CHAPTER

FOUR
LINEAR MODELS AND MATRIX ALGEBRA

For the one-commodity model (3.1), the solutions P and Q as expressed in (3.4)
and (3.5) are relatively simple, even though a number of parameters are involved.
As more and more commodities are incorporated into the model, such solution
formulas quickly become cumbersome and unwieldy. That was why we had to
resort to a little shorthand, even for the two-commodity case—in order that the
solutions (3.14) and (3.15) can still be written in a relatively concise fashion. We
did not attempt to tackle any three- or four-commodity models, even in the linear
version, primarily because we did not yet have at our disposal a method suitable
for handling a large system of simultaneous equations. Such a method is found in
matrix algebra, the subject of this chapter and the next.

Matrix algebra can enable us to do many things. In the first place, it provides
a compact way of writing an equation system, even an extremely large one.
Second, it leads to a way of testing the existence of a solution by evaluation of a
determinant—a concept closely related to that of a matrix. Third, it gives a
method of finding that solution (if it exists). Since equation systems are encoun-
tered not only in static analysis but also in comparative-static and dynamic
analyses and in optimization problems, you will find ample application of matrix
algebra in almost every chapter that is to follow.

However, one slight “catch” should be mentioned at the outset. Matrix
algebra is applicable only to linear-equation systems. How realistically linear
equations can describe actual economic relationships depends, of course, on the
nature of the relationships in question. In many cases, even if some sacrifice of
realism is entailed by the assumption of linearity, an assumed linear relationship
can produce a sufficiently close approximation to an actual nonlinear relationship
to warrant its use. In other cases, the closeness of approximation may also be
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improved by having a separate linear approximation for each segment of a
nonlinear relationship, as is illustrated in Fig. 4.1. If the solid curve is taken as the
actual nonlinear relationship, a single linear approximation might take the form
of the solid straight line, which shows substantial deviation from the curve at
certain points. But if the domain is divided into three regions r,, r,, and r,, we can
have a much closer linear approximation (broken straight line) in each region.

In yet other cases, while preserving the nonlinearity in the model, we can
effect a transformation of variables so as to obtain a linear relation to work with.
For example, the nonlinear function

y = ax?

can be readily transformed, by taking the logarithm on both sides, into the
function

A

log y =loga + blog x

which is linear in the two variables (log y) and (log x). (Logarlthms will be
discussed in detail in Chap. 10.)

In short, the linearity assumption frequently adopted in economics may in
certain cases be quite reasonable and justified. On this note, then, let us proceed
to the study of matrix algebra.

4.1 MATRICES AND VECTORS

The two-commodity market model (3.12) can be written—after eliminating the
quantity variables—as a system of two linear equations, as in (3 137,

P+ o, P, = —¢, \

WPt k=
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where the parameters ¢, and vy, appear to the right of the equals sign. In general, a
system of m linear equations in n variables (x,, x,,..., x,) can also be arranged
into such a format:

anx, +a,x,+---+a,x,=4d,
(4.1) ayx, +ayx,+---+a,,x,=d,
AppX, + Aoy + -+ a,,x,=d,

In (4.1), the variable x, appears only within the leftmost column, and in general
the variable x; appears only in the jth column on the left side of the equals sign.
The double-subscripted parameter symbol a; ; represents the coefficient appearing
in the ith equation and attached to the jth variable. For example, a,, is the
coefficient in the second equation, attached to the vanable x,. The parameter 4,
which is unattached to any variable, on the other hand, represents the constant
term in the /th equation. For instance, d, is the constant term in the first
equation. All subscripts are therefore keyed to the specific locations of the
variables and parameters in (4.1).

Matrices as Arrays

There are essentially three types of ingredients in the equation system (4.1). The
first is the set of coefficients a; I the second is the set of variables x,..., x,; and
the last is the set of constant terms d,,..., d,,. If we arrange the three sets as
three rectangular arrays and label them, respectively, as 4, x, and d (without

subscripts), then we have

X, d
ay Ay Ay X dl
a1 dxp a4y g 2
(4.2) A= n x=1. d=
. aml am2 e amn . xn dm

As a simple example, given the linear-equation system
6x; + 3x, + x5 =22
(4.3) X, +4x, — 2%, =12
4x, — x,+5x;=10
we can write
6 3 1 X, 22 '
(44) 4a=|1 4 -2 x=|x d=[12] -
4 -1 5 X5 10
Each of the three arrays in (4.2) or (4.4) constitutes a matrix.

A matrix is defined as a rectangular array of numbers, parameters, or
variables. The members of the array, referred to as the elements of the matrix, are
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usually enclosed in brackets, as in (4.2), or sometimes in parentheses or with
double vertical lines: || || Note that in matrix A (the coefficient matrix of the
equation system), the elements are separated not by commas but by blank spaces
only. As a shorthand device, the array in matrix A can be written more simply as

A=1a,] i=1,2,....,m
= L4y j=12,...,n

Inasmuch as the location of each element in a matrix is unequivocally fixed by the
subscript, every matrix is an ordered set.

Vectors as Special Matrices

The number of rows and the number of columns in a matrix together define the
dimension of the matrix. Since matrix A in (4.2) contains m rows and »n columns, it
is said to be of dimension m X n (read: “m by n”). It is important to remember
that the row number always precedes the column number; this is in line with the
way the two subscripts in a,; are ordered. In the special case where m = n, the
matrix is called a square matrix; thus the matrix 4 in (4.4) is a 3 X 3 square
matrix. '
Some matrices may contain only one column, such as x and d in (4.2) or (4.4).
Such matrices are given the special name column vectors. In (4.2), the dimension
of x is n X 1, and that of d is m X 1; in (4.4) both x and 4 are 3 X 1. If we

arranged the variables x; in a horizontal array, though, there would result a 1Xn_
matrix, which is called a row vector. For notation purposes, a row vector is often

o3
cod

distinguished from a column vector by the use of a primed symbol:

/ N ————————— 1
x = [xl Xy vt ‘xn]
You may observe that a vector (whether row or column) is merely an ordered
n-tuple, and as such it may be interpreted as a point in an »n- -dimensional space. In
turn, the m X n matrix 4 can be interpreted as an ordered set of m row vectors or
as an ordered set of n column vectors. These ideas will be followed up later.

An issue of more immediate interest is how the matrix notation can enable us,

as promised, to express an equation system in a compact way. With the matrices
defined in (4.4), we can express the equation system (4.3) simply as

’Ax=rcj N

In fact, if A, x, and 4 are given the meanings in (4.2), then even the general-equa-
tion system in (4.1) can be written as Ax = d. The compagtness_of._thls_nommnis
thus unmistakable.

However, the equation Ax = d prompts at least two questions. How do we
multiply two matrices A and x? What is meant by the equality of Ax and d? Since
matrices involve whole blocks of numbers, the familiar algebraic operations
defined for single numbers are not dlrectly applicable, and there is need for a new
set of operational rules.

-
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EXERCISE 4.1

1 Rewrite the equation system (3.1) in the format of (4.1), and show that, if the three
variables are arranged in the order Q,, Q,, and P, the coefficient matrix will be

1 -1 0
1 0 b
0 I —d B

How would you write the vector of constants?

2 Rewrite the equation system (3.12) in the format of (4.1) with the variables arranged in
the following order: Q,, 0,1, Q.. Q,,, P, P,. Write out the coefficient matrix, the
variable vector, and the constant vector.

4.2 MATRIX OPERATIONS

As a preliminary, let us first deﬁne the word equality. Two matrices 4 = [4,;] and

= [b,;] are said to be equal if and only if they have the same dlmenswn and
have identical elements in the correspondmg locations in the array. In other
words, 4 = B if and only if a,, = b;; for all values of i and j. Thus, for example,
we find

5 3l-13 3]+ 3 8]

As another example, if [;] = [471]’ this will mean that x = 7 and y = 4.

Addition and Subtraction of Matrices

Two matrices can be added if and only if they have the same dimension. When
this dimensional requirement is_met, the matrices are said to be conformable for
addition. In that case, the addition of A4 = [a;;] and B = [b,,] is defined as the
addition of each pair of corresponding elements

Example 1 i
[4 9]+ 2 0]=[4+2 9+O]=[6 9]
2 1 0 7 2+0 1+7 2 8
Example 2
ag 4ap by by ay +by antby /
ay ap|+|by by|=|ay +b, ay,+by, |

a3 4y by, by, ay + by ay + by,
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In general, we may state the rule thus:

[a,]+ [b,-j] = [c;] wherec,, = a,, + b,
Note that the sum matrix [¢;;] must have the same dimension as the component
matrices [a;;] and [b;;].

The subtraction operation A — B can be similarly defined if and only if 4

and B have the same dimension. The operation entails the result

[a,]1- [b,] =[4,] whered,, =a,;-b,

Example 3

[19 3 [ 8]=[19—6 3-8 =[13 —5]

1 3 2-1 0-3 1 -3
The subtraction operation A — B may be considered alternatively as an addition
operation involving a matrix 4 and another matrix (— 1) B. This, however, raises

the question of what is meant by the multiplication of a matrix by a single
number (here, —1).

Scalar Multiplication

—is to multiply every element of that matrix by the given scalar.

Example 4
-1 3
0 3 0 35
Example 5
apn ] [2011 %alz}
a7 74y 14y,
From these examples, the rationale of the name scalar should become clear,

for it “scales up (or down)” the matrix by a certain multiple. The scalar can, of
course, be a negative number as well.

Example 6

1 ay ap d | | —ay “—ap —d,
ay, ap d, —ay, —ayp —d

Note that if the matrix on the left represents the coefficients and the constant
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terms in the simultaneous equations
apx, +apx;, =d,
ayx, + apx, =d,

then multiplication by the scalar —1 will amount to multiplying both sides of
both equations by — 1, thereby changing the sign of every term in the system.

Multiplication of Matrices

Whereas a scalar can be used to multiply a matrix of any dimension, the

multiplication of two matrices is contingent upon the satisfaction of a different

dimensional requirement.

Suppose that, given two matrices 4 and B, we want to find the product AB.
The conformability condition for multiplication is that the column dimension of 4__
(the “lead” matrix in the expression 4B) must be equal to the row dimension of
B (the “lag” matrix). For instance, if

o bll b12 b 13
(4.5) (1132) [a) ‘?tz] VU, (253) [b2, b, bza]
the product 4B then is defined, since 4 has two columns and B has two
rows—precisely the same number.* This can be checked at a glance by comparing
the second number in the dimension indicator for 4, which is (1 x 2), with the -
first number in the dimension indicator for B, (2 X 3). On the other hand, the
reverse product BA is not defined in this case, because B (now the lead matrix) has
three columns while 4 (the lag matrix) has only one row; hence the conformability
condition is violated.

In general, if A4 is of dimension m X n and B is of dimension p X g, the
matrix product 4B will be defined if and only if n = p. If defined, moredver, the
product matrix 4B will have the dimension m X g—the same number of rows as
the lead matrix 4 and the same number of columns as the lag matrix B. For the
matrices given in (4.5), AB will be 1 X 3. 7

It remains to define the exact procedure of multiplication. For this purpose,
let us take the matrices 4 and B in (4.5) for illustration. Since the product 4B is
defined and is expected to be of dimension 1 X 3, we may write in general (using
the symbol C rather than ¢’ for the row vector) that

AB = C = [Cu 1 C13]

Each element in the product matrix C, denoted by ¢, ;, is defined as a sum of
products, to be computed from the elements in the ith row of the lead matrix A4,
and those in the jth column of the lag matrix B. To find ¢,,, for instance, we
should take the first row in A (since i = 1) and the first column in B (since j = 1)

* The matrix 4, being a row vector, would normally be denoted by a’. We use the symbol 4 here
to stress the fact that the muitiplication rule being explained applies to matrices in general, not only to
the product of one vector and one matrix.



LINEAR MODELS AND MATRIX ALGEBRA 61

First pair
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For ¢y5:
Second pair

Figure 4.2

—as shown in the top panel of Fig. 4.2—and then pair the elements together
sequentially, multiply out each pair, and take the sum of the resulting products, to
get

(4-6) ¢,y = apby, + apby,

Similarly, for ¢,,, we take the first row in A4 (since i = 1) and the second column in
B (since j = 2), and calculate the indicated sum of products—in accordance with
the lower panel of Fig. 4.2—as follows: -

(4.6") €y = ayby, + apby
By the same token, we should also have
(4.6") €3 =apby; + apby

It is the particular pairing requirement in this process which necessitates the
matching of the column dimension of the lead matrix and the row dimension of
the lag matrix before multiplication can be performed.

The multiplication procedure illustrated in Fig. 4.2 can also be described by
using the concept of the inner product of two vectors. Given two vectors ¥ and v
with n elements each, say, (¥, #,,..., u,) and (v, v,,..., v,), arranged either as
two rows or as two columns or as one row and one column, their inner product,
written as u - v, is defined as ‘

U-v=uw, +tuo;+ - +upy,

This is a sum of products of corresponding elements, and hence the inner product
of two vectors is a scalar. If, for instance, we prepare after a shopping trip a
vector of quantities purchased of n goods and a vector of their prices (listed in the
corresponding order), then their inner product will give the total purchase cost.
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Note that the inner-product concept is exempted from the conformability condi-
tion, since the arrangement of the two vectors in rows or columns is immaterial.
Using this concept, we can describe the element ¢;; in the product matrix
C = AB simply as the inner product of the ith row of the lead matrix 4 and the
Jth column of the lag matrix B. By examining Fig. 4.2, we can easily verify the
“validity of this description.
The rule of multiplication outlined above applies with equal validity when the
dimenstons of 4 and B are other than those illustrated above; the only prere-
quisite is that the conformability condition be met.

Example 7 Given

35 -1 0
(2x2) 4 6 a (2x2) 4 7
find AB. The product 4B is obviously defined, and will be 2 X 2:

3(—1) +5(4) 3(0) + 5(7)] _ [17 35]

AB = 4(~1)+6(4) 4(0) +6(7) 20 42

Example 8 Given

1 3 5
2 8 and b =[ ] Jx’

find Ab. This time the product matrix should be 3 X 1, that is, a column vector:
1(5) + 3(9) 32
Ab=(2(5)+8(9) | =182
4(5) + 0(9) 20

A =
(3x2)

Example 9 Given

3 -1 2 0 -1 &

A |1 0 3 and B =]-1 1 %
(3x3) (3x3)

4 0 2 2 -k

find AB. The same ruie of multiplication now yields a very special product
matrix:

0+1+0 —3i-1i+¢ 3-7-3%

16~ 10~ o 100
AB=[04+0+0 —-5+0+% FH+0-%(1=10 1 O
0+0+0 -—-%t+0+% HB+0-% 0 0 1

This last matrix—a square matrix with 1s in its principal diagonal (the diagonal
running from northwest to southeast) and Os everywhere else—exemplifies the

important type of matrix known a8 jdentiry gupix, This will be further discussed

below.
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Example 10 Let us now take the matrix A and the vector x as defined in (4.4)
and find Ax. The product matrix is a 3 X 1 column vector:

6 3 11[ 6x, + 3x, + x5
Ax =1|1 4 —2] Xl = x; +4x, — 2x,
4 -1 511%3 4x, — x, + 5x;5

3 x3) @Bx0Nn 3x1

Repeat: the product on the right is a column vector, its corpulent appearance
notwithstanding! When we write Ax = d, therefore, we have

6x, + 3x, + x4 22
x,tdx, —2x; (=112
4x, — x5+ 5x, 10

which, according to the definition of matrix equality, is equivalent to the state-
ment of the entire equation system in (4.3).

Note that, to use the matrix notation Ax = d, it is necessary, because of the
conformability condition, to arrange the variables x, into a column vector, even
though these variables are listed in a horizontal order in the original equation
system.

Example 11 The simple national-income model in two endogenous variables Y
and C, ... R — e

Y=C+I,+ G,
C=a+bY
can be rearranged into the standard format of (4.1) as follows:
Y-C=1,+G, |
—bY+ C=a

Hence the coefficient matrix A, the vector of variables x, and the vector of
constants d are:

1 - 1] [ Y] [1 +G ]
A4 = x = d =|"0 0
@2x2) [—b 1 @2xh C @2x1 a
Let us verify that this given system can be expressed by the equation Ax = d.
- By the rule of matrix multiplication, we have
|1 Y-c
-bY + C
Thus the matrix equation Ax = d would give us

Y 1(Y) + (—1(C)
eedete

C

1 -1
-5 1

Ax =

—-b(Y) + 1(C)
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Since matrix equality means the equality between corresponding elements, it is
clear that the equation Ax = d does precisely represent the original equation
system, as expressed in the (4.1) format above.

