verified that, for every value of v in this
neighborhood of N (not counting v = N), the corresponding value of g = g(v)
lies in the chosen neighborhood of L. In fact, no matter how smail an L-neighbor-
hood we choose, a (correspondingly small) N-neighborhood can be found with the
property just cited. Thus L fulfills the definition of a limit, as was to be
demonstrated. :

We can also apply the above definition to the step function of Fig. 6.2¢ in
order to show that neither L, nor L, qualifies as lim q. If we choose a very small

neighborhood of L,—say, just a hair’s width on é)a_éﬁl side of L,—then, no matter
what neighborhood we pick for N, the rectangle associated with the two neighbor-
hoods cannot possibly enclose the lower step of the function. Consequently, for
any value of v > N, the corresponding value of ¢ (located on the lower step) will
not be in the neighborhood of L,, and thus L, fails the test for a limit. By similar
reasoning, L, must also be dismissed as a candidate for lim g. In fact, in this
case no limit exists for g as v — N. oo N

* The identification of an open interval as the neighborhood of a point is valid only when we are
considering a point on a line (one-dimensional space). In the case of a point in a plane (two-dimen-
sional space), its neighborhood must be thought of as an area, say, a circular area around the point.
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g=g()

0

Figure 6.3

The fulfillment of the definition can also be checked algebraically rather than
by graph. For instance, con51der again the function

1 — v?

(6.5) qg= 1= o

It has been found in Example 2 that lim ¢ = 2; thus, here we have N = 1 and

=1+0v (v#1)

L = 2. To verify that L = 2 is indeed the] limit of ¢, we must demonstrate that,
for every chosen neighborhood of L, (2 — a,, 2 + a,), there exists a neighbor-
hood of N, (1 — b,, 1 + b,), such that, whenever v is in this neighborhood of N, ¢
must be in the chosen neighborhood of L. This means essentially that, for given
values of ¢, and a,, however small, two numbers b, and b, must be found such
that, whenever the inequality

(6.6) 1-b,<v<l1+b, (v+1)
is satisfied, another inequality of the form
(67) 2-a,<q<2+a,

must also be satisfied. To find such a pair of numbers b, and b,, let us first rewrite
(6.7) by substituting (6.5):

(67) 2-a <14+v<2+a,
This, in turn, can be transformed into the inequality
(67 1—a <v<l1+a,

A comparison of (6.7")—a variant of (6.7)—with (6.6) suggests that if we choose
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the two numbers b, and b, to be b, = a, and b, = a,, the two inequalities (6.6}
and (6.7) will always be satisfied simultaneously. Thus the neighborhood of N,
(1 — b,,1+ b,), as required in the definition of a limit, can indeed be found for
the case of L = 2, and this establishes . = 2 as the limit.

Let us now utilize the definition of a limit in the opposite way, to show that
another value (say, 3) cannot qualify as lim g for the function in (6.5). If 3 were

that limit, it would have to be true thaut,_’ flor every chosen neighborhood of 3,
(3 ~— a;, 3 + a,), there exists a neighborhood of 1, (1 — b,, 1 + b,), such that,
whenever v is in the latter neighborhood, ¢ must be in the former neighborhood.
That is, whenever the inequality ‘

l-b,<v<l1l+b
is satisfied, another inequality of the form

3—a, <1+v<3+a,

or 2-a, <v<2+a,

must also be satisfied. The only way to achieve this result is to choose b| = a;, — 1
and b, = a, + 1. This would imply that the neighborhood of 1 is to be the open
interval (2 — a,, 2 + a,). According to the definition of a limit, however, ¢, and
a, can be made arbitrarily small, say, 4, = a, = 0.1. In that case, the last-men-
tioned interval will turn out to be (1.9, 2.1) which lies entirely to the right of the
point v =1 on the horizontal axis and, hence, does not even qualify as a
neighborhood of 1. Thus the definition of a limit cannot be satisfied by the
number 3. A similar procedure can be employed to show that any number other
than 2 will contradict the definition of a limit in the present case.

In general, if one number satisfies the definition of a limit of g as v — N, then
no other number can. If a limit exists, it will be unique.

EXERCISE 6.4

1 Given the function g = (v + v — 56)/(v — 7), (v # 7), find the left-side limit and the
right-side limit of 4 as v approaches 7. Can we conclude from these answers that g has a
limit as v approaches 7?7

2 Given g = [(v + 2)° — 8]/v, (v # 0), find:
(a) limg (b) limgq (¢) limg
v—0 v—2 v-a
3 Giveng=5-1/v,(v + 0), find:
(a) 1lm ¢ (b) lim g
v— + 00 v— — 00

4 Use Fig. 6.3 to show that we cannot consider the number (L + a,) as the limit of ¢ as v
tends to N.
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6.5 DIGRESSION ON INEQUALITIES AND ABSOLUTE VALUES

We have encountered inequality signs many times before. In the discussion of the
last section, we also applied mathematical operations to inequalities. In trans-
forming (6.7") into (6.7"”), for example, we subtracted 1 from each side of the
inequality. What rules of operations apply to inequalities (as opposed to equa-
tions)? ~

Rules of Inequalities

To begin with, let us state an important property of inequalities: inequalities are
transitive. This means that, if @ > b and if b > ¢, then a > ¢. Since equalities
(equations) are also transitive, the transitivity property should apply to “weak” _
mequalmes (= or <) as well as to “strict” ones (> or <). Thus we have

Ja>b,b>c = a>cj i '
Cazb,bzc = a>c :

This property is what makes possible the writing of a continued inequality, such as

3<a<b<8or7=<x <24 (In writing a continued inequality, the inequality

signs are as a rule arranged in the same direction, usually with the smallest

number on the left.)

The most important rules of inequalities are those governing the addition
(subtraction) of a number to (from) an inequality, the multiplication or division
of an inequality by a number, and the squaring of an inequality. Spec1ﬁcally,
these rules are as follows.

Rule I (addition and subtraction) a>h = axk>bxk

An inequality will continue to hold if an equal quantity is added to or subtracted
from each side. This rule may be generalized thus: If a > b > ¢, then a + k >
b+ k>ctk

Rule I (multiplication and division)

ka>kb (k> 0)
ka<kb  (k<0)

The multiplication of both sides by a positive number preserves the inequality, but
a negative multlpher will cause the sense (or dzrectton) of the me_qgahty to be
reversed.

e —

a>hb

Example 1 Since 6 > 5, multiplication by 3 will yield 3(6) > 3(5), or 18 > 15;
but multiplication by —3 will result in (—3)6 < (—3)5, or —18 < —15. ‘

Division of an inequality by a number 7 is equivalent to multiplication by the
nu{nber 1 /"5, _therefore the rule on division is subsumed under the rule on
multiplication. :
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Rule III (squaring) | “a> b, (b > 0) = qg’>p?)

If its two sides are both nonnegative, the inequality w111 continue to hold when
both sides are squared. T

[RE———

Example 2 Since 4 > 3 and since both sides are positive, we have 42 > 32, or
16 > 9. Similarly, since 2 > 0, it follows that 22 > 02, or 4 > 0.

The above three rules have been stated in terms of strict inequalities, but their
vahdlty is unaﬁ"ected if the > signs are replaced by > signs.

— Absolute Values and Inequalities

When the domain of a variable x is an open interval (a, b), the domain may be
denoted by the set {x | ¢ < x < b) or, more simply, by the inequality a < x < b.
Similarly, if it is a closed interval [a, b], it may be expressed by the weak
inequality @ < x < b. In the special case of an interval of the form (—a, a)—say,
(—10,10)—it may be represented either by the inequality —10 < x < 10 or,
alternatively, by the inequality

x| < 10

where the symbol |x| denotes the absolute value (or numerical value) of x.
- For any real number n, the absolute value of » is defined as follows:*

n (if n > 0)
(6.8) n| =¢{ —n (ifn < 0)
0 (if n = 0)

Note that, if n = 15, then |15| = 15; but if n = — 15, we find
| = 15| = = (=15} =15

numerlcal Value after the 51gn 18 removed For this reason, we al‘wa_}is___have
|n| = | — n|. The absolute value of n is also called the modulus of n.