The Question of Division

While matrices, like numbers, can undergo the operations of addition, subtrac-
tion, and multiplication—subject to the conformability conditions—it is not
possible to divide one matrix by another. That is, we cannot write A /B.

For two numbers a and b, the quotient a/b (with b # 0) can be written
alternatively as ab~' or b~ 'a, where b™! represents the inverse or reciprocal of b.
Since ab~' = b~ 'a, the quotient expression a/b can be used to represent both
ab™" and b™ 'a. The case of matrices is different. Applying the concept of inverses
to matrices, we may in certain cases (discussed below) define a matrix B~ that is
the inverse of matrix B. But from the discussion of conformability condition it
follows that, if AB~! is defined, there can be no assurance that B~ '4 is also
defined. Even if AB~! and B~'A are indeed both defined, they still may not
represent the same product. Hence the expression 4 /B cannot be used without
ambiguity, and it must be avoided. Instead, you must specify whether you are
referring to AB~ ' or B~'A—provided that the inverse B~' does exist and that the
matrix product in question is defined. Inverse matrices will be further discussed
below.

Digression on 2. Notation

The use of subscripted symbols not only helps in designating the locations of
parameters and variables but also lends itself to a flexible shorthand for denoting
sums of terms, such as those which arose during the process of matrix multiplica-
tion.

The summation shorthand makes use of the Greek letter T (sigma, for
“sum”). To express the sum of x|, x,, and x,, for instance, we may write

3
x1+x2+x3=2xj
=1

which is read: “the sum of x; as j ranges from 1 to 3.” The symbol j, called the
summation index, takes only integer values. The expression x ; represents the
summand (that which is to be summed), and it is in effect a function of j. Aside
from the letter j, summation indices are also commonly denoted by i or k, such as
7
X; = X3+ x4+ x5+ x5+ X4
3

=

n

n .
L X =xgtx + e+ x ‘, | -
k=0
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The application of X notation can be readily extended to cases in which the x
term is prefixed with a coefficient or in which each term in the sum is raised to
some integer power. For instance, we may write:

3
ax; = ax; + ax, + ax; = a(x; + x, + x3) = a ). x,
1 j=1

M- T

a.x. = alxl -+ a2x2 + a3X3 T T U P N

-
]
—_

agx’ + ax' + ayx*+ -+ +a,x"

L0=
K
xh-
!

~

n

=qg,+tax+ax*+---+ax

n

The last example, in particular, shows that the expression ) a,x’ can in fact be

i=0
used as a shorthand form of the general polynomial function of (2.4).
It may be mentioned in passing that, whenever the context of the discussion
leaves no ambiguity as to the range of summation, the symbol ¥ can be used

alone, without an index attac}lsc_i (such as Yx;), or with only the index letter
underneath (such as Ex ).

Let us apply the Z shorthand to matrix multiplication In (4.6), (4.6"), and
(4.6”), each element of the product matrix C = 4B is defined as a sum of terms,
which may now be rewritten as follows: o

ey =ay by +apb, = E ayby

Cip =anby +apby, = Z ay by,
k=1

2
i3 = aubyy + apby = Y ayby,
k=1

In each case, the first subscript of ¢, is reflected in the first subscript of 4,,, and
the second subscript of c|; is reflected in the second subscript of ql.)-_’ig in the X
expression, The index &, on the other hand, is a “dummy” subscript; it serves to
indicate which particular pair of elements is being multiplied, but it does not
show up in the symbol ¢, ;.

" Extending this to the multiplication of an m X n matrix A = [a,,] and an
n X p matrix B = [b,;], we may now write the elements of the m X p product
matrix AB = C = [¢;;] as

n n
Y ayby cp= X ayb, |

l=k=1 k=1 ' /
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or more generally,

" i=1,2,....,m
Ci; = k{:]dikbkj _ (j= 1,2,_“,1’)

This last equation represents yet another way of stating the rule of multiplication
for the matrices defined above.

EXERCISE 4.2

6 9P 6 1
(@A+B  (b)C-4 (¢) 34 (d) 4B + 2C

1 Givend = |4 _l},B=[g _g],andC=[8 3],ﬁnd:

-
2 8

2 GivenA = |3 0,B=[2 O},andC=[7 2:
50 3 8 6 3

(a) Is AB defined? Calculate AB. Can you calculate BA? Why?
(b) Is BC defined? Calculate BC. Is CB defined? If so, calculate CB. Is it true that
BC = CB?

3 On the basis of the matrices given in Example 9, is the product BA defined? If so,
calculate the product. In this case do we have AB = BA?

4 Find the product matrices in the following (in each case, append beneath every matrix a
dimension indicator):

0 1 0f|8 0O x
(a) [3 0 4”0 1] (¢) [3 2 _‘7’]H
2 3 0lL3 5 z
4 -1 70
(b) [g . i][S 2] (d)[a b c][O 2]
0 1 1 4
5 Expansd the following summati‘?n expressions: ,
(@) L x (&) X bx, (&) X(x+i)
i=2 i=1 i=0
8 n )
(b)) X ax, (d) Xax" ,
i=5 i=1 i O\(YCXLV - ‘}
6 Rewrite the following in ¥ notation: ) ‘
(@) xi(x; = D+ 2x5(x = D+ 3x3(x5 — 1) =1
(b) as(x3+2)+a3(x, +3)+a(xs+ 4)

1 1
(C)%+;—2—+'-'+-x— (x#:O)

n

| B 1
(d)l+;+;+---+;; (x #0)



LINEAR MODELS AND MATRIX ALGEBRA 67

7 Show that the following are true:
n n+1
((l) ( Zxr) + Xpv1 = Z X
i=0 i=0
h X ab;y, = a 2 b; y;
=1 j=1

j=

© T(x+y)=Xx+ Ly
=1 Jj=1 j=1

j=

4.3 NOTES ON VECTOR OPERATIONS

In the above, vectors are considered as special types of matrix. As such, they
qualify for the application of all the algebraic operations discussed. Owing to
their dimensional peculiarities, however, some additional comments on vector
operations are useful.

Multiplication of Vectors

An m X 1 column vector u, and a 1 X n row vector v’, yield a product matrix wv’
of dimension m X n,

Example 1 Given u = [3] and v’ =[l1 4 5], we can get

2

3 3@ 3] [3 12 1
W) 209 25| |2 8 10

Since each row in u consists of one element only, as does each column in v’, each
element of uv’ turns out to be a single product instead of a sum of products. The
product uv’ is a 2 X 3 matrix, even though we started out only with two vectors.

On the other hand, given a 1 X n row vector ¥’ and an n X 1 column vector
v, the product u'v will be of dimension 1 X 1.

Example 2 Given u’ =[3 4]and v = [2
u'o = [3(9) + 4(7)] = [55]

As written, #’v is a matrix, despite the fact that only a single element is present.
However, 1 X 1 matrices behave exactly like scalars with respect to addition and
multiplication: [4] + [8] = [12], just as 4 + 8 = 12; and [3] [7] = [21], just as
3(7) = 21. Moreover, 1 X 1 matrices possess no major properties that scalars do
not have. In fact, there is a one-to-one correspondence between the set of all
scalars and the set of all 1 X 1 matrices whose elements are scalars. For this

reason, we may redefine u’v to be the scalar corresponding to the 1 X 1 product
[N N .

], we have
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matrix. For the above example, we can accordingly write u’v = 55. Such a
product is called a scalar product.* Remember, however, that while a 1 X 1 matrix
can be treated as a scalar, a scalar cannot be replaced by a 1 X 1 matrix at will if
further calculation is to be carried out, unless conformability conditions are
fulfilled. o
s

Example 3 Given a row vector ' =[3 6 9), find »’u. Since u is merely the
column vector with the elements of 4’ arranged vertically, we have

3
wu=1[3 6 9][6] =(3)* + (6)° + (9)°
9

where we have omitted the brackets from the 1 X 1 product matrix on the right.
Note that the product u’u gives the sum of squares of the elements of .
In general, if ' = [u; w, --- wu,), then u'u will be the sum of squares (a

scalar) of the elements u K

u’u=u12+u22+"'+u2=zu‘2

Had we calculated the inner product u - u (or «’ - u’), we would have, of course,
obtained exactly the same result. ' -

To conclude, it is important to distinguish between the meanings of uv’ (a
matrix larger than 1 X 1) and #’v (a 1 X 1 matrix, or a scalar). Observe, in
particular, that a scalar product must have a row vector as the lead matrix and a
column vector as the lag matrix; otherwise the product cannot be 1 X 1.

Geometric Interpretation of Vector Operations

It was mentioned earlier that a column or row vector with n elements (referred to
hereafter as an n-vector) can be viewed as an n-tuple, and hence as a point in an
n-dimensional space (referred to hereafter as an n-space). Let us elaborate on this
idea. In Fig. 4.3a, a point (3, 2) is plotted in a 2-space and is labeled u. This is the

g or the vector u’ = [3 2], both of.

which indicate in this context one and the same ordered pair. If an arrow (a
directed-line segment) is drawn from the point of origin (0,0) to the point u, it
will specify the unique straight route by which to reach the destination point u
from the point of origin. Since a unique arrow exists for each point, we can regard
the vector u as graphically represented either by the point (3,2), or by the

geometric counterpart of the vector u =

* The concept of scalar product is thus akin to the concept of inner product of two vectors with the
same number of elements in each, which also yields a scalar. Recall, however, that the inner product is
exempted from the conformability condition for multiplication, so that we may write it as u - 0. In the
case of scatar product (denoted without a dot between the two vector symbols), on the other hand, we
can express it only as a row vector multiplied by a column vector, with the row vector in the lead.
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corresponding arrow. Such an arrow, which emanates from the origin (0,0) like
the hand of a clock, with a definite length and a definite direction, is called a
radius vector.. '

Following this new interpretation of a vector, it becomes possible to give
geometric meanings to (a) the scalar multiplication of a vector, (b) the addition
and subtraction of vectors, and more generally, (c) the so-called “linear combina-
~tion” of vectors. '

First, if we plot the vector [3] = 2u in Fig. 4.3q, the resulting arrow will

overlap the old one but will be twice as long. In fact, the multiplication of vector
u by any scalar k will produce an overlapping arrow, but the arrowhead will be

X - : : . X,
2u
4 6,4)
3- // | -3 =2
-7 i 3
24— u l l .
3.2) |
4 Ve
: | | v, .
~ t ! | T ! X1 —Uu
0 1 2 3 4 5 6 (-3, —2)
@ o (b)
X2 ’ ’ X2 v
(1.4
4__
4
A3
UV—u d
(-2,2)%( 2+
N\
/ 1-
PRI PN |
} e | t | R
/ o0 1 2
/ -1
—u —_2— ~
| X, (=3, —2)
5 .
e (I , ()
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relocated, unless & = 1. If the scalar multiplier is k > 1, the arrow will be
extended out (scaled up); if 0 < k < 1, the arrow will be shortened (scaled
down); if k = 0, the arrow will shrink into the point of origin—which represents

a null vector, 0]. A negative scalar multiplier will even reverse the direction of

0

the arrow. If the vector u is multiplied by — 1, for instance, we get —u = [ :;_]’
and this plots in Fig. 4.3b as an arrow of the same length as u but diametrically
opposite in direction.

1] _[3
4] and u = [2] The sum

Next, consider the addition of two vectors, v = [
v+u= [2] can be directly plotted as the broken arrow in Fig. 4.3c. If we

construct a parallelogram with the two vectors u and v (solid arrows) as two of its
sides, however, the diagonal of the parallelogram will turn out exactly to be the
arrow representing the vector sum v + u. In general, a vector sum can be
obtained geometrically from a parallelogram. Moreover, this method can also give
us the vector difference v — u, since the latter is equivalent to the sum of v and
(— Du. In Fig. 4.3d, we first reproduce the vector v and the negative vector —u
from diagrams ¢ and b, respectively, and then construct a parallelogram. The
resulting diagonal represents the vector difference v — u.

It takes only a simple extension of the above results to interpret geometrically
a linear combination (i.e., a linear sum or difference) of vectors. Consider the
simple case of

3v+2u=3“]+ZB]=[£]

The scalar multiplication aspect of this operation involves the relocation of the
respective arrowheads of the two vectors v and u, and the addition aspect calls for
the construction of a parallelogram. Beyond these two basic graphical operations,
there is nothing new in a linear combination of vectors. This is true even if there
are more terms in the linear combination, as in

Y kv, =k, + ko, + - + kv

n“n
i=1

where k; are a set of scalars but the subscripted symbols v, now denote a set of
vectors. To form this sum, the first two terms may be added first, and then the
resulting sum is added to the third, and so forth, till all terms are included.

Linear Dependence ‘

A set of vectors v,,..., v, is said to be linearly dependent if (and only if) any one_

of them can be expressed as a linear combination of the remaining vectors;
otherwise they are linearly independent.

3
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Example 4 The three vectors v, = [ﬂ, v, = [ ;], and v; = [g] are linearly

dependent because vs is a linear combination of v, and v,:_

N I

Note that this last equation is alternatively expressible as
30, - 20, —v3=0

where 0 = [8] represents a null vector (also called zero vector).

Example 5 The two row vectors v, [5 12] and v; =[10 24] are linearly
dependent because

200 =2[5 12]=[10 24]=v,

The fact that one vector is a multiple of another vector illustrates the simplest

case of linear comb1nat1on Note again that this last equation may be written
equnvalently as :

where 0’ represents the null row vector [0 0].

With the introduction of nuil vectors, linear dependence may be redefined as

follows. A set of m-vectors o,, .5 U, 18 linearly dependent if and only if there
exists a set of scalars k,.. ., (not all zero) such that

Z kv,= 0

i=1 (mx1)

If this equation can be satisfied only when k, = 0 for all i, on the other hand, these
vectors are linearly independent.

The concept of linear dependence admits of an easy geometric interpretation
also. Two vectors u and 2u—one being a multiple of the other—are obviously
dependent. Geometrically, in Fig. 4.3a, their arrows lie on a smgle straight line.
The same is true of the two dependent vectors u and — u in Fig. 4.3b. In contrast,
the two vectors u and v of Fig. 43¢ are linearly independent, because it is
impossible to express one as a multiple of the other. Geometrically, their arrows
do not lie on a single straight line.

When more than two vectors in the 2-space are considered, there emerges this
significant conclusion: once we have found two linearly independent vectors in the _
2-space (say, 4 and v), all the other vectors in that space will be expresmble as a
linear combination of these (# and v). In Fig. 43¢ and d, it has already been
illustrated how the two simple linear combinations v + © and v — u can be found.
Furthermore, by extending, shortening, and reversing the given vectors u and v
and then combining these into various parallelograms, we can generate an infifite
number of new vectors, which will exhaust the set of all 2-vectors. Because of this,
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any set of three or more 2-vectors (three or more vectors in a 2-space) must be
linearly dependent. Two of them can be independent, but then the third must be a
linear combination of the first two.

Vector Space

The totality of the 2-vectors generated by the various linear combinations of two
independent vectors v and v constitutes the two-dimensional vector space. Since
we are dealing only. with vectors with real-valued elements, this vector space is
none other than R?, the 2-space we have been referring to all along. The 2-space
cannot be generated by a single 2-vector, because “linear combinations” of the
latter can only give rise to the set of vectors lying on a single straight line. Nor
does the generation of the 2-space require more than two linearly independent
2-vectors—at any rate, it would be impossible to find more than two.

The two linearly independent vectors u and v are said to span the 2-space.
They are also said to constitute a basis for the 2-space. Note that we said a basts,
not the basis, because any pair of 2-vectors can serve in that capacity as long as
they are linearly independent. In particular, consider the two vectors [1 0} and
[0 1], which are called unir vectors. The first one plots as an arrow lying along
the horizontal axis, and the second, an arrow lying along the vertical axis. Because
they are linearly independent, they can serve as a basis for the 2-space, and we do
in fact ordinarily think of the 2-space as spanned by its two axes, which are
nothing but the extended versions of the two unit vectors.