Given the expression |x| = 10, we may conclude from (6.8) that x must be
either 10 or —10. By the same token, the expression |x| < 10 means that (1) if
x > 0, then x = |x| < 10, so that x must be less than 10; but also (2) if x < 0,
‘then according to (6.8) we have —x = |x| < 10, or x > — 10, so that x must be
greater than — 10. Hence, by combining the two parts of this result, we see that x
must lie within the open interval (— 10, 10). In general, we can write =~ —-- -

(6.9) |x] <n & -—-n<x<n. (n>0)

* The absolute-value notation is similar to that of a first-order determinant, but these two concepts
are entirely different. The definition of a first-order determinant is |a; 4| = a;;, regardless of the sign
of a;;. In the definition of the absolute value ||, the sign of n will make a difference. The context of
the discussion would normally make it clear whether an absolute value or a first-order determinant is
under consideration.
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which can also be extended to weak inequalities as follows:
(6.10) /lx|<n e -n<x<n) (n=0)
Because they are themselves numbers, the absolute values of two numbers m

and n can be added, subtracted, multiplied, and divided. The following properties
characterize absolute values:

|m| + |n| = |m + n|

|m| - |n| = |m - n|
lm| _|m
|n| n

The first of these, interestingly, involves an inequality rather than an equation.
The reason for this is easily seen: whereas the left-hand expression |m| + |n]| is-
definitely a sum of two numerical values (both taken as positive), the expression
|m + n| is the numerical value of either a sum (if m and #n are, say, both positive)
or a difference (if m and n have opposite signs). Thus the left side may exceed the
right side.

Example 3 lf m=5and n= 3 then |m| + |n|=|m+n| =8 Butif m=35
and n = —3, then |m| + |n| = 5 + 3 = 8, whereas
Im+n|=|5-3=2

is a smaller number.

In the other two properties, on the other hand, it makes no difference whether
m and n have identical or opposite signs, since, in taking the absolute value of the
product or quotient on the right-hand side, the sign of the latter term will be
removed in any case. ‘

Example 4 1fm =7 and n = 8, then |m| - |n| = |m - n| = 7(8) = 56. But even

if m = —7 and n = 8 (opposite signs), we still get the same result from
lm| - |n| = —7|- 18 = 7(8) =56
and |m-n|=|—7(8) =7(8) =56

Solution of an Inequality

Like an equation, an inequality containing a variable (say, x) may have a
solution; the solution, if it exists, is a set of values of x which make the inequality
a true statement. Such a solution will itself usually be in the form of an inequality.

Example 5 Find the solution of the inequality
Ix—-3>x+1
As in solving an equation, the variable terms should first be collected on one side
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of the inequality. By adding (3 — x) to both sides, we obtain
3x-3+3-x>x+1+3-x
or 2x >4

Multiplying both sides by 5 (which does not reverse the sense of the inequality,
because 1 > 0) will then yield the solution -

x>2

which is itself an inequality. This solution is not a single number, but a set of
numbers. Therefore we may also express the solution as the set {x | x > 2} or as
the open interval (2, o). '

Example 6 Solve the inequality |1 — x| < 3. First, let us get rid of the absolute-
value notation by utilizing (6.10). The given inequality is equivalent to the
statement that

-3<1-xx<3

or, after subtracting 1 from each side,
—4< —x<2

Multiplying each side by (— 1), we then get
4>x> -2

where the sense of inequality has been duly reversed. Writing the smaller number
first, we may express the solution in the form of the inequality

—-2<x<4

or in the form of the set {x | —2 < x < 4} or the closed interval [ -2, 4].

Sometimes, a problem may call for the satisfaction of several inequalities in
several variables simultaneously; then we must solve a system of simultaneous
inequalities. This problem arises, for example, in mathematical programming,
which will be discussed in the final part of the book.

EXERCISE 6.5

1 Solve the following inequalities:
(@) 3x—-1<Ix+2 (c)Sx+1<x+3
(b) 2x+5<x -4 (d)2x—-1<6x+5

2 If 7x — 3 < 0 and 7x > 0, express these in a continued inequality and find its solution.

3 Solve the following: .
(a) [x+1]<6 (b) 14—3x| <2 (0) 12x+3| <5
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6.6 LIMIT THEOREMS

Our interest in rates of change led us to the consideration of the concept of
derivative, which, being in the nature of the limit of a difference quotient, in turn
prompted us to study questions of the existence and evaluation of a limit. The
basic process of limit evaluation, as illustrated in Sec. 6.4, involves letting the
variable v approach a particular number (say, N) and observing the value which ¢
approaches. When actually evaluating the limit of a function, however, we may
draw upon certain established limit theorems, which can materially simplify the
task, especially for complicated functions.