By analogy, the three-dimensional vector space is the totality of 3-vectors,
and it must be spanned by exactly three linearly independent 3-vectors. As an
illustration, consider the set of three unit vectors

1 0 0
47) e, =}o0 e; =11 e;= 1|0
0 0 1

where each e, is a vector with ] _as its ith element and with zeros elsewhere. These
three vectors are obviously linearly independent; in fact, their arrows lie on the
three axes of the 3-space in Fig. 4.4. Thus they span the 3-space, which implies
that the entire 3-space (R?, in our framework) can be generated from these unit
' 1

vectors. For example, the vector | 2 | can be considered as the linear combination

e, + 2¢, + 2e,. Geometrically, we:2 can first add the vectors ¢, and 2e, in Fig. 4.4
by the parallelogram method, in order to get the vector represented by the point
(1,2,0) in the x,;x, plane, and then add the latter vector to 2e;—via the
parallelogram constructed in the shaded vertical plane—to obtain the destred
final result, at the point (1, 2, 2).

The further extension to n-space should be obvious. The n-space can be
defined as the totality of n-vectors. Though nongraphable, we can still think of the
n-space as being spanned by a total of n (n-element) unit vectors that are all
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e, +2e;+42e;3
"(1,2,2)

Figure 4.4

linearly independent. Each n-vector, being an ordered n-tuple, represents a point
in the n-space, or an arrow extending from the point of origin (i.e., the n-element
null vector) to the said point. And any given set of »n linearly independent
n-vectors is, in fact, capable of generating the entire n-space. Since, in our
discussion, each element of the n-vector is restricted to be a real number, this
n-space is in fact R".

The n-space referred to above is sometimes more specifically called the
euclidean n-space (named after Euclid). To explain this latter concept, we must
first comment briefly on the concept of distance between two vector points. For
any pair of vector points  and v in a given space, the distance from u to v is some
real-valued function -

d=d(u,v)

with the following properties: (1) when # and v coincide, the distance is zero; (2)

when the two points are distinct, the distance from « to v and the distance from v
to u are represented by an identical positive real number; and (3) the distance
between u and v is never longer than the distance from u to w (a point distinct
from u and v) plus the distance from w to v. Expressed symbolically,

d(u,v) =0 (foru = v)
d(u,v)y=d(v,u)>0 . (for u + v)
d(u,v) < d(u,w)+ d(w, v) (forw # u, v)
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The last property is known as the trigangular inequality, because the three points u,
v, and w together will usually define a triangle.

When a vector space has a distance function defined that fulfills the above
three properties it is called a metric space. However, note that the distance d(u, v)
has been discussed above only in general terms. Depending on the specific form
assigned to the d function, there may result a variety of metric spaces. The
so-called “euclidean space” is one specific type of metric space, with a distance
function defined as follows. Let point u be the n-tuple (a,, a,,. .., a,) and point v
be the n-tuple (b}, b,,..., b,); then the euclidean distance function is

d(u,v)=(a,~ b)) + (ay— b)* + --- + (a, — b,)°

where the square root is taken to be positive. As can be easily verified, this specific
distance function satisfies all three properties enumerated above. Applied to the
two-dimensional space in Fig. 4.3a, the distance between the two points (6, 4) and
(3,2) is found to be

J6-31+@-27=V32+22=y13

This result is seen to be consistent with Pythagoras’ theorem, which states that the
length of the hypotenuse of a right-angled triangle is equal to the (positive) square
root of the sum of tine squares of the lengths of the other two sides. For if we take
(6,4) and (3,2) to be u and v, and plot a new point w at (6,2), we shall indeed
have a right-angled triangle with the lengths of its horizontal and vertical sides
equal to 3 and 2, respectively, and the length of the hypotenuse (the distance
between « and v) equal to V32 + 22 = V13.

The euclidean distance function can also be expressed in terms of the square
root of a scalar product of two vectors. Since u and v denote the two n-tuples
(aj,...,a,)and (b,,..., b,), we can write a column vector ¥ — v, with elements
a, —b,a,—b,,...,a,—b,. What goes under the square-root sign in the
euclidean distance function is, of course, simply the sum of squares of these n
elements, which, in view of Exampie 3 above, can be written as the scalar product
(u — v)'(u — v). Hence we have

 d(u,0) = (u=o)(u - 0)

EXERCISE 4.3

1 Given ' =[5 2 3,0 =[3 1 9, w =[7 5 8], and x" =[x, x5 x3], write
out the column vectors, u, v, w, and x, and find :
(a) uw'’ (c) xx’ (e) u'v (g) w'u

(b) uw’ (d)v'u (f)wx (h) x'x
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. 3 x] g Z
2Givenw=| 2], x= P [P yz,andz= |
16

(a) Which of the following are defined: w'x, xy’, xy’, y'y, zz’, yw x-y?
(b) Find all the products that are defined.

3 Having bought n items of merchandise at quantities Q,,..., @, and prices P,..., P,

how would you express the total cost of purchase in (@) ¥ notation and (&) vector
notation?

4 Given two nonzero vectors w, and w,, the angle 8 (0° < @ < 180°) they form is related
to the scalar product wiw, (= wyw)) as follows:

acute >
8 is a(n) {right } angle if and only if w,’wz{ = }0
obtuse <

Verify this by computing the scalar product for each of the following pair of vectors (see
Figs. 4.3 and 4.4):

@w=[Hhm-[l] @m= o) 2
() w, = []Wz |- ;] ) WI=M,WZ=M

2 0
n-[2hn-[1

5 Given u = [?] and v = [(3)], find the following graphically:

(a) 2v (c)u-—v (e) 2u + 3v
() u+o (d) v—u (f) 4u-—-2v

6 Since the 3-space is spanned by the three unit vectors defined in (4.7), any other 3-vector
should be expressible as a linear combination of e, e,, and e;. Show that the following

3-vectors can be so expressed:
4 15 -1 2
(a) {7 (b) | -2 () 3 (d) |0
0 1 9 8
7 In the three-dimensional euclidean space, what is the distance between the following
points?
(a) (3,2,8) and (0, — 1,5) (b) (9,0,4) and (2,0, -4)

8 The triangular inequality is written with the weak inequality sign <, rather than the
strict inequality sign < . Under what circumstances would the “ =  part of the inequality
apply?

9 Express the length of a radius vector v in the euclidean n-space (i.e., the distance from
the origin to point v) in terms of:
(a) scalars (b) a scalar product (¢) an inner product
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4.4 COMMUTATIVE, ASSOCIATIVE, AND DISTRIBUTIVE LAWS

In ordinary scalar algebra, the additive and multiplicative operations obey the
commutative, associative, and distributive laws as follows:

Commutative law of addition: a+b=b+a
Commutative law of multiplication: ab = ba
Associative law of addition: a (a+tb)ytc=a+(b+c)
Associative law of multiplication: (ab)c = a(bc)
Distributive law: k a(b+c)=ab+ ac

These have been referred to during the discussion of the similarly named laws
applicable to the union and intersection of sets. Most, but not all, of these laws
also apply to matrix operations—the s1gn1ﬁcant exception being the commutative
law of multiplication.

Matrix Addition

Matrix addition is commutative as well as associative. This follows from the fact
that matrix addition calls only for the addition of the corresponding elements of
two matrices, and that the order in which each pair of corresponding elements is
added is immaterial. In this context, incidentally, the subtraction operation
A — B can simply be regarded as the addition operation 4 + (— B), and thus no
separate discussion is necessary.

The commutative and associative laws can be stated as follows:

Commutative law A+B=B+ A
PROOF A4 + B =[q;;] +[b,] = [a;; + b

1=1b,+a;l=B+A4

Example 1 GivenA———[3 1]andB=[6 2],weﬁnd that
0 2 , 3 4
_ _19 3
A+B=B+ A [3 6]

Associative law (A+B)+C=4+(B+C)

PROOF (A+B)+ C=la;+b,]+[c,]=la,+ b, + ¢

[a]+wu+gﬂ=A+(B+C)

Example 2 Given v, = [2], v, = [ﬂ, and vy = [g], we find that

(v.fvz>-u3=[‘§] -12]-1%)
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which is equal to

oot om0 =[] - [ ]

Applied to the linear combination of vectors kv, + --- + k,v,, this law

n-n’

permits us to select any pair of terms for addition (or subtractlon) first, instead of
having to follow the sequence in which the n terms are listed.

Matrix Multiplication

Matrix multiplication is not commutative, that is,
AB + BA

As explained previously, even when AB is defined, BA may not be; but even if
both products are defined, the general rule is still AB # BA.

2 _10 =1/
Example 3 LetA—[3 4]andB [_6 7],then

po | 1@+26) 1(=n+2n] _[12 13
130y +4(6) (=1 +47)| |24 25
0(1) — 1(3)  0(2) — 1(4) 2[—3 —4]

but — BA=160) +703) - 6(2) + 7(4) 27 40

Example 4 Let v’ be 1l X 3 (arow vector); then the corresponding column vector
u must be 3 X 1. The product u'u will be 1 X 1, but the product uu’ will be 3 X 3.

Thus, obviously, w'u # uw’. )
In view of the general rule AB # BA, the terms premultiply and postmultiply
are often used to specify the order of multiplication. In the product 4B, the
matrix B is said to be premultiplied by 4, and A4 to be postmultiplied by B
There do exist interesting exceptions to the rule 4B # BA, however. One such
case is when 4 is a square matrix and B is an identity matrix. Another is when 4
is the inverse of B, that is, when 4 = B~'. Both of these will be taken up again
later. It should also be remarked here that the scalar multiplication_of 4 matrix._
does obey the commutative law; thus

kA = Ak
if k is a scalar.
Although it is not in general commutative, matrix multiplication /s associa-

tive.

—

Associative law (AB)C = A(BC) = ABC

In forming the product ABC, the conformability condition must naturally be
satisfied by each adjacent pair of matrices. If 4 is m X n and if C is p X ¢, then

T g e
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conformability requires that B be n X p:

A B C
(mXn} (nXp) (pXq)
Note the dual appearance of n and p in the dimension indicators. If the
conformability condition is met, the associative law states that any adjacent pair
of matrices may be multiplied out first, provided that the product is duly inserted
in the exact place of the original pair.

a,
0
1%
oy Xy

0
Example 5 1f x = [;C;] and 4 = [ 4 ], then
2

2

’Ax—x(Ax)— [x, xz][ ] = a;, X7 + a,x3

which is a “weighted” sum of squares, in contrast to the simple sum of squares
given by x’x. Exactly the same result comes from

' X1 2 2
(x'4)x = [a,x, azz"z][xz] =apXx; taxpx;
Matrix multiplication is also distributive.

Distributive law ~ A(B + C) = AB + AC [premultiplication by A]
(B+ C)A=BA+ CA [postmultiplication by A]

In each case, the conformability conditions for addition as well as for multiplica-
tion must, of course, be observed.

EXERCISE 4.4

. _13 6 _|-1 7 _3 4 .
1G1venA—[2 4],B [ g 4],andC [1 9],venfythat

(a) (A+B)+C=A4A+(B+ ()
(b) (A+B)-C=A+(B-C)
2 The subtraction of a matrix B may be considered as the addition of the fhatrix (— 1)B.

Does the commutative law of addition permit us to state that 4 — B = & — 4?7 If not, how
would you correct the statement?

3 Test the associative law of multiplication with the following matrices:

BN Lo
5 3 -8 0 7
a=[33] s 0 3
0 5 1 3 2 7 1
4 Prove that for any two scalars g and k

(a) k(A + B)=kA + kB
(b) (g+k)A=gAd + kA
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5 Prove that (4 + B)(C + D)= AC + AD + BC + BD.

6 If the matrix A in Example 5 had all its four elements nonzero, would x'Ax still give a
weighted sum of squares? Would the associative law still apply?

4.5 IDENTITY MATRICES AND NULL MATRICES

Identity Matrices

Reference has been made earlier to the term identity matrix. Such a matrix is
defined as a square (repeat: square) matrix with 1s in its pr1nc1pal dlagonal and 0s
everywheré else. It is denoted by the symbol I, or I , in which the “subscript n
serves to indicate its row (as well as column) dlmenswn Thus,

1 0 0
o) w1
0 0 1
But both of these can also be denoted by 1.

The importance of this special type of matrix lies in the fact that it plays a
role similar to that of the number 1 in scalar algebra. For any number a, we have
I(a) = a(l) = a. Snmlarly, for any matrix A, we have

(48) IA=A4I=4

Example 1 LetA = [2 2 g then
_ 0 _[1r 2 3]_
IA_[O 1”2 0 [2 0 3] 4
1 0 0
1 2 3 3
ar-| ][o 3|-[3 3 3]
2 0 3|, o | 2 0 3

Because A4 is 2 X 3, premultiplication and postmultiplication of A by I would call
for identity matrices of different dimensions, namely, 7, and I;, respectively. But
in case 4 is n X n, then the same identity matrix I, can be used, so that (4.8)
becomes I, A = AI,, thus illustrating an exception to the rule that matrix multi-
plication is not commutative.

The special nature of identity matrices makes it possible, during W
€ matrix

cation process, to insert or delete an identity matrix without affectin
product. This follows dlrectly from (4.8). Recalling the associative law, we have,
for instance,

A I B =(AI)B= A B

(mXxn) (nXn) (nXp) {(mXn) (nXp)

which shows that the presence or absence of I does not affect the product.
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Observe that dimension conformability is preserved whether or not 7 appears in
the product.
An interesting case of (4.8) occurs when 4 = I,, for then we have

AL = (1) =1,

which states that an identity matrix squared is equal to 1tself A generalization of
this result is that :

(1) =1 (k=1,2,..)

An identity matrix remains unchanged when it is multiplied by itself any number
of times. Any matrix with such a property (namely, A4 = A) is referred to as an

idempotent matrix. ~
e st ——

Null Matrices

Just as an identity matrix [ plays the role of the number 1, a null matrix—or zero
matrix—denoted by 0, plays the role of the number 0. A null matrix is simply a
matrix whose elements are all zero. Unlike I, the zero matrix is not restricted to
being square. Thus it is possible to write

1o 0] 0 0 o]
0 = d 0 =
(2x2) [0 0 an 2x3) 0 0 O

and so forth. A square null matrix is idempotent, but a nonsquare one is not.
(Why?)

As the counterpart of the number 0, null matrices obey the following rules of
operation (subject to conformability) with regard to addition and multiplication:

A + 0 = 0 + A4 = A4
(mXn) (mxn) (mXn) (mXn) (mXn)
A 0 = 0 and 0 A = 0
(mXn) (nXp)  (mXp) (gXm) (mXn)  (gXn)

Note that, in multiplication, the null matrix to the left of the equals sign and the
one to the right may be of different dimensions.

Example 2
_|an an 0 0} _ [a” al2] _
A + 0 - I:az] (122] + [O 0 o a2] a22 _A
E " 3 . BT o
13-
0 @2x1)

A 0 = [a“ a, ‘113] 0
@x3) 3% dyp Gy 4y 0

To the left, the null matrix is a 3 X 1 null vector; to the right, it is a 2 X 1 null

vector.
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Idiosyncracies of Matrix Algebra

Despite the apparent similarities between matrix algebra and scalar algebra, the
case of matrices does display certain idiosyncracies that serve to warn us not to
“borrow” from scalar algebra too unquestioningly. We have already seen that, in
general, AB + BA in matrix algebra. Let us look at two more such idiosyncracies
of matrix algebra.

For one thing, in the case of scalars, the equation ab = 0 always implies that
either a or b is zero, but this is not so in matrix multiplication. Thus, we have

_ 12 4l -2 4(_|(0 0] _
=13 Sl-16 8-
although neither 4 nor B is itself a zero matrix.
As another illustration, for scalars, the equation ¢d = ce (with ¢ # 0) implies
that d = e. The same does not hold for matrices. Thus, given

_12 3 {1 1 _[-2 1
C[69D[12]E[32]
we find that
5 8
15 24
even though D + E.

These strange results actually pertain only to the special class of matrices
known as singular matrices, of which the matrices 4, B, and C are examples.
(Roughly, these matrices contain a row which is a multiple of another row.)

Nevertheless, such examples do reveal the pitfalls of unwarranted extension of
algebraic theorems to matrix operations.