Theorems Involving a Single Function

When a single function ¢ = g(v) is involved, the following theorems are applica-
ble. " T

Theorem 1 If g = av + b, then lim g = aN + b (a and b are constants).
. v—-N

Example 1 Given g = 5v + 7, we have lim2 g = 5(2) + 7 = 17. Similarly, lin}) q
. v L=
=50)+7="1.

Theorem 11 If ¢ = g(v) = b, then lim g = b.
v N

that function, is merely a special case of Theorem I, with ,af_,O. (You have
already encountered an example of this case in Exercise 6.2-3.)

Theorem 111 If g = v, then lim ¢ = N.
v—=>N

If g = v*, then lim g = N*.

v—N

Example 2 Given g = v°, we have lim ¢ = (2)® = 8.
v—2
You may have noted that, in the above three theorems, what is done to find
the limit of ¢ as v — N is indeed to let v = N. But these are special cases, and
they do not vitiate the general rule that “0 — N ” does not mean “v = N.”

Theorems Involving Two Functions

If we have two functions of the same independent variable v, g, = g(v) and
4, = h(v), and if both functions possess limits as follows:

limg, = L iimg,=L
v—-qu 1 U_>N‘12 277

where L,rénd L, are two ﬁr;ite numbers, the following theorems are applicable.
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Theorem IV  (sum-difference limit theorem)

lim (41 t¢)=L L,
The lumt of a sum (; (d1ﬁerence) of two functions is the sum (difference) of their
respecuve hrmts

In particular, we note that

lim 2¢q, = 11m(q1+q])—L +L,=2L,
v N

which is in line with Theorem 1.

Theorem V_ (product limit theorem)
ﬁ_{‘}v(%‘h) =L,L,

The limit of a product of two functions is the product of their limits.

Applied to the square of a function, this gives
vli__n’lv(%‘h) =L,L, =13

which is in line with Theorem III,

Theorem VI (quotient limit theorem)

.4 L,
lim — = — L,#0
o N qz L2 ( 2 )
The limit of a quotient of two functions is the quotient of their limits. Naturally,
the hm1t L, is restricted to be nonzero; otherwise the quotient is undeﬁned

Example 3 Find llm (1 + v)/(2 + v). Since we have here lim ( w
-0~
" hm (2 + v) =2, the desired limit is 3. S

-0—>0

Remember that L, and L, represent finite numbers; otherwise these thec rems
do not apply. In the case of Theorem VI, furthermore, L, must be nonzero as
well. If these restrictions are not satisfied, we must fall back on the method of-
limit evaluation illustrated in Examples 2 and 3 in Sec. 6.4, which relate to the’
cases, respectively, of L, being zero and of L, being infinite.

Limit of a Polynomial Function

With the above limit theorems at our disposal, we can easily evaluate the limit of
any polynomial function .

(6.11) q= g(v)—a0+av+azv+ -+ a,p"

as v tends to the number N. Since the hrmts of the separate terms are,
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respectively,
o . _ . . . 2 - 2
lim a, = a, lim ¢, = a N lim a,0* = a,N (etc.)
v—>N v—- N v—=>N . T

the limit of the polynomial function is (by the sum limit theorem)

(6.12) limg=a,+aN+a,N*+ - +a,N"
v—N

This lirrnit:isr also, we note, actually equal to g( N), that is, equal to the value of the
function in (6.11) when v = N. This particular result will prove important in
discussing the concept of continuity of the polynomial function.

—

EXERCISE 6.6

1 Find the limits of the function ¢ = 8 — 90 + v*:

(a) Asv -0 (b) Asv—3 (c) Asv— —1
2 Find the limits of ¢ = (v + 2)(v - 3):

(a) Asv— —1 (b) Asv—0 (c) Asv — 4
3 Find the limits of g = (30 + 5)/(v + 2):

(a) Asv -0 (b) Asv—=5 (¢) Asv—> —1

,4{ 67 kCONTINUITY AND DIFFERENTIABILITY OF A FUNCTION

The preceding discussion of the concept of limit and its evaluation can now be
used to define the continuity and differentiability of a function. These notions
bear directly on the derivative of the function, which is what interests us.