CD=CE=[

EXERCISE 4.5

9

. -1 8 7| .- %]
leenA—[ 0 -2 4],b [g],andx [xz]'
1 Calculate: (a) AI (b) I4 (¢) Ix (d) x'I
Indicate the dimension of the identity matrix used in each case.
2 Calculate: (a) Ab (b) AIb (¢) x'IA (d) x’A
Does the insertion of I in (b) affect the result in (a)? Does the deletion of I in (d) affect
the result in (¢)? ‘

3 What is the dimension of the null matrix resulting from each of the following?
(a) Premultiply 4 by a 4 X 2 null matrix.
(b) Postmultiply 4 by a 3 X 6 null matrix.
(¢) Premultiply b by a 4 X 3 null matrix.
(d) Postmultiply x by a 1 X 5 null matrix.
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4 Show that a diagoral matrix, i.e., a matrix of the form

a, 0 0
0 ay 0
0 0 a

can be idempotent only if each diagonal element is either 1 or 0. How many different
numerical idempotent diagonal matrices of dimension # X »n can be constructed altogether
from the matrix above?

4.6 TRANSPOSES AND INVERSES

When the rows and columns of a matrix 4 are interchanged—so that its first row
becomes the first column, and vice versa— we obtain the e transpose of A, which is
denoted by A’ or A”. The prime symbol is by no means new to us; it was used
earlier to distinguish a row vector from a column vector. In the newly introduced
terminology, a row vector x’ constitutes the transpose of the column vector x. The
superscript 7 in the alternative symbol is obviously shorthand for the word
transpose.

Example] Given A = [3 8 - 9] and B = [3 4], we can inter-
@2x3) 1 0 4 (2x2) 1 7 o
change the rows and columns and write
3 1
A =1 8 0 and B = [3 ! ]
(3x2) _9 4 (2x2) 4 7

By definition, if a matrix 4 is m X n, then its transpose A" must be n X m. An
n X n square matrix, however, possesses a transpose with the same dimension.

1 0 4

Example 2 IfC=[9 _]]andD= 0 3 71|, then
2 0
4 71 2
1 0 4
C’=[_? (2)] and D=0 3 7
4 7 2

Here, the dimension of each transpose is identical with that of the original matrix.

In D’, we also note the remarkable result that D’ inherits not only the
dimension of D but also the original array of elements! The fact that D’ = D is
the result of the symmetry of the elements with reference to the principal
, 1ag0nal Con31der1ng the principal dlagonal in D as a mirror, the elements ~
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located to its northeast are exact images of the elements to its southwest; hence
the first row reads identically with the first column, and so forth. The matrix D
exemplifies the special class of square matrices known as symmetric matrtces
Another example of such a matrix is the identity matrix I, which, as a symmetric
matrix, has the transpose I’ = I.

Properties of Transposes
The following properties characterize transposes:
(4.9) (A)Y =4
(4100 (A+By=A4A+P5
(4.11) (ABY = B'A’
The first says that the transpose of the transpose is the original matrix—a
rather self-evident conclusion.

The second property may be verbally stated thus: the transpose of a sum is
the sum of the transposes. -

- 1 _[2 o
Example 3 IfA—[9 0] and B [7 1],then
,_[6 1] _[6 16
(A+B) 116 1] [1 1]
and A,+B,=[411 g]+ 27]=[616] ~

The third property is that the transpose of a product is the product of the
transposes in reverse order. To appreciate the necessity for the reversed order, let
us examine the dimension conformability of the two products on the two sides of
(4.11). If we let A be m X n and B be n X p, then AB will be m X p, and (AB)’
will be p X m. For equality to hold, it is necessary that the right-hand expression
B’ A’ be of the identical dimension. Since B’ is p X n and A’ is n X m, the product
B’A’ is indeed p X m, as required. The dimension of B’A’ thus works out. Note
that, on the other hand, the product A’B’ is not even defined unless m = p.

A
/e e

. 11 2 1o -1
Exampie 4 leenA—[3 4 andB—[6 7],wehave /E{ Y
' = 1224 poertf 0y - p
(4B) [24 25] [13 25] / ke

-
] WINAEE A el R

4 12 24
and B4 [—1 Hz 4] 13 25 Nl g X

This verifies the property.
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Inverses and Their Properties

For a given matrix A4, the transpose A’ is always derivable. On the other hand, its
inverse matrix—another type of “derived” matrix—may or may not exist. The
inverse of matrix 4, denoted by A~!, is defined only if 4 is a square matrix, in
which case the inverse is the matrix that satisfies the condition

(4.12) AA'=A"U=1

That is, whether A is pre- or postmultiplied by 4!, the product will be the same
identity matrix. This is another exception to the rule that matrix multiplication is
not commutative.

The following points are worth noting:

1. Not every square matrix has an inverse—squareness is a necessary condition,
but not a sufficient condition, for the existence of an inverse. If a square matrix
A has an inverse, A4 is said to be ronsingular; if A possesses no inverse, it is
called a singular matrix.

2. If A~" does exist, then the matrix A can be regarded as the inverse of 4!, just
as A~ ! is the inverse of A. In short, 4 and A ! are inverses of each other.

3. If A is n X n, then A~ must also be n X n; otherwise it cannot be conform-
able for both pre- and postmultiplication. The identity matrix produced by the
multiplication will also be n X n.

4. If an inverse exists, then it is unique. To prove its uniqueness, let us suppose
that B has been found to be an inverse for 4, so that

AB=BA =1
Now assume that there is another matrix C such that AC = CA = 1. By
premultiplying both sides of 4B = I by C, we find that [
CAB=CI(=C) [by(4.8)]
Since CA = I by assumption, the preceding equation is reducible to
IB=C or B=C

That is, B and C must be one and the same inverse matrix. For this reason, we
can speak of the (as against an) inverse of A.

5. The two parts of condition (4.12)—namely, 44 ! = I and 4~ '4 = I—actually
imply each other, so that satisfying either equation is sufficient to establish the
inverse relationship between 4 and 4 ', To prove this, we should show that if
AA~! = I, and if there is a matrix B such that B4 = I, then B = 4! (so that
BA = I must in effect be the equation 4~ '4 = I'). Let us postmultiply both
sides of the given equation BA = I by A™"; then

(BA)A™' = I14""
B(A4™')=1I4"" [associative law]
BI=14"" [AA~' = I by assumption]
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Therefore, as required,
B=4""'" [by(4.8)]
Analogously, it can be demonstrated that, if A7'4 = I, then the only matrix C
which yields CA™' = I'is C = A.
‘ 1

| I3 1 12 —1]. .
Example 5 Let A= 0 2] and B = 5 [ 0 3], then, since the scalar

multiplier (¢) in B can be moved to the rear (commutative law), we can write

_[3 12 - l_[ﬁOl_[l 0]
4B=1, 2”0 3]6_0 616 —lo 1

This establishes B as the inverse of 4, and vice versa. The reverse multiplication,
as expected, also yields the same identity matrix:

e ER] | R - i e P
610 3110 2 6L0 6 0 1
The following three properties of inverse matrices are of interest. If 4 and B
are nonsingular matrices with dimension # X n, then:

4.13) (4" '=4
(4.14)  (4B) '=B'4"!
(415) (4 '=(a7tY

The first says that the inverse of an inverse is the original matrix. The second
states that the inverse of a product is the product of the inverses in reverse order.
And the last one means that the inverse of the transpose is the transpose of the
inverse. Note that in these statements the existence of the inverses and the
satisfaction of the conformability condition are presupposed.

The validity of (4.13) is fairly obvious, but let us prove (4.14) and (4.15).
Given the product AB, let us find its inverse—call it C. From (4.12) we know that
CAB = I; thus, postmultiplication of both sides by B~ '4~! will yield

- 14— . . ' ‘-
(416) CABB™4'=IB"'A'(=B7'47") rappeT. 7 A

But the left side is reducible to C - A p”
CA(BB ')A ' = CcAI4™! [by (4.12)]
=CAA™'=CI=C [by(4.12) and (4.8)]

Substitution of this into (4.16) then tells us that C = B~'4~! or, in other words,
that the inverse of AB is equal to B~ '4 !, as alleged. In this proof, the equation
AA~' = A47'4 = I was utilized twice. Note that the application of this equation
is permissible if and only if a matrix and its inverse are strictly adjacent to each
other in a product. We may write A4~ 'B = IB = B, but never ABA~' = B,

The proof of (4.15) is as follows. Given A’, let us find its inverse—call it D.
By definition, we then have DA’ = I. But we know that

(A47'y =I'=1
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produces the same identity matrix. Thus we may write
DA = (A4 'Y
= (474 [by (411)]
Postmultiplying both sides by (4’)~!, we obtain
DA(AY ™ = (A )y 4y
or D=(A"Y (by (4.12)]

Thus, the inverse of A" is equal to (4 'Y, as alleged.

In the proofs just presented, mathematical operations were performed on
whole blocks of numbers. If those blocks of numbers had not been treated as
mathematical entities (matrices), the same operations would have been much
more lengthy and involved. The beauty of matrix algebra lies precisely in its
simplification of such operations.

Inverse Matrix and Solution of Linear-Equation System

The application of the concept of inverse matrix to the solution of a simulta-
neous-equation system is immediate and direct. Referring to the equation system
in (4.3), we pointed out earlier that it can be written in matrix notation as
(4.17) A x = d

(Bx3) 3x1)  @3xD

where A, x, and d are as defined in (4.4). Now if the inverse matrix 4 ' exists, the
premultiplication of both sides of the equation (4.17) by 4! will yield

A Ax=A"4d

or

(4.18) x =41 d
3BxD (3X3) 3%

-
The left side of (4.18) is a column vector of variables, whereas the right-hand
product is a column vector of certain known numbers. Thus, by definition of the
equality of matrices or vectors, (4.18) shows the set of values of the variables that
satisfy the equation system, i.e., the solution values. Furthermore, since 4 ! is
unique if it exists, 4 'd must be a unique vector of solution values. We shall
therefore write the x vector in (4.18) as X, to indicate its status as a (unique)
solution.

Methods of testing the existence of the inverse and of its calculation will be
discussed in the next chapter. It may be stated here, however, that the inverse of
the matrix A4 in (4.4) is “

18 —16 —10]

,A“=—l—l3 26 13
2117 138 21
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Thus (4.18) will turn out to be

%, 18 —16 —10 2] [2
%, =5i2 -13 2] =3
% ~17 w| |1

which gives the solution: X, = 2, X, = 3, and x; = L.

The upshot is that, as one way of finding the solution of a linear-equation
system Ax = d, where the coefficient matrix 4 is nonsingular, we can first find the
inverse 47!, and then postmultiply A ' by the constant vector d. The product

A~ 'd will then give the solution values of the variables.
&

EXERCISE 4.6

N
M"‘ ;"5
. — 2 4 — 8 0 9 ’ ! / /'l -
1 Given A [—l 3],B [ ]andC [6 X ]] find A’, B’, and.C’. L‘
2 Use the matrices given in the preceding problem to verify that
(&) (A+B)Y=A'+ B (b) (ACY = C'A’
3 Generalize the result (4.11) to the case of a product of three matrices by proving that,
for any conformable matrices A, B, and C, the equation (4BC) = C'B’A” holds.

4 Given the following four matrices, test whether any one of them is the inverse of
another: :

_[1 12 _[1 1 _|r -4l 4 -
D_[o 3 E‘[s 8] F‘[o %] G‘[_3 )
S Generalize the result (4.14) by proving that, for any conformable nonsingular matrices
A, B, and C, the equation (ABC) '=C 'B"4~".
6Letd=1-X(XX)'X.

(a) Must 4 be square? Must (X’ X) be square? Must X be square?

(b) Show that matrix 4 is idempotent. [Note: If X' and X are not square, it is
inappropriate to apply (4.14).]

A




CHAPTER

FIVE

LINEAR MODELS AND MATRIX ALGEBRA
(CONTINUED)

In Chap. 4, it was shown that a linear-equation system, however large, may be
written in a compact matrix notation. Furthermore, such an equation system can
be solved by finding the inverse of the coefficient matrix, provided the inverse
exists. Now we must address ourselves to the questions of how to test for the
existence of the inverse and how to find that inverse. Only after we have answered
these questions will it be possible to apply matrix algebra meaningfully to
economic models.

5.1 CONDITIONS FOR NONSINGULARITY OF A MATRIX

A given coefficient matrix 4 can have an inverse (i.e., can be “nonsingular”) only
if it is square. As was pointed out earlier, however, the squareness condition is
necessary but not sufficient for the existence of the inverse 4~ '. A matrix can be
square, but singular (without an inverse) nonetheless.

Necessary versus Sufficient Conditions

The concepts of “necessary condition” and “sufficient condition” are used
frequently in economics. It is important that we understand their precise mean-
ings before proceeding further.

88 — o
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A ‘necessary condition is in the nature of a prerequisite: suppose that a
statement p is true only if another statement g is true; then g constitutes a
necessary condition of p. Symbolically, we express this as follows:

(51) p=gq

which is read: “p only if q,” or alternatively, “if p, then ¢.” It is also logically
correct to interpret (5.1) to mean “p implies q.” It may happen, of course, that we
also have p = w at the same time. Then both ¢ and w are necessary conditions
for p.

Example 1 1f we let p be the statement “a person is a father” and g be the
statement “a person is male,” then the logical statement p = g applies. A person
is a father only if he is male, and to be male is a necessary condition for
fatherhood. Note, however, that the converse is not true: fatherhood is not a
necessary condition for maleness.

A different type of situation is that in which a statement p is true if g 1s true,
but p can also be true when ¢ is not true. In this case, g is said to be a sufficient
condition for p. The truth of ¢ suffices for the establishment of the truth of p, but
it is not a necessary condition for p. This case is expressed symbolically by

(52) pe=q |
which is read: “p if ¢” (without the word “only”)—or alternatively, “if g, then
p,” as if reading (5.2) backwards. It can also be interpreted to mean “q implies p.”

Example 2 If we let p be the statement “one can get to Europe” and g be the
statement “one takes a plane to Europe,” then p < ¢. Flying can serve to get one
to Europe, but since ocean transportation is also feasible, ﬂylng is not a
prerequlslte We can write p <= g, butnot p = q.

In a third possible situation, g is both necessary and sufficient for p. In such
an event, we write

(5.3)  peq .

which is read: “p if and only if q” (also written as “p iff ). The double-headed
arrow is really a combination of the two types of arrow in (5.1) and (5.2); hence
the joint use of the two terms “'if” and “only if.” Note that (5.3) states not only

that Lp implies. gbm also that g | 1m lies

Example 3 1f we let p be the statement “there are less than 30 days in the
month” and g be the statement “it is the month of February,” then p < 4. To
have less than 30 days in the month, it is necessary that it be February.
Conversely, the specification of February is sufficient to establish that there are
less than 30 days in the month. Thus ¢ is a necessary-and-sufficient condition
forp. .
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In order to prove p = g, it needs to be shown that g follows logically from p.
Similarly, to prove p < ¢ requires a demonstration that p follows logically from g.
But to prove p < g necessitates a demonstration that p and g follow from each
other.

Conditions for Nonsingularity

When the squareness condition is already met, a sufficient condition for the
nonsingularity of a matrix is that its rows be linearly independent (or, what
amounts to the same thing, that its columns be linearly independent). When the

dual condmon§ of square mandlmcar 1ndep§ndence are lakelLogether they

1ty e squareness and and linear mdependence)
An n X n coefficient matrix 4 can be considered as an ordered set of row
vectors, i.e., as a column vector whose elements are themselves row vectors:

vy
ay  ap a, ,
U2
A=|% 92 A | =
ap) Ap2 Apn v
where v} =[a;, a, --- a,)i=1,2,...,n For the rows (row vectors) to be

linearly independent, none must be a hnear combination of the rest. More
formally, as was mentioned in Sec. 4.3, linear row independence requires that the
only set of scalars k; which can satisfy the vector equation

(54) Y kv = 0

i=1 (1 Xn)

be k, = 0 for all i.

Example 4 1If the coefficient matrix is

3 4 5 v)
A=|0 1 2[=]7v y
6 8 10 v}

then, since [6 8 10]=2[3 4 5], we have v} = 20| = 20| + Ov}. Thus the
third row is expressible as a linear combination of the first two, and the rows are
not linearly independent. Alternatively, we may write the above equation as

207+ 00, —vy=[6 8 10]+[0 0 0]—[6 8 10]=[0 O 0]

Inasmuch as the set of scalars that led to the zero vector of (5.4) is not k, = 0 for
all i, it follows that the rows are linearly dependent.