Continuity of a Function

When a function g = g(v) possesses a limit as v tends to the point N in the
domain, and when this limit is also equal to g( N )—that is, equal to the value of
the function at v = N—the function is said to be continuous at N. As stated
above, the term continuity involves no less than three 'requirements: (1) the point
N must be in the domain of the function; i.e., g(N) is defined; (2) the function

*  must have a limit as v = N; i.e,, lim g(v) exists; and (3) that limit must be equal
in value to g(N); i.e., lin}vg(v) = gth).

It is important to note that while—in discussing the limit of the curve in Fig.
6.3—the point (N, L) was excluded from consideration, we are no longer
excluding it in the present context. Rather, as the third requirement specifically
states, the point (N, L) must be on the graph of the function before the function
can be considered as continuous at point N.

Let us check whether the functions shown in Fig. 6.2 are continuous. In
diagram a, all three requirements are met at point N. Point  is in the domain; g
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has the limit L as v — N; and the limit L happens also to be the value of the
function at N. Thus, the function represented by that curve is continuous at N.
The same is true of the function depicted in Fig. 6.25, since L is the limit of the
function as v approaches the value N in the domain, and since L is also the value
of the function at N. This last graphic example should suffice to establish that the
continuity of a function at point N does nor necessarily imply that the graph of
the function is “smooth” at v = N, for the point (N, L) in Fig. 6.2b is actually a
“sharp” point and yet the function is continuous at that value of v.

When a function g = g(v) is continuous at all values of v in the interval
(a, b), it is said to be continuous in that interval. If the function is continuous at
all points in a subset S of the domain (where the subset § may be the union of
several disjoint intervals), it is said to be continuous in S. And, finally, if the
function is continuous at all points in its domain, we say that it is continuous mn
its domain. Even in this latter case, however, the graph of the function may
nevertheless show a discontinuity (a gap) at some value of v, say, at v = 5, if that
value of v is not in its domain.

Again referring to Fig. 6.2, we see that in diagram ¢ the function is
discontinuous at N because a limit does not exist at that point, in violation of the
second requirement of continuity. Nevertheless, the function does satisfy
the requirements of continuity in the interval (0, N) of the domain, as well as in
the interval [N, o0). Diagram d obviously is also discontinuous at v = N. This
time, discontinuity emanates from the fact that N is excluded from the domain, in
violation of the first requirement of continuity.

On the basis of the graphs in Fig. 6.2, it appears that sharp points are
consistent with continuity, as in diagram b, but that gaps are taboo, as in
diagrams ¢ and d. This is indeed the case. Roughly speaking, therefore, a function
that is continuous in a particular interval is one whose graph can be drawn for the
said interval without lifting the pencil or pen from the paper—a feat which is
possible even if there are sharp points, but impossible when gaps occur.

Polynomial and Rational Functions

Let us now consider the continuity of certain frequently encountered functions.
For any polynomial function, such as ¢ = g(v) in (6.11), we have found from
(6.12) that lim g exists and is equal to the value of the function at N. Since N is a

point (any D;o}},nt) in the domain of the function, we can conclude that any
polynomial function is continuous in its domain. This is a very useful piece of
information, because polynomial functions will be encountered very often.

What about rational functions? Regarding continuity, there exists an interest-
ing theorem (the continuity theorem) which states that the sum, difference,
product, and quotient of any finite number of functions that are continuous in the
domain are, respectively, also continuous in the domain. As a result, any rational
function (a quotient of two polynomial functions) must also be continuous in its
domain. ’
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Example 1 The rational function
49
v? + 1
is defined for all finite real numbers; thus its domain consists of the interval

(— o0, o). For any number N in the domain, the limit of g is (by the quotient
limit theorem)

qg=2g(v)=

: 2
. lim (40%) AN?
lim g = — = —
0N lim (v*+1) N*+1
v—=N

which is equal to g(N). Thus the three requirements of continuity are all met at
N. Moreover, we note that N can represent any point in the domain of this
function; consequently, this function is continuous in its domain.

Example 2 The rational function = ,..p . ¢ - 7 ;/( =z
Vil -n z :
v3+vz—4v—4“iw:—/$~ Tre) LA - o
q= > r\//f)(‘ /] -1 e
v —4 " ' '
is not defined at v = 2 and at v = —2. Since those two values of v are not in the
domain, the function is discontinuous at v = —2 and v = 2, despite the fact that

a limit of g exists as v & —2 or 2. Graphically, this function will display a gap at
each of these two values of v. But for other values of v (those which are in the
domain), this function is continuous.

Diﬂ'erentiability Qf a Function/

The previous discussion has provided us with the tools for ascertaining whether
any function has a limit as its independent variable approaches some specific
value. Thus we can try to take the limit of any function y = f(x) as x approaches
some chosen value, say, x,. However, we can also apply the “limit” concept at a
different level and take the limit of the difference quotient of that function,
Ay/Ax, as Ax approaches zero. The outcomes of limit-taking at these two
different levels relate to two different, though related, properties of the function f.

Taking the limit of the function y = f(x) itself, we can, in line with the
discussion of the preceding subsection, examine whether the function f is continu-
ous at x = x,. The conditions for continuity are (1) x = x, must be in the domain
of the function f, (2) y must have a limit as x — x,, and (3) the said limit must be_
equal to f(x,). When these are satisfied, we can write
(6.13) / lim f(x)=f(x,) [continuity condition]j-

X xg

When the “limit” concept is applied to the difference quotient Ay/Ax as
Ax — 0, on the other hand, we deal instead with the question of whether the
function f is differentiable at x = x,, i.c., whether the derivative dy/dx exists at
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X = x,, or whether f’(x,) exists. The term “differentiable” is used here because
the process of obtaining the derivative dy/dx is known as differentiation (also
called derivation). Since f'(x,) exists if and only if the limit of Ay/Ax exists at
x =_xg as Ax — 0, the symbolic ‘expression ¢ of the differentiability of fis  ~

| o
(614) " f(xo) = grgoA—;’_j)

N L e
= lim f(xo + Ax) _f(xo)
Ax—0Q Ax

[differentiability condition]

These two properties, continuity and differentiability, are very intimately
related to each other—the continuity of f is a necessary condition for_its
differentiability (although, as we shall see later, this condition is not sufficient).
What this means is that, to be differentiable at x = x,, the function must first
pass the test of being continuous at x = x,. To prove this, we shall demonstrate
that, given a function y = f(x), its continuity at x = x, follows from its differen-
tiability at x = x,, i.e., condition (6.13) follows from condition (6.14). Before
doing this, however, let us simplify the notation somewhat by (1) replacing x,
with the symbol N and (2) replacing (x, + Ax) with the symbol x. The latter is
Justifiable because the postchange value of x can be any number (depending on
the magnitude of the change) and hence is a variable denotable by x. The
equivalence of the two notation systems is shown in Fig. 6.4, where the old
notations appear (in brackets) alongside the new. Note that, with the notational
change, Ax now becomes (x — N), so that the expression “Ax — 0” becomes

y
y=[(x)
f(x) — S
[f (xo + ax)] S
Ay
FINy———
If (x0) ] | |
| |
| |
I .

o N—>x
[x0] [xo+ Ax]

Figure 6.4
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“x — N,” which is analogous to the expression v — N used before in connection
with the function g = g(v). Accordingly, (6.13) and (6.14) can now be rewritten,
respectively, as

(613)  lim f(x) = f(N)

618)  p(N)= tim LIZLID

What we want to show is, therefore, that the continuity condition (6.13")
follows from the differentiability condition (6.14"). First, since the notation
x — N implies that x + N, so that x — N is a nonzero number, it is permissible to
write the following identity:

(615 f(x)—p(wy = LI (o

Taking the limit of each side of (6.15) as x — N yields the following results:
Left side = lim f(x) — lim f(N) [difference limit theorem]
x—N x> N

= lim f(x) — f(N) [£(N) is a constant)
x—N =T
R1ght side = lim M lim (x — N) [product limit theorem]
x>N  X—N  xoN S
= f (N)( lim x — lim N) ~ [by (6.14’) and difference
x—-N x> N = e

limit theorem]
= (NN = N) =0

Note that we could not have written these results, if condition (6.14") had not
been granted, for if f/(N) did not exist, then the right-side expression (and hence
also the left-side expression) in (6.15) would not possess a limit. If f'(N) does
exist, however, the two sides will have limits as shown above. Moreover, when the
left-side result and the right-side result are equated, we get hm f (x)—f(N)=

which is identical with (6.13"). Thus we have proved that contmuhy, as shown in
(6.13"), follows from differentiability, as shown in (6.14’). In general, if a function
is differentiable at every point in its domain, we may conclude that it must be
continuous in its domain.