T
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Unlike the squareness condition, the linear-independence condition cannot
normally be ascertained at a glance. Thus a method of testing linear independence
among rows (or columns) needs to be developed. Before we concern ourselves
with that task, however, it would strengthen our motivation first to have an
_ intuitive understanding of why the linear-independence condition is heaped
together with the squareness condition at all. From the discussion of counting
equations and unknowns in Sec. 3.4, we recall the general conclusion that, for a
_system of equations to possess a unique solutiop, it is not sufficient to have the_
same number of equations as unknowns. In addition, the equations must be
consistent with and functionally independent (meaning, in the present context of

linear systems, linearly independent) of one another. There is a fairly obvious
tie-in between the “same number of equations as unknowns” criterion and the
squareness (same number of rows and columns) of the coefficient matrix. What
the “linear independence among the rows” requirement does is to preclude the
inconsistency and the linear dependence among the equations as well. Taken
together, therefore, the dual requirement of squareness and row independence in
the coefficient matrix is tantamount to the conditions for the existence of a unique
solution enunciated in Sec. 3.4.

Let us illustrate how the linear dependence among the rows of the coefficient
matrix can cause inconsistency or linear dependence among the equations them-
selves. Let the equation system Ax = d take the form

10 4||x, d,

5 2|{x,]| |4,
where the coefficient matrix A contains linearly dependent rows: v} = 2v5. (Note
that its columns are also dependent, the first being 3 of the second.) We have not
specified the values of the constant terms d, and d,, but there are only fwo
distinct possibilities regarding their relative values: (1) d, = 2d, and (2) d, + 2d,.
Under the first—with, say, d, = 12 and d, = 6—the two equations are consistent
but linearly dependent (just as the two rows of matrix A are), for the first equation
is merely the second equation times 2. One equation is then redundant, and the
system reduces in effect to a single equation, 5x, + 2x, = 6, with an infinite
number of solutions. For the second possibility—with, say, d, = 12 but d, =
0— the two equations are inconsistent, because if the first equation (10x, + 4x, =
12) is true, then, by halving each term, we can deduce that 5x; + 2x, = 6;
consequently the second equation (5x, + 2x, = 0) cannot possibly be true also.
Thus no solution exists. )

The upshot is that no unique solution will be available (under either possibil-
ity) so long as the rows in the coefficient matrix 4 are linearly dependent. In fact,
the only way to have a unique solution is to have linearly independent rows (or
columns) in the coefficient matrix In that case, matrix 4 will be nonsingular,
which means that the inverse 4 ™' does exist, and that a umque solution X = A~ 'd
can be found.
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Rank of a Matrix

Even though the concept of row independence has been discussed only with
regard to square matrices, it is equally applicable to any m X n rectangular
matrix. If the maximum number of linearly independent rows that can be found
in such_a matrix is r, the matrix is said to be of rank r. (The rank also tells us the
maximum number of linearly independent columns in the said matrix.) The rank
of an m X n matrix can be at most m or n, whichever is smaller.

By definition, an » X n nonsingular matrix 4 has » linearly independent rows
(or_columns); consequently it must be of rank n. Conversely, an n X n matrix
having rank n must be nonsingular. ‘

EXERCISE 5.1

1 In the following paired statements, let p be the first statement and g the second. Indicate
for each case whether (5.1) or (5.2) or (5.3) applies.

(a) It is a holiday; it is Thanksgiving Day.

(b) A geometric figure has four sides; it is a rectangle.

(¢) Two ordered pairs {a, b) and (b, a) are equal; a is equal to b.

(d) A number is rational; it can be expressed as a ratio of two integers.

(e) A 4 X 4 matrix is nonsingular; the rank of the matrix is 4.

(f) The gasoline tank in my car is empty; I cannot start my car. 7 & ¢

(g) The letter is returned to the sender for insufficient postage: the sender forgot to put
a stamp on the envelope.

2 Let p be the statement “a geometric figure is a square,” and let g be as follows:
(a) It has four sides, P= ¥
(b) Tt has four equal sides. /& §
(¢) 1t has four equal sides each perpendicular to the adjacent one. /&> ¢
Which is true for each case: p = g, p+<= g, 01 p < 4?

3 Are the rows linearly independent in each of the following?

wly 31 53] w3 @l

4 Check whether the columns of each matrix in the preceding problem are also linearly
independent. Do you get the same answer as for row independence?

5.2 TEST OF NONSINGULARITY BY USE OF DETERMINANT

To ascertain whether a square matrix is nonsingular, we can make use of the
concept of determinant.
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Determinants and Nonsingularity

The determinant of a square matrix 4, denoted by |A|, is a uniquely defined
scalar (number) associated with that matrix. Determinants are defined only for

) . apy  dp| . ) )
square matrices. For a 2 X 2 matrix 4 = a a.. |- its determinant is defined
o 21 22
to be the sum of two terms as follows: ‘
a, 4ap )
(5.5) 4] = a, ay| 9ndn T 430 [= a scalar]

which is obtained by multiplying the two elements in the principal diagonal of 4
and then subtracting the product of the two remaining elements. In view of the
dimension of matrix A, |4| as defined in (5.5) is called a second-order determinant.

Example 1 Given A = [ 13 ‘51'] and B = [ 3 _ ? ], their determinants are:

4] =| 13 ‘5*|= 10(5) — 8(d) = 18

and 1B| =

3
-1

3 = 3(=1) = 0(5) = -3

0

While a determinant (enclosed by two vertical bars rather than brackets) is by
definition a scalar, a matrix as such does not have a numerical value. In other
words, a determinant is reducible to a number, but a matrix is, in contrast, a
whole block of numbers. It should also be emphasized that a determinant is
defined only for a square matrix, whereas a matrix as such does not have to be

square. _ S ——

. Ry APRy

-

Even at this early stage of discussion, it is possible to have an‘inkling of the
relationship between the linear dependence of the rows in a matrix A, on the one

hand, and its determinant |4 |, on the other. The two matrices
5

Cc;_ss dD_d;_z 6]. 7 27
e T3 8f Tl T8 24| -7

both have linearly dependent rows, because ¢} = ¢; and d; = 4d,. Both of their
determinants also turn out to be equal to zero:

——

1€1=]3 3

= 3(8) - 3(8) = 0

-D| = 2(24) — 8(6) =0 ‘ T

2 6 I _
8 24|
This result strongly suggests that a “ vanishing” determinant (a zero-value de-
terminant) may have something to do with linear dependence. We shall see that
this is indeed the case. Furthermore, the value of a determinant |4| can serve not
only as a criterion for testing the linear independence of the rows (hence the
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nonsingularity) of matrix 4, but also as an input in the calculation of the inverse
A", if it exists.

First, however, we must widen our vista by a discussion of higher-order
determinants. - - T

Evaluating a Third-Order Determinant

A determinant of order 3 is associated with a 3 X 3 matrix. Given
a;; ap 4ap
A, =5 az] a22 a23 e e e maeem o m e o A e
a3 Q3 4x
its determmnant has the value

ap 4 dap

a a a a
2 23 21 23
(5.6) |A| =|@21 82 4p|=a -
Mas, as Zlay  as
az; di;  ds;
+a ay dxn
Blas, ay
= a)aydy; — a)1dyd3 t 4pd5343 — 4,d5,433
taj3ayay; — apaxnd; [ = a scalar]

Looking first at the lower line of (5.6), we see the value of |4| expressed as a
sum of six product terms, three of which are prefixed by minus signs and three by
plus signs. Complicated as this sum may appear, there is nonetheless a very easy
way of “catching” all these six terms from a given third-order determinant. This 1s
best explained diagrammatically (Fig. 5.1). In the determinant shown in Fig. 5.1,

r”

Figure 5.1
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each element in the top row has been linked with two other elements via two solid
arrows as follows: @, = @y, = @33, 4y = dy3 = a3, and a;; = a;, — a,,. Each
triplet of elements so linked can be multiplied out, and their product be taken as
one of the six product terms in (5.6). The solid-arrow product terms are to be
prefixed with plus signs.

On the other hand, each top-row element has also been connected with two
other elements via two broken arrows as follows: a,; — a3, = a4, a; = a5 =
s, and a3 = ay, — ay,. Each triplet of elements so connected can also be
multiplied out, and their product taken as one of the six terms in (5.6). Such
products are prefixed by minus signs. The sum of all the six products will then be
the value of the determinant. ' - )

Example 2

21

4;. 55; 6= (2)(5)(9) + (1)(6)(7) + (3)(8)(4) — (2)(8)(6)

= (1)(4)(9) - 3)(5)(7) = —
Y GRS L)) =

Example 3

-7 0 3

g (15 g = (=7)(1)(5) + (0)(4)(0) + (3)(6)(9) — (=7)(6)(4)

= (0)(9)(5) — (3)(1)(0) = 255

This method of cross-diagonal multiplication provides a handy way of
evaluating a third-order determinant, but unfortunately it is not applicable to
determinants of orders higher than 3. For the latter, we must resort to the
so-called “Laplace expansion” of the determinant.

Evaluating an nth-Order Determinant by Laplace Expansnon

Let us first explain the Laplace-expansion process for a third- order determinant.
Returning to the first line of (5.6), we see that the value of |4| can also be
regarded as asum of three terms, each of which is a | product of a first-row element

|A] —by means of certain lower-order deterrmnants—nlllustrates the Laplace
expansion of the determinant.

The three second-order determinants in (5.6) are not arbitrarily determined,
G 4pn
a3; di
subdeterminant of |A| obtained by deleting the first row and first column of |4].
This is called the minor of the element @), (the element at the intersection of the
delétéd tow and column) and is denoted by |M,,|. In general, the symbol |M, |
can _be used to represent the Jninor obtained by deleting the ith row and jth

but are specified by means of a definite rule. The first one, , 1s a
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column of a given determinant. Since a minor is itself a determinant, it has a
value. As the reader can verify, the other two second-order determinants in (5.6)
are, respectively, the minors |M,| and |M13|; that is,

a; ap
az; a3y

21 4n
a; ds;

a;; Qp

M =
My az; daz

|M,,| =

i3l =

A concept closely related to the minor is that of the cofacror. A cofactor,
denoted by |C, |, is a minor with a prescribed a]gebralc sign attached to it.* The
rule of sign is as follows. If the sum of the two subscripts i and j in the minor
[M;,] is even, then the cofactor takes the same sign as the minor; that is,
|C; | IM,,|. If it is odd, the then the cofactor takes the opp051te sign to the minor;
'that is, |C, 1 —|M,)|. In short, we have

_ l+j o
__‘Icij| = (_1) ] I ui_j‘|_

where it is obvious that the expression (—1)'*/ can be positive if and only if
(i +j) is even. The fact that a cofactor has a specific sign is of extreme
importance and should always be borne in mind.

b
9 8 7|,
Example 4 In the determinant (6 5 4 ‘the minor of the element 8 is
3 2 1
6 4
|M 12| = 1‘ -6
but the cofactor of the same element is
[Cial = ~ [My| =

because i + j = 1 + 2 = 3 is odd. Similarly, the cofactor of the element 4 is

9
Cal = = IMpl = =[5 S-6

Using these new concepts, we can express a third-order determinant as
(5.7) 4] = a |M)| — ap|My| + a;3|M;)

3
=ay|Cy| + ap|Cpy| + ap|Csl = Z a;|Cyl
i=1

i.e., as a sum of three terms, each of which is the product of a first-row element
and its corresponding cofactor. Note the difference in the signs of the a,|M,,|
and a,,]|C,,| terms in (5.7). This is because 1 + 2 gives an odd number.

The Laplace expansion of a third-order determinant serves to reduce the
evaluation problem to one of evaluating only certain second-order determinants.

* Many writers use the symbols M;; and C;; (without the vertical bars) for minors and cofactors.
We add the vertical bars to give visual emphasis to the fact that minors and cofactors are in the nature
of determinants and, as such, have scalar values.
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‘A similar reduction is achieved in the Laplace expansion of higher-order determi-
nants. In a fourth-order determinant |Bj, for instance, the top row will contain
four elements, b,,... b,4; thus, in the spirit of (5.7), we may write

4
Bj = Z bmcub
i ~

where the cofactors |C,,| are of order 3. Each third-order cofactor can then be
evaluated as in (5.6). In general the Laplace expansion of an nth-order determi-
nant will reduce the problem to one of evaluating n cofactors, each of which is of
the (n — 1)st order, and the repeated application of the process will methodically
lead to lower and lower orders of determinants, eventually culminating in the
basic second-order determinants as defined in (5.5). Then the value of the original
determinant can be easily calculated.

Although the process of Laplace expansion has been couched in terms of the

cofactors of the first-row elements, it is also feasible to expand a determinant by

the cofactor of any row or, for that matter, of any column. For instance, if the
first column of a third-order determinant |A4| consists of the elements a,,, a5,

EIE
3
|4} = ay,|Cpi| + ay1Gyl + ay|Gyl = Y a,1Cal
i=1
SN 6 1
Example 5 Given [A| =|2 3 0|, expansion by the first row produces
7. =3 0
the result
_ 3 01_42 O 2 3| 7= —
|A|—5_3 0 67 O+‘7 _\ 0+0-27 27
But expansion by the first column yields the identical answer:
] 3 0]_,] 6 1 6 1 3
|A1—5_3 0 2_3 0‘+73 0‘ 0-6-21=-27

Insofar as numerical calculation is concerned, this fact affords us an oppor-
tunity to choose some “easy” row or column for expansion. A row or column with
the largest number of Os or 1s is always preferable for this purpose, because a 0
times its cofactor is simply 0, so that the term will drop out, and a 1 times its
cofactor is simply the cofactor itself, so that at least one multiplication step can
be saved. In Example 5, the easiest way to expand the determinant is by the third
column, which consists of the elements 1, 0, and 0. We could therefore have
evaluated it thus:

2 3

Z _3‘ —04+0= =27 - u -M e

and a,,, expansion by the cofactors of these elements will also yield the value of -
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To sum up, the value of a determinant |A| of order n can be found by the
Laplace expansion of any row or any column as follows:

n
(58) |4] = X a,/C;l  [expansion by the ith row]
j=1

=Y a,Cl [expansion by the jth column]

i=1

EXERCISE 5.2

1 Evaluate the following determinants:

g 1 3 4 0 2 a b ¢ )
(a) 14 0 1 ()6 0 3 (e)|b ¢ a

6 0 3 8 2 3 ¢ a b

1 2 3 1 1 4 X 5 0
(b){4 7 5 (d) |8 11 =2 N3y 2

3 6 9 0 4 7 9 -1 8

2 Determine the signs to be attached to the relevant minors in order to get the following
cofactors of a determinant: |C 5|, |Cyl, |Cssls | Carl, and | Cyy.

a b ¢
3 Given |d e [|, find the minors and cofactors of the clements a, b, and f.
g h i
4 Evaluate the following determinants:
1 2 0, /9, 2 7 0 1
2 3 4 6 5 6 4 8
@17 6 o -1 ®lo 0o 9 o
0 -5 0 8 1 -3 1 4

5 In the first determinant of the preceding problem, find the value of the cofactor of the
element 9.

5.3 BASIC PROPERTIES OF DETERMINANTS

We can now discuss some properties of determinants which will enable us to
“discover” the connection between linear dependence among the rows of a square
matrix and the vanishing of the determinant of that matrix.

Five basic properties will be discussed here. These are properties common to
determinants of all orders, although we shall illustrate mostly with second-order
determinants:

Property I The interchange of rows and columns does not affect the value of a
determinant. In other words, the determinant of a matrix 4 has the same value as_
that of its transpose A’, that is, |[4] = |4'|.
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4 3| _|4 5|_ !
Example 1 }5 6‘_l3 6\ 9
Example 2 (z Z‘ ='; Z,‘ = ad — bc

Property I The interchange of any itwo rows (or any two columns) will alter the
sign, but not the numerical value, of the determinant.

Example 3 Z Z’ = ad — bc, but the interchange of the two rows yields
¢ dl_p—gd= — (ad — bc)
a b R
: . N v
, oo 1=l
0 1 3 :
Example 4 |2 5 7| = —26, but the interchange of the first and third col-
3 01 _
310 "y b
umns yields |7 5 2| = 26. Uy -
1 0 3

Property Il The multiplication of any one row (or one column) by a scalar k
will change the value of the determinant k-fold.