Although differentiability implies continuity, the converse is not true. That is,
continuity is a necessary, but not a sufficient, condition for differentiability. To
demonstrate this, we merely have to produce a counterexample Let us con51der
the function

(6.16) y=f(x)=|x-2+1

which is graphed in Fig. 6.5. As can be readily shown, this function is not
differentiable, though continuous, when x = 2. That the function is continuous at
x = 2 is easy to establish. First, x = 2 is in the domain of the function. Second,
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the limit of y exists as x tends to 2; to be specific, lim Ly = hm Ly = L. Third,
x—=2"

f(2) is also found to be 1. Thus all three requirements of contmuxty are met. To
show that the function f is not differentiable at x = 2, we must show that the hmlt
of the difference quotient Cememe T

G =fQ) L x=241-1 L x-2]
x—-2 x—2 x—2 x—2 x—2 X —2

_does not exust. This involves the demonstration of a disparity between the left-side
and the right-side limits. Since, in considering the right-side limit, x must exceed
2, according to the definition of absolute value in (6.8) we have |x — 2| = x — 2.
Thus the right-side limit is

-2 —
im X2 opm 222 =1
x—=2t X —2 x—2t X — 2 x—2*

On the other hand, in considering the left-side limit, x must be less than 2; thus,

according to (6.8), |x — 2| = —(x — 2). Consequently, the left-side limit is
=2 o =2y
x—=2" X — 2 xlin;_ x—2 xlillél_( 1) 1

which is different from the right-side limit. This shows that continuity does not
guarantee differentiability. In sum, all differentiable functions are continuous, but
not all continuous functions are differentiable.

~In Fig. 6.5, the nondifferentiability of the function at x = 2 is manifest in the
fact that the point (2, 1) has no tangent line defined, and hence no definite slope
can be assigned to the point. Specifically, to the left of that point, the curve has a

=lx—21+1
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slope of — 1, but to the right it has a slope of + 1, and the slopes on the two sides
display no tendency to approach a common magnitude at x = 2. The point (2, 1)
is, of course, a special point; it is the only sharp point on the curve. At other
points on the curve, the derivative is defined and the function is differentiable.
More specifically, the function in (6.16) can be divided into two linear functions
as follows: '

Left part: y= — {(x—2)+1

3-x (x<2)
Rightpart:y = (x—2)+1=x-1 (x>2) -

The left part is differentiable in the interval (—o0,2), and the right part is
differentiable in the interval (2, o) in the domain.

In general, differentiability is a more restrictive condition than continuity,
because it requires something beyond continuity. Continuity at a point only rules
out the presence of a gap, whereas differentiability rules out “sharpness” as well.
Therefore, differentiability calls for “smoothness” of the function (curve) as well
as its continuity. Most of the specific functions employed in economics have the
property that they are differentiable everywhere. When general functions are used,
moreover, they are often assumed to be everywhere differentiable, as we shall do.

in the subsequent discussion.
1 the subsequen 551

EXERCISE 6.7

1 A function y = f(x) is discontinuous at x = x, when any of the three requirements for
continuity is violated at x = x,. Construct three graphs to illustrate the violation of each
of those requirements.

2 Taking the set of all finite real numbers as the domain of the function g = g(v) = v’ -
To — 3:

(a) Find the limit of ¢ as v tends to N (a finite real number).

(b) Check whether this limit is equal to g(N).

(¢) Check whether the function is continuous at N and continuous in its domain.
v+ 2

0?4+ 2

(a) Use the limit theorems to find Lim g, N being a finite real number.

v—->N
(b) Check whether this limit is equal to g(N).
(¢) Check the continuity of the function g(v) at N and in its domain (— o0, ).
, 24+ x—-20

4 Giveny = f(x) = xx—f“—:

(@) Is it possible to apply the quotient limit theorem to find the limit of this function as
x — 47

(b) Is this function continuous at x = 47 Why?

(¢) Find a function which, for x # 4, is equivalent to the above function, and obtain
from the equivalent function the limit of y as x — 4.

3 Given the function ¢ = g(v) =
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5 In the rational function in Example 2, the numerator is evenly divisible by the
denominator, and the quotient is v + 1. Can we for that reason replace that function
outright by ¢ = v + 1?7 Why or why not?

6 On the basis of the graphs of the six functions in Fig. 2.8, would you conclude that each
such function is differentiable at every point in its domain? Explain.