Example 5 By multiplying the top row of the determinant in Example 3 by &, we
get

a b ‘

c d

It is important to distinguish between the two expressions k4 and k|A]. In
multiplying a matrix A by a scalar k, all the elements in 4 are to be multiplied by
k. But, if we read the equation in the present example from right to left, it should
be clear that, in multiplying a determinant |A| by k, only a single row (or column)
shouid be multiplied by k. This equation, therefore, in effect gives us a rule for
factoring a determinant: whenever any single row or column contains a common
divisor, it may be factored out of the determinant.

ka kb

— kad — kbe = k(ad — be) =
e d ka ¢ =k(ad — bc) =k

Example 6 Factoring the first column and the second row in turn, we have

15a b
12¢ 2d

5a b

=34 24

= 3(2)

Sa 7Tb
2¢ d

= 6(5ad — 14bc)

The direct evaluation of the original determinant will, of course, produce the same
answer. _
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In contrast, the factoring of a matrix requires the presence of a common
divisor for all its elements, as in

ka kb =k[a b]
ke kd ¢ d

Property IV The addition (subtraction) of a multiple of any row to (from)
another row will leave the value of the determinant unaltered. The same holds
true if we replace the word row by column in the above statement.

Example 7 Adding k times the top row of the determinant in Example 3 to its
second row, we end up with the original determinant:

a b

_ 3 _ o _la
et ka d+ kb a(d+ kb) — b(c + ka) = ad — bc .

A
d

Property V  If one row (or column) is a multiple of another row (or column), the
value of the determinant will be zero. As a special case of this, when two rows (or
two columns) are identical, the determinant will vanish.

Example 8

2a 2b
b

Additional examples of this type of *“vanishing” determinants can be found in
Exercise 5.2-1. - o '

=2agb—2ab=0 =¢cd—cd=0

This important property is, in fact, a logical consequence of Property IV. To
understand this, let us apply Property IV to the two determinants in Example 8
and watch the outcome. For the first one, try to subtract twice the second row
from the top row; for the second determinant, subtract the second column from
the first column. Since these operatlons do not alter the values of the determi-
nants, we can write

2a2b=00“ c
a b a b d d |0 d

The new (reduced) determinants now contain, respectively, a row and a column of
zeros; thus their Laplace expansion must yield a value of zero in both cases. In
general, when one row (column) is a multiple of another row (column), the
application of Property IV can always reduce ail elements of that row (column) to
zero, and Property V therefore follows.

The basic properties just discussed are useful in several ways. For one thing,
they can be of great help in simplifying the task of evaluating determinants. By
subtracting multiples of one row (or column) from another, for instance, the
elements of the determinant may be reduced to much smaller and simpler
numbers, Factoring, if feasible, can also accomplish the same. If we can indeed
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apply these properties to transform some row or column into a form containing
mostly Os or s, Laplace expansion of the determinant will become a much more
manageable task.

Determinantal Criterion for Nonsingularity

Our present concern, however, is primarily to link the linear dependence of rows
with the vanishing of a determinant. For this purpose, Property V can be invoked.
Consider an equation system Ax = d:

3 4 2| x d,
4 0 1}|x, d,

This system can have a unique solution if and only if the rows in the coefficient
matrix A are linearly independent, so that A 1s nonsingular. But the second row is
five times the first; the rows are indeed dependent, and hence no unique solution
exists. The detection of this row dependence was by visual inspection, but by
virtue of Property V we could also have discovered it through the fact that
|4] = 0.

The row dependence in a matrix may, of course, assume a more intricate and
secretive pattern. For instance, in the matrix

4 1 2 v}
B=|[5 2 1|=]v
1 0 1 v

there exists row dependence because 2v} — v} — 3v; = 0; yet this fact defies
visual detection. Even in this case, however, Property V will give us a vanishing
determinant, |B| = 0, since by adding three times v} to v} and subtracting twice
v} from it, the second row can be reduced to a zero vector. In general, any pattern
of linear dependence among rows will be reflected in a vanishing
determinant—and herein lies the beauty of Property V! Conversely, if the rows
are linearly independent, the determinant must have a nonzero value.

We have, in the above, tied the nonsingularity of a matrix principally to the
linear independence among rows. But, on occasion, we have made the claim that,
for a square matrix A, row independence « column independence. We are now
equipped to prove that claim:

According to Property I, we know that |4] = |A’|. Since row independence
in 4 @ |A| # 0, we may also state that row independence in 4 < |4’ # 0.
But {4’| # 0 # row independence in the transpose A" « column indepen-
dence in A (rows of A’ are by definition the columns of A). Therefore, row
independence in A < column independence in A.
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Our discussion of the test of nonsingularity can now be summarized. Given a
linear-equation system Ax = d, where A is an n X n coefficient matrix,

|4]| #0 < there is row (column) independence in matrix A

< A is nonsingular
< A~ exists

< a unique solution X = 4~ 'd exists

Thus the value of the deterrmnant of the coefficient matrix, |4|, provides a
convenient criterion for testing the nonsingularity of matrix 4 and the existence
of a unique solution to the equation system Ax = d. Note, however, that the
determinantal criterion says nothing about the algebraic signs of the solution
values, i.e., even though we are assured of a unique solution when |4| + 0, we
may sometimes get negative solution values that are economically inadmissible.

Example 9 Does the equation system
Tx; = 3x, — 3x;, =17
2x, +4x,+ x;=0
—2x;— x3=2

possess a unique solution? The determinant |A4| is
-y (-6) VL = -8

7 -3 =3 , -
2 4 1|=-8+0
0 -2 -1

Therefore a unique solution does exist.

Rank of a Matrix Redefined .

The rank of a matrix 4 was earlier defined to be the maximum number of linearly
independent rows in 4. In view of the link between row independence and the
nonvanishing of the determinant, we can redefine the rank of an m X n matrix as
the maximum order of a nonvanishing determinant that can be constructed from
the rows and columns of that matrix. The rank of any matrix is a unique number.

Obviously, the rank can at most be m or n, whichever is smaller, because a
determinant is defined only for a square matrix, and from a matrix of dimension,
say, 3 X 5, the largest possible determinants (vanishing or not) will be of order 3.
Symbolically, this fact may be expressed as follows:

r(A) < min{m, n}

which is read: “The rank of A is less than or equal to the minimum of the set of
two numbers m and n.” The rank of an n X »n nonsingular matrix 4 must be z; in

that case, we may write r(A4) = n. )
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Sometimes, one may be interested in the rank of the product of two matrices.
In that case, the following rule is of use:

r(AB) < min {r(4), r(‘B)}

EXERCISE 5.3

2 0 -1
1 1 7
3 3 9

2 Show that, when all the elements of an nth-order determinant | 4| are multiplied by a
number &, the result will be k"|A4|. o

1_Use the determinant to verify the first four properties of determinants.

3 Which properties of determinants enable us to write the following?

9 18| _1(9 I8 9 27 —1gll 3
(@127 561 lo 2 (b)‘ 18‘2 1‘
4 Test whether the following matrices are nonsingular:

[ 4 0 1] 7 -1 0
(@) 119 1 3 (a)| 1 1 4

[ 5 4 7] 13 -3 -4

[ 4 -2 1 7 9 5
(b)Y | -5 6 0 ()| 3 0 1

L 7 0 3 10 8 6

5 What can you conclude about the rank of each matrix in the preceding problem?

6 Can any set of 3-vectors below span the 3-space? Why or why not?
(a) [I 2 0] 2 3 1] [3 4 2]
(B)[8 1 3] 1 2 8 (-7 1 5]

7 Rewrite the simple national-income model (3.23) in the Ax = d format (with Y as the
first variable in the vector x), and then test whether the coefficient matrix A is nonsingular.

5.4 FINDING THE INVERSE MATRIX

If the matrix A in the linear-equation system Ax = d is nonsingular, then A4~
exists, and the solution of the system will be X = A \d. ‘We have learned to test
the nonsingularity of A by the criterion |A4] 3 =/= 0. The next questlon is: How can
we find the inverse 4~ if A does pass that test?

Expansion of a Determinant by Alien Cofactors

Before answering this query, let us discuss another important property of determi-
nants.

Property VI The expansion of a determinant by alien cofactors (the cofactors of
a “wrong” row or column) always yields a value of zero.
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N

4 1 2
Example 1 1f we expand the determinant |5 2 1| by using its first-row.
1o 3
@ments but the cofactors of the second-row elements
o2 4 2f 4 1
il =g 3=-3 nca=|t 3= -t -

we get ay |Gy | + ap|Cyl + a3 Cy] = 4(—3) + 1(10) + 2(1) = 0.

More generally, applying the same type of expansion by alien cofactors as
a, 4, 4ap
described in Example 1 to the determinant |4| =|221 @3  da3| will yield a
a3 4y d4asp
zero sum of products as follows:

3
(5.9) Z a |Gyl = ay |Gyl + ap|Cyl + a3 Casl
i=1

Ay 4y a,; 4 a, dp

a4z dx

= —ap

ap a;

3y di as; dgy

= —a; 43433 + 4,,4343, + a,a,0;5; ~ ay,43a5;
—dapdzas + apa;ay; =0

The reason for this outcome lies in the fact that the sum of products in (5.9) can
be considered as the result of the regular expansion by the second row of another
Ay 4 4y
determinant |4*| =|2;; 4, 43|, which differs from |4| only in its second
a3 a3 dy
row and whose first two rows are identical. As an exercise, write out the cofactors
of the second rows of |4*| and verify that these are precisely the cofactors which
appeared in (5.9)—and with the correct signs. Since |4*| = 0, because of its two
identical rows, the expansion by alien cofactors shown in (5.9) will of necessity
yield a value of zero also.
Property VI is valid for determinants of all orders and applies when a
determinant is expanded by the alien cofactors of any row or any column. Thus
we may state, in general, that for a determinant of order » the following holds:

> a,C;l =0 (i#i’) [expansion by ith row and
j=

(5.100
2 a,1C;yl =0 (j#,j) [expansion by jth column and

i=1

cofactors of i’th row]

cofactors of j'th column]

Carefully compare (5.10) with (5.8). In the latter (regular Laplace expansion), the
subscripts of a;; and of |C, | must be identical in each product term in the sum.
In the expansion by alien cofactors, such as in (5.10), on the other hand, one of
the two subscripts (a chosen value of i’ or ;') is inevitably “out of place.”
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Matrix Inversion

Property VI, as summarized in (5.10), is of direct help in developing a method of
matrix inversion, i.e., of finding the inverse of a matrix.
Assume that an n X n nonsingular matrix A4 is given:

an 4 A p
(5.11) A =% 92 Gt (4] £0)
(nXn) e e e e e
2, Q.9 o An
Since each element of A has a cofactor ||, it is possible to form a matrix of
cofactors by replacing cach element q,; in (5 11) with its cofactor |C|. Such a

cofactor matrix, denoted by C = [|C,; |] must also be n X n. For our present
purposes, however, the transpose jof _C is of more interest. This transpose C’ is
commonly referred to as the adjoint of A and is symbolized by adj 4. Written out,
the adjoint takes the form

1ICab 1G] - 1Gyld

(5.12) C' =adjd= 1Cal Gl o+ |Gl
axmy o

|C1n| IC2n| |Cnn|

The matrices A and C’ are conformable for multiplication, and their product
AC’ is another n X n matrix in which each element is a sum of products. By
utilizing the formula for Laplace expansion as well as Property VI of determi-
nants, the product AC’ may be expressed as follows:

-

Ealjlcljl Zaljlc2j| Zau|
j=1 Jj=1 = _
Z 2,|C1,l zaljlc?_jl Z 2,|
AC = | =1 j=1 J=
(nXn)
Zanjlcljl Zanjlc2j| . Zanjlcnjl
| =1 j=1 J=l
4] 0 -+ 0
0 |4| e 0
=3 . : . [by (5.8) and (5.10)]
| 0 0 |A|
1 0 0
o 1 --- 0
=4l . . | =14/, [factoring]
0 0 1
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As the determinant |A4| is a nonzero scalar, it is permissible to divide both

sides of the equation AC’ = |4|I by |A|. The result is
AC’ C’
— =1 or A =
|4] |4]

Premultiplying both sides of the last equation by 4!, and using the result that

1

A~ '4 = I, we can get m =4 or

(5.13) A7 '= rfi—l— adj4  [by (5.12)]
Now, we have found a way to invert the matrix 4!

The general procedure for finding the inverse of a square matrix 4 thus
involves the following steps: (1) find |4 | [we need to proceed with the subsequent
steps if and only if |4| # 0, for if |4| = 0, the inverse in (5.13) will be
undefined]; (2) find the cofactors of all the elements of 4, and arrange them as a
cofactor matrix C = [[C,;|]; (3) take the transpose of C to get adj 4; and (4)
divide adj 4 by the determinant |4|. The result will be the desired inverse A~ !,

Example 2 Find the inverse of 4 = [:1)’ é] Since |A| = —2 # 0, the inverse

A~ exists. The cofactor of each element is in this case a 1 X 1 determinant,
which is simply defined as the scalar element of that determinant itself (that is,

la;;| = a,;). Thus, we have E/ 'Cv/
C=[|C.1| |Clz|]=[ 0 —1] A
[Cul Gyl —2 3

Observe the minus signs attached to 1 and 2, as required for cofactors. Transpos-
ing the cofactor matrix yields

0 —2]
-1 3
so the inverse A ! can be written as

b =_l[ 0 _2]_ 0 1
A |A|ad‘]A 21 -1 31~ |4 _3

ade=[

4 1 -1
Example 3 Find the inverse of B = |0 3 2 ] Since |B| = 99 # 0, the
3 0 7
inverse B~ also exists. The cofactor matrix is
[ 13 21 o 2 0 3|
0 7 3 7 3 0
-1 4 -1/ _{4 1 =[_2; 3‘15 '?]
0 7 3 7 3 0 5 -8 12
1 -1 _4 -1 4 1 ‘
| 13 2 0 2 0 31|
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Therefore,
21 -7 6
adj B = 6 31 -8
-9 3 12
and the desired inverse matrix is
1 1 1 21 =7 5
B =—adiB=—]| 6 31 -8
BIUTT oy T

You can check that the results in the above two examples do satisfy
AA '=A4"'A=1and BB™' = B 'B = I, respectively.

EXERCISE 54

1 Suppose that we expand a fourth-order determinant by its third column and the
cofactors of the second-column elements. How would you write the resulting sum of
products in ¥ notation? What will be the sum of products in X notation if \Je expand it by
the second row and the cofactors of the fourth-row elements? <o / s,

(=% :2

<

L,i

2 Find the inverse of each of the following matrices:

(“)A=[(5) ﬂ (C)Cz[; —” Eu’t/céij
(b)B=[; g] (d)D=[g g] ’ T

3 («) Drawing on your answers to the preceding problem, formulate a two-step rule for
finding the adjoint of a given 2 X 2 matrix 4: In the first step, indicate what should be
done to the two diagonal elements of 4 in order to get the diagonal elements of adj 4; in
the second step, indicate what should be done to the two off-diagonal elements of A.
[ Warning: This rule applies only to 2 X 2 matrices.]

(b) Add a third step which, in conjunction with the previous two steps, yields the 2 X 2
inverse matrix 4.

4 Find the inverse of each of the following matrices:

4 -2 1 1 0 0
(a) E= |7 3 3 ()G=|0 0 1
2 0 1 01 0
1 -1 2 1 0 0
(b) F= |1 0 3 (dH=[0 1 0
4 0 2 0 0 1

5 Is it possible for a matrix to be its own inverse?

5.5 CRAMER’S RULE

The method of matrix inversion just discussed enables us to derive a convenient,
practical way of solving a linear-equation system, known as Cramer’s rule.
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Derivation of the Rule

Given an equation system Ax = d, where 4 is n X n, the solution can be written
as

X= ~'d—m(adJA)d [by (5.13)]

provided A4 is nonsingular. According to (5.12), this means that

X d
{l F|C1|| |C21| lCnll dl
X

2 = L |C12| |szi ICn2| 2
: Al | oo :
X',, _|C1nl 'Can e ICnnI dn

-
d1|C11| + d2|C21| + -+ dn|Cn1|
1 d||C|2| + d2|C22| + -t anCn2|

Ao
_dllclnl + dZICan +--+ dnlcnnl
v Zdilclll
- : i=1
1| 2 dilC]
= —| i=1
4]
Zd1|Qn|
i=1 i

Equating the corresponding elements on the two sides of the equation, we obtain
the solution values

(5.14) x, = |AlZ‘,d|c,,| X, = |A|Zd| ol (etc.)

i=1

The ¥ terms in (5.14) look unfamiliar. What do they mean? From (5.8), we
see that the Laplace expansion of a determinant |4| by its first column can be

expressed in the form Z a; | C,|. If we replace the first column of |4| by the

column vector d but kcep all the other columns intact, then a new determinant

will result, which we can call |4,|-—the subscript 1 indicating that the first

column has been replaced by d. The expansion of |4,| by its first column (the d
n

column) will yield the expression ). d,|C;, |, because the elements d, now take the
i=1
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place of the elements a,,. Returning to (5.14), we see therefore that

Similarly, if we replace the second column of |A4| by the column vector d, while
retaining all the other columns, the expansion of the new determinant |A,| by its

second column (the d column) will result in the expression Z d;|C;;]. When
divided by |A4|, this latter sum will give us the solution value f;; 1and $O on.

This procedure can now be generalized. To find the solution value of the jth
variable X;, we can merely replace the jth column of the determinant |4} by the
constant terms d, - - d, to get a new determinant |4;| and then divide |4,| by
the original determmant |4}. Thus, the solution of the system Ax = d can be
expressed as

ay ap - dy - ay,
_ 14 1 |4n 4n v dy 0 ay).
(515) %= ar =i . .
ay a,y e dn Tt Ay,
(jth column replaced by o)

The result in (5.15) is the statement of Cramer’s rule. Note that, whereas the
matrix inversion method yields the solution values of all the endogenous variables
at once (X is a vector), Cramer’s rule can give us the solution value of only a
single endogenous variable at a time (X, is a scalar).

Example 1 Find the solution of the equation system

5x, + 3x, =30
6x, — 2x,= 8
The coefficients and the constant terms give the following determinants:
_130 31 _
T P e B R L
_|5 30|_ _
|4,] —( 6 3 140

Therefore, by virtue of (5.15), we can immediately write

14l _ —84 o _ 4 -4

X, = 4] —28_3 and x2—|A| =" =35

Example 2 Find the solution of the equation system
X, — x;— x3=0
10x, — 2x, + x, =38
6x, +3x, - 2x;, =17
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The relevant determinants |4| and |4 ;| are found to be

7 -1 -1 ' 0 -1 -1
Al =[{10 =2 1{= —61 |4, =8 -2 1= —61
6 3 =2 7 3 =2
7 0 -1 7 -1 0
45| =10 8 1{= —183 [4;] =10 =2 8= —244
6 7 =2 6 3 7
thus the solution values of the variables are
- A4l —61 43 —183 o Asl . 244
S TS ik Al TRy s R "3_||_—61*'4

Notice that in each of these examples we find |4| + 0. This is a necessary
condition for the application of Cramer’s rule, as it is for the existence of the
inverse 4~ '. Cramer’s rule is, after all, based upon the concept of the inverse
matrix, even though in practice it bypasses the process of matrix inversion.

Note on Homogeneous-Equation Systems

The equation systems Ax = d considered above can have any constants in the

vector d. If d =0, that is, if d, = d - =d, =0, however, the equation
system will become
Ax =0

where 0 is a zero vector. This special case is referred to as a homogeneous-equation
system.*
If the matrix 4 is nonsingular, a homogeneous-equation system can yield only
a “trivial solution,” namely, X, = X, = -+ = x, = 0. This follows from the fact
that the solution ¥ = 4~ 'd will in this case become
x =4 0 =0
(nx1) (nXn)y (nXxX1) (nxX1)
Alternatively, this outcome can be derived from Cramer’s rule. The fact that
d = 0 implies that |4;,|, for all j, must contain a whole column of zeros, and thus
the solution will turn out to be
14,1 0
=t=—"=0 (j=12,.n)
7141 14| ’

Curiously enough, the only way to get a nontrivial solution from a homoge-
neous-equation system is to have |4| = 0, that is, to have a singular coefficient

* The word *homogeneous” describes the property that when all the variables Xyy...q X, are
multiplied by the same number, the equation system will remain valid, This is possible only 1f the
constant terms (those unattached to any x,) are all zero.
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matrix A! In that event, we have -

__4l o
Y714 T 0

where the 0/0 expression is not equal to zero but is, rather, something undefined.
Consequently, Cramer’s rule is not applicable. This does not mean that we cannot
obtain solutions; it means only that we cannot get a unique solution.

Consider the homogeneous-equation system

anx, ta,x, =0
(5.16)

ay,x, +aypx, =0

It is self-evident that X, = X, = 0 is a solution, but that solution is trivial. Now,
assume that the coefficient matrix A is singular, so that |4| = 0. This implies that
the row vector [a,, a,,]1s a multiple of the row vector [a,, a,,]; consequently,
one of the two equations is redundant. By deleting, say, the second equation from
(5.16), we end up with one (the first) equation in two variables, the solution of
which is X, = (—a,,/a,,)x,. This solution is nontrivial and well defined if
a;, ¥ 0, but 1t really represents an infinite number of solutions because, for every
possible value of X,, there is a corresponding value X, such that the pair
constitutes a solution. Thus no unique nontrivial solution exists for this homoge-
neous-equation system. This last statement is also generally valid for the n-vari-
able case.

Solution Outcomes for a Linear-Equation System

Our discussion of the several variants of the linear-equation system Ax = d
reveals that as many as four different types of solution outcome are possible. For
a better overall view of these variants, we list them in tabular form in Table 5.1.

Table 5.1 Solution outcomes for a linear-equation system Ax = d

Vector d d+0 d=20
Determinant |A | (nonhomogeneous system) (homogeneous system)
|4] #+ 0 There exists a unique, non- There exists a unique, trivial
(matrix A nonsingular) trivial solution ¥ # 0 solution X = 0
Equations There exist an infinite num- There exist an infinite num-
4] =0 dependent ber of solutions (not in- ber of solutions (inclu-
(matrix A cluding the trivial one) ding the trivial one)
singular) .
Equations . . .
q. . No solution exists [Not applicable]
inconsistent
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As a first possibility, the system may yield a unique, nontrivial solution. This
type of outcome can arise only when we have a nonhomogeneous system with a
nonsingular coefficient matrix A. The second possible outcome is a unique, trivial
solution, and this is associated with a homogeneous system with a nonsingular
matrix 4. As a third possibility, we may have an infinite number of solutions.
This eventuality is linked exclusively to a system in which the equations are
dependent (i.e., in which there are redundant equations). Depending on whether
the system is homogeneous, the trivial solution may or may not be included in the
set of infinite number of solutions. Finally, in the case of an inconsistent equation
system, there exists no solution at all. From the point of view of a model builder,
the most useful and desirable outcome is, of course, that of a unique, nontrivial
solution X # 0. :

EXERCISE 5.5

1 Use Cramer’s rule to solve the following equation systems:

(a) 3x,—2x,=11 (¢) 8x, —Tx,=—6
2x, + x,=12 X+ x,= 3
(b) —x; +3x,= -3 (d) 6x, +9x, =15
4x, — x, =12 Tx, —3x,= 4

2 For each of the equation systems in the preceding problem, find the inverse of the
coefficient matrix, and get the solution by the formula x = A~ 'd.

3 Use Cramer’s rule to solve the following equation systems:

(a) 8x; — x, =15 (¢) 4x + 3y —2z=17
Xy + 5x3 = 1 x+ y =35

2x, + 3x; = 4 3x + z=4
(b) —x; +3x, +2x, =24 (d) —x+y+z=a
x| + x3= 6 x—-y+z=b
5xy— x3= 8§ x+y—z=c¢

4 Show that Cramer’s rule can be derived alternatively by the following procedure.
Multiply both sides of the first equation in the system 4x = d by the cofactor |C),|, and
then multiply both sides of the second equation by the cofactor |C, |, etc. Add all the
newly obtained equations. Then assign the values 1,2,..., n to the index j, successively, to
get the solution values X, X,,..., X, as shown in (5.14). ' '

5.6 APPLICATION TO MARKET AND NATIONAL-INCOME
MODELS

Simple equilibrium models such as those discussed in Chap. 3 can be solved with
ease by Cramer’s rule or by matrix inversion.
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Market Model

The two-commodity model described in (3.12) can be written (after eliminating
the quantity variables) as a system of two linear equations, as in (3.13):

WPt b=y

The three determinants needed— |4, |4, |, and |A4,|—have the following values:

¢ G
|4} = Y, Y, =67 6N
—C G
|44} = Y Tl —CY2 T Y
|4,| = YW —Y% = =Y t ¢o1,

Therefore the equilibrium prices must be

5 _ |4,] _ G ~ CoY2 5 _ |4,] _fo"h T~ S1%
! |4] Y2 T 6N 2 |A] Y, — 6N

which are precisely those obtained in (3.14) and (3.15). The equilibrium quantities
can be found, as before, by setting P, = P, and P, = P, in the demand or supply
functions. , ‘

National-Income Model

The simple national-income model cited in (3.23) can also be solved by the use of
Cramer’s rule. As written in (3.23), the model consists of the following two
simultaneous equations:

Y=C+1I,+ G,
C=a+bY (a>0, 0<b<1)
These can be rearranged into the form
Y-C=1I,+G,
-bY+C=a

so that the endogenous variables ¥ and C appear only on the left of the equals
signs, whereas the exogenous variables and the unattached parameter appear only

on the right. The coefficient matrix now takes the form [ é - } ], and the

I, + G,

column vector of constants (data), ] Note that the sum I, + G, is

a
considered as a single entity, i.e., a single element in the constant vector.
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Cramer’s rule now leads immediately to the following solution:

‘(IO+G0) -1
‘ 1 —1\ 1-b
—-b 1
‘ 1 (I, + Gp)
co —b a =a+b(IO+GO)
1 —1‘ 1-b
—b 1

You should check that the solution values just obtained are identical with those
shown in (3.24) and (3.25).

Let us now try to solve this model by inverting the coefficient matrix. Since
1 -1

. . . 1 b
_p 1], its cofactor matrix will be [1 1],

the coefficient matrix is 4 = [

and we therefore have adj 4 = ll) } . It follows that the inverse matrix is
_ 1 1 [1 q
1 = — = —
A7 = d=1"3 [b 1

We know that, for the equation system Ax = d, the solution is expressible as
X = A~ 'd. Applied to the present model, this means that

Y 1 [1 1]+ G 1
T 1-b|b 1 a | 1-b

C
It is easy to see that this is again the same solution as obtained before.

Iy+Gy+a
b(I,+ Gy) +a

Matrix Algebra versus Elimination of Variables

The two economic models used for illustration here both involve two equations
only, and thus only second-order determinants need to be evaluated. For large
equation systems, higher-order determinants will appear, and their evaluation
may prove to be no simple task. Nor is the inversion of large matrices exactly
child’s play. From the computational point of view, in fact, matrix inversion and
Cramer’s rule are not necessarily more efficient than the method of successive
elimination of variables.

If so, one may ask, why use the matrix methods at all? As we have seen from
the preceding pages, matrix algebra has given us a compact notation for any
linear-equation system, and also furnishes a determinantal criterion for testing the
existence of a unique solution. These are advantages not otherwise available. In
addition to these, it may be mentioned that, unlike the elimination-of-variable
method, which affords no means of analytically expressing the solution, the
matrix-inversion method and Cramer’s rule do provide the handy solution expres-
sions X = A~ 'd and X; = |4,|/|4]|. Such analytical expressions of the solution



LINEAR MODELS AND MATRIX ALGEBRA (CONTINUED) 115

are useful not only because they are in themselves a summary statement of the
actual solution procedure, but also because they make possible the performance
of further mathematical operations on the solution as written, if called for.

Under certain circumstances, matrix methods can even claim a computational
advantage, such as when the task is to solve at the same time several equation
systems having an identical coefficient matrix 4 but different constant-term
vectors. In such cases, the elimination-of-variable method would require that the
computational procedure be repeated each time a new equation system is consid-
ered. With the matrix-inversion method, however, we are required to find the
common inverse matrix A~ only once; then the same inverse can be used to
premultiply all the constant-term vectors pertaining to the various equation
systems involved, in order to obtain their respective solutions. This particular
computational advantage will take on great practical significance when we con-
sider the solution of the Leontief input-output models in the next section,

EXERCISE 5.6

1 Solve the national-income model in Exercise 3.5-1:
(a) by matrix inversion (b) by Cramer’s rule

(List the variables in the order ¥, C, T.)

2 Solve the national-income model in Exercise 3.5-2;

(a) by matrix inversion (b) by Cramer’s rule
(List the variables in the order Y, C, G.)

5.7 LEONTIEF INPUT-OUTPUT MODELS

In its “static”” version, Professor Leontief’s input-output analysis* deals with this
particular question: “What level of output should each of the » industries in an
economy produce, in order that it will just be sufficient to satisfy the total demand
for that product?” '

The rationale for the term input-output analysis is quite plain to see. The
output of any industry (say, the steel industry) is needed as an input in many
other industries, or even for that industry itself; therefore the “correct” (ie.,
shortage-free as well as surplus-free) level of steel output will depend on the input
requirements of all the » industries. In turn, the output of many other industries
will enter into the steel industry as inputs, and consequently the “correct” levels
of the other products will in turn depend partly upon the input requirements of
the steel industry. In view of this interindustry dependence, any set of *“correct”

* Wassily W. Leontief, The Structure of American Economy 19191939, 2d ed., Oxford University
Press, Fair Lawn, N.J., 1951. :
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output levels for the » industries must be one that is consistent with all the input
requirements in the economy, so that no bottlenecks will arise anywhere. In this
light, it is clear that input-output analysis should be of great use in production
planning, such as in planning for the economic development of a country or for a
program of national defense.

Strictly speaking, input-output analysis is not a form of the general equi-
librium analysis as discussed in Chap. 3. Although the interdependence of the
various industries i1s emphasized, the “correct” output levels envisaged are those
which satisfy technical input-output relationships rather than market equilibrium
conditions. Nevertheless, the problem posed in input-output analysis also boils
down to one of solving a system of simultaneous equations, and matrlx algebra
can again be of service. :

Structure of an Input-Output Model

Since an input-output model normally encompasses a large number of industries,
its framework is of necessity rather involved. To simplify the problem, the
following assumptions are as a rule adopted: (1) each industry produces only one
homogeneous commodity (broadly interpreted, this does permit the case of two or
more jointly produced commodities, provided they are produced in a fixed
proportion to one another); (2) each industry uses a fixed input ratio (or factor
combination) for the production of its output; and (3) production in every
industry 1s subject to constant returns to scale, so that a k-fold change in every
input will result in an exactly k-fold change in the output. These assumptions are,
of course, unrealistic. A saving grace is that, if an industry produces two different
commodities or uses two different possible factor combinations, then that in-
dustry may—at least conceptually—be broken down into two separate industries.

From these assumptions we see that, in order to produce each unit of the jth
commodity, the input need for the ith commodity must be a fixed amount, which
we shall denote by gq,;. Specifically, the production of each unit of the jth
commodity will require a,; (amount) of the first commodity, a,; of the second
commodity,.. ., and a, ; of the nth commodity. (The order of the subscripts in a;;
is easy to remember: the first subscript refers to the input, and the second to the
output, so that a,; indicates how much of the ith commodity is used for the
production of each unit of the jth commodity.) For our purposes, we may assume
prices to be given and, thus, adopt “a dollar’s worth” of each commodity as its
unit. Then the statement a,, = 0.35 will mean that 35 cents’ worth of the third
commodity is required as an input for producing a dollar’s worth of the second
commodity. The a;; symbol will be referred to as an input coefficient.

For an n- mdustry eccnomy, the input coefficients can be arranged into a
matrix 4 = [a,,;], as in Table 5.2, in which each column specifies the input
requirements for the production of one unit of the output of a particular industry.
The second column, for example, states that to produce a unit (a dollar’s worth)
of commodity II, the inputs needed are: a,, units of commodity I, a,, units of
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Table 5.2 Input-coefficient matrix

Output
Input I o m --- N
I 4, dy dag Tt by,
11 a3 dy dp Tt day,
11 a3 43 dyz o dy,
N | Ay dyy dps T Qpn |

commodity II, etc. If no industry uses its own product as an input, then the
elements in the principal diagonal of matrix A will all be zero.

The Open Model

If, besides the n industries, the model also contains an “open” sector (say,
households) which exogenously determines a final demand (noninput demand) for
the product of each industry and which supplies a primary input (say, labor
service) not produced by the » industries themselves, the model is an open model.
"~ In view of the presence of the open sector, the sum of the elements in each
column of the input-coefficient matrix 4 (or input matrix A, for short) must be
less than 1. Each column sum represents the partial input cost (not including the
cost of the primary input) incurred in producing a dollar’s worth of some
commodity; if this sum is greater than or equal to $1, therefore, production will
not be economically justifiable. Symbolically, this fact may be stated thus:

Ya;<l1 (j=12,...,n)

i=1
where the summation is over i, that is, over the elements appearing in the various
rows of a specific column j. Carrying this line of thought a step further, it may
also be stated that, since the value of output ($1) must be fully absorbed by the
payments to all factors of production, the amount by which the column sum falls
short of $1 must represent the payment to the primary input of the open sector.
Thus the value of the pril}ilary input needed in producing a unit of the jth

commodity should be 1 — )" a, T
i=1

If industry I is to produce an output just sufficient to meet the input
requirements of the n industries as well as the final demand of the open sector, its
output level x, must satisfy the following equation:

Xy=apx; +apx,+ - +a,x, +d

or A =ay)x,—apx, —--—a,x,=d
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where d, denotes the final demand for its output and a,,x; represents the input
demand from the jth industry.* Note that, aside from the first coefficient,
(1 — a;,), the remaining coefficients in the last equation are transplanted directly
from the first row of Table 5.2, except that they are now all prefixed with minus
signs. Similarly, the corresponding equation for industry II will have the same
coefficients as in the second row of Table 5.1 (again with minus signs added),
except that the variable x, will have the coefficient (1 — a,,) instead of —a,,. For
the entire set of n industries, the “correct” output levels can therefore be
summarized by the following system of » linear equations:

(I —ay)x, - QppXxy) — 0 — ay,x,=d,

ayx; + (1 —ay)x a,,x,=d

GIn ST U S :
a,x, — a,,X, c+(l —a,)x d,

In matrix notation, this may be written as

(1 - all) —day —ay, X) d,
—dy (1- azz) T —d2, e) d,
(5.17) . . ) =
| ‘_anl Ay o (l - ann) _xn_ _dn_

If the Is in the principal diagonal of the matrix on the left are ignored, the
matrix is simply —4 = [—aq,;,]. As it is, on the other hand, the matrix is the sum
of the identity matrix 7, (w1th Is in its principal diagonal and with Os everywhere
else) and the matrix —A. Thus (5.17’) can also be written as

(5177) (I-A)x=d

where x and d are, respectively, the variable vector and the final-demand
(constant-term) vector. The matrix (/ — A) is called the rechnology matrix, and we
may denote it by T. Thus the system can also be written as

(5177) Tx=4d

As long as T 1s nonsingular—and there is no a priori reason why it should not be
—we shall be able to find its inverse T~ ', and obtain the unique solution of the
system from the equation

(5.18) x=T 'd=(I—-A)"'d

* Do not ever add up the input coefficients across a row; such a sum—say, a“ +ay+ - +a,
—is devoid of economic meaning. The sum of the products a,;x, + @;3%; + --- + a;,x,, on the
other hand, does have an economic meaning; it represents the total amount of x, needed as input for
all the n industries.
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A Numerical Example

For purposes of illustration, suppose that there are only three industries in the
economy and that the input-coefficient matrix is as follows (let us use decimal

values this time): »
02 03 02
—-104 01 02

0.1 03 0.2

a, 4p 4ag
aj Gy dn

(519) 4=

az Ay dy

Note that in 4 each column sum is less than 1, as it should be. Further, if we
denote by a,, the dollar amount of the primary input used in producing a dollar’s
worth of the jth commodity, we can write [by subtracting each column sum in
(5.19) from 1]:

(5200 ap =03 ap=03 and ag =04

With the matrix A4 above, the open input-output system can be expressed in
the form Tx = (I — A)x = d as follows:

08 =03 -02][x d,
(5.21) ~04 09 -02||x,|=|4d,
0.1 -03  08]||x;| |ds

Here we have deliberately not given specific values to the final demands d,, d,,
and 4,. In this way, by keeping the vector 4 in parametric form, our solution will
appear as a “formula” into which we can feed various specific d vectors to obtain
various corresponding specific solutions.

By inverting the 3 X 3 technology matrix 7, the solution of (5.21) can be
found, approximately (because of rounding of decimal figures), to be:

X | 0.66 030 024]|d4,

X |=T'd= 0384 0.3 062 024|| d,

X, 021 027 0.601}]|d,
If the specific final-demand vector (say, the final-output target of a development
program) happens to be d = 1(5) , in billions of dollars, then the following

specific solution values will emerge (again in billions of dollars):
9.54

=7 384 ——[0.66(10) + 0.30(5) + 0.24(6)] = D3gq — 2484
and similarly,
- _ 194 g = 10 _

An important question now arises. The production of the output mix x|, X,,
and X, must entail a definite required amount of the primary input. Would the
amount required be consistent with what is available in the economy? On the basis
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of (5.20), the required primary input may be calculated as follows:

3
Y ay, X, = 0.3(24.84) + 0.3(20.68) + 0.4(18.36) = $21.00 billion
Jj=1 .

10
Therefore, the specific final demand d = | 5| will be feasible if and only if the

available amount of the primary input is 6at least $21 billion. If the amount
available falls short, then that particular production target will, of course, have to
be revised downward accordingly.

One important feature of the above analysis i1s that, as long as the input
coefficients remain the same, the inverse T ! = (I — A)~' will not change;
therefore only one matrix inversion needs to be performed, even if we are to
consider a hundred or a thousand different final-demand vectors—such as a
spectrum of alternative development targets. This can mean considerable savings
in computational effort as compared with the elimination-of-variable method,
especially if large equation systems are involved. Note that this advantage is not
shared by Cramer’s rule. By the latter rule, the solution will be calculated
according to the formula X, = |T,| /|T|, but each time a different final-demand
vector d is used, we must reevaluate the determinants | 7| This would be more
time-consuming than the multiplication of a known T~! by a new vector 4.

Finding the Inverse by Approximation

For large equation systems, the task of inverting a matrix can be exceedingly
lengthy and tedious. Even though computers can aid us, simpler computational
schemes would still be desirable. For the input-output models under considera-
tion, there does exist a method of finding an approximation to the inverse
T-'=(I— A)! to any desired degree of accuracy; thus it is possible to avoid
the process of matrix inversion entirely.

Let us first consider the following matrix multiplication (m = a positive
integer): ' ' '

(I-AI+A+A>+---+4m)

=[{I+A+A474+ - 4+4")—A(I+ A+ A2+ -+ 4™)

=(T+A+A42+ - +A4")—(A+ A2+ -+ A"+ 4"H))

=] — Am+l
Had the result of the multiplication been the identity matrix / alone, we could
have taken the matrix sum (/ + 4 + A%2 + --- + A™) as the inverse of (] — A).
It is the presence of the —A™"! term that spoils things! Fortunately, though,
there remains for us a second-best course, for if the matrix A™ ! can be made to

approach an n X n null matrix, then / — A™*! will approach I, and accordingly
the said sum matrix (I + A + A% + - -- + A™) will approach the desired inverse
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(I — A)~'. By making A™*! approach a null matrix, therefore, we can obtain an
approximation inverse by adding the matrices I, 4, A%,..., A™.

But can we make A™*! approach a null matrix? And if so, how? The answer
to the first question is yes if—as is true of the input-output models under
consideration— the elements in each column of matrix 4 are nonnegative num-
bers adding up to less than 1, such as illustrated in (5.19). For such cases, AmH!
can be made to approach a null matrix by making the power m sufficiently large,
i.e, by a long-enough process of repeated self-multiplication of matrix 4. We
shall sketch the proof for this statement presently, but if for now its validity is
granted, the procedure of computing the approximation inverse becomes very
clear: we can simply calculate the successive matrices A%, A3,..., until there
emerges a matrix 4™ " whose elements are, by a preselected standard, all of a
negligible order of magnitude (“approaching zero”). When that happens, we can
terminate the multiplication process and add up all the matrices already obtained,

to form the approximation inverse (1 + 4 + A2+ -+ A™)*
Note that, when the matrix A4 is such that A’"+1 approaches the null matrix as
m is increased indefinitely, the approximation inverse (I + A + 4% + -+ + A™)

will also have the property that all its elements are nonnegative. The first two
terms in the sum, / and 4, obviously contain nonnegative elements only. But so
do all powers of A, because the self-multiplication of A involves nothing other
than the multiplication and addition of the nonnegative elements of A4 itself.
Inasmuch as the final-demand vector d also contains only nonnegative elements, it
should be clear from (5.18) that the solution output levels must also be nonnega-
tive. This, of course, is precisely what we wanted them to be.

Let us now sketch the proof for the assertion that, given a nonnegative
input-coefficient matrix A4 = [a,;] whose column sums are each less than 1, the
matrix A™*' will approach a null matrix as m is increased indefinitely.} For this
purpose, we shall need the concept of the norm of a matrix A, which is defined as
the largest column sum in A and is denoted by N(A). In the matrix of (5.19), for
instance, we have N(A) = 0.7; this is the first column sum, which happens also to
be equal to the second column sum. It is immediately clear that no element in a
matrix can ever exceed the value of the norm,; that is,

a,; < N(A) (for alli, j)
In the input-output context, we have N(A) < 1, and all a;; < 1. Actually, the

* The approximation of (I — A)”"'by (I + 4 + AY + .-+ + A4™) is analogous to the approxima-
tion of the infinite series .

(- ==t (O<r<)

by the sum (1 + r + r2 + --- + r"). Since the subsequent terms in the series become progressively
smaller, we can approximate (1 — )~ ' to any desired degree of accuracy by an appropriate choice of
the number n.

t For a more detailed discussion, see Frederick V. Waugh, “Inversion of the Leontief Matrix by
Power Series,” Econometrica, April, 1950, pp. 142-154.
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matrix 4 being nonnegative, we must have
0<N(4)<1

Regarding norms of matrices, there is a theorem stating that, given any two
(conformable) matrices A and B, the norm of the product matrix AB can never
exceed the product of N(A) and N(B):

(522) N(A4B) < N(A)N(B)
In the special case of 4 = B, where the matrix is square, this result means that
(523)  N(4?) < [N(4)]
When B = 42, (5.22) and (5.23) together imply that
N(4) < N(A)N(4?) < N(A)[N(A)]* = [N(4)]’
The generalized version of the last result is
(524) N(A™) < [N(D]™

It is in this light that the fact 0 < N(A) < 1 acquires significance, for as m
becomes infinite, [ N(4)]™ must approach zero if N(A) is a positive fraction. By
(5.24), this means that N(A™) must also approach zero, since N(A™) is at most as
large as [N(A)]™. If so, however, the elements in the matrix 4™ must approach
zero also when m is increased indefinitely, because no element in the latter matrix
can exceed the value of the norm N(A4™). Thus, by making m sufficiently large,
the matrix A™*! can be made to approach a null matrix, when the condition
0 < N(A) < 1 is satisfied.

The Closed Model

If the exogenous sector of the open input-output model is absorbed into the
system as just another industry, the model will become a closed model. In such a
model, final demand and primary input do not appear; in their place will be the
input requirements and the output of the newly conceived industry. All goods will
now be intermediate in nature, because everything that is produced is produced
only for the sake of satisfying the input requirements of the (n + 1) industries in
the model.

At first glance, the conversion of the open sector into an additional industry
would not seem to create any significant change in the analysis. Actually,
however, since the new industry is assumed to have a fixed input ratio as does any
other industry, the supply of what used to be the primary input must now bear a
fixed proportion to what used to be called the final demand. More concretely, this
may mean, for example, that households will consume each commodity in a fixed
proportion to the labor service they supply. This certainly constitutes a significant
change in the analytical framework involved.

Mathematically, the disappearance of the final demands means that we will
now have a homogeneous-equation system. Assuming four industries only (includ-
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ing the new one, designated by the subscript 0), the “correct” output levels will,
by analogy to (5.17"), be those which satisfy the equation system:

(1-ay) —dp ) 4oz || Xo 0
o—ayy (1—ay) —ap Tan | X 0
—dy —ay; (1—ay) —day || X2 0
4y — 43 —ay (1 —ay) |[x 0

Because this equation system is homogeneous, it can have a nontrivial solution if

and only if the 4 X 4 technology matrix (/ — A) has a vanishing determinant.

The latter condition is indeed always satisfied: In a closed model, there is no more

primary input; hence each column sum in the input-coefficient matrix 4 must

1110W be exactly equal to (rather than less than) 1; thatis, ay; + @, + a,; + a5; =
, or

jT 42y T Gy
But this implies that, in every column of the matrix (I — A) above, the top
element is always equal to the negative of the sum of the other three elements.
Consequently, the four rows are linearly dependent, and we must find |/ — 4| = 0.
This guarantees that the system does possess nontrivial solutions; in fact, as
indicated in Table 5.1, it has an infinite number of them. This means that in a
closed model, with a homogeneous-equation system, no unique ‘“correct” output
mix exists. We can determine the output levels x,,..., X, in proportion to one
another, but cannot fix their absolute levels unless additional restrictions are

imposed on the model.

EXERCISE 5.7

1 On the basis of the model in (5.21), if the final demands are d, = 30, d, = 15, and
dy = 10 (all in billions of dollars), what will be the solution ocutput levels for the three
industries? (Round off answers to two decimal places.)

2 Using the information in (5.20), calculate the total’amount of primary input required to
produce the solution output levels of the preceding problem.

3 In a two-industry economy, it is known that industry I uses 10 cents of its own product
and 60 cents of commodity II to produce a dollar’s worth of commeodity 1; industry II uses
none of its own product but uses 50 cents of commodity I in producing a dollar’s worth of
commodity II; and the open sector demands $1000 billion of commodity I and $2000
billion of commodity II.

(a) Write out the input matrix, the technology matrix, and the specific input-output
matrix equation for this economy.

(b) Find the solution output levels by Cramer’s rule.
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4 Given the input matrix and the final-demand vector

005 025 034 1800
A=1033 0.10 0.12 d=1| 200
0.19 038 0 900

(a) Explain the economic meaning of the elements 0.33, 0, and 200.
(b) Explain the economic meaning (if any) of the third-column sum.
(c) Explain the economic meaning (if any) of the third-row sum.

(d) Write out the specific input-output matrix equation for this model.

S Find the solution output levels of the three industries in the preceding problem by
Cramer’s rule. (Round off answers to two decimal places.)

5.8 LIMITATIONS OF STATIC ANALYSIS

In the discussion of static equilibrium in the market or in the national income,
our primary concern has been to find the equilibrium values of the endogenous
variables in the model. A fundamental point that was ignored in such an analysis
is the actual process of adjustments and readjustments of the variables ultimately
leading to the equilibrium state (if it is at all attainable). We asked only about
where we shall arrive but did not question when or what may happen along the
way.

The static type of analysis fails, therefore, to take into account two problems
of importance. One is that, since the adjustment process may take a long time to
complete, an equilibrium state as determined within a particular frame of static
analysis may have lost its relevance before it is even attained, if the exogenous
forces in the model have undergone some changes in the meantime. This is the
problem of shifts of the equilibrium state. The second is that, even if the
adjustment process is allowed to run its course undisturbed, the equilibrium state
envisaged in a static analysis may be altogether unattainable. This would be the
case of a so-called ““ unstable equilibrium,” which is characterized by the fact that
the adjustment process will drive the variables further away from, rather than
progressively closer to, that equilibrium state. To disregard the adjustment
process, therefore, is to assume away the problem of attainability of equilibrium.

The shifts of the equilibrium state (in response to exogenous changes) pertain
to a type of analysis called comparative statics, and the question of attainability
and stability of equilibrium falls within the realm of dynamic analysis. Each of
these clearly serves to fill a significant gap in the static analysis, and it is thus
imperative to inquire into those areas of analysis also. We shall leave the study of
dynamic analysis to Part 5 of the book and shall next turn our attention to the
problem of comparative statics.



