CHAPTER

ONE
THE NATURE OF MATHEMATICAL ECONOMICS

Mathematical economics is not a distinct branch of economics in the sense that
public finance or international trade is. Rather, it is an approach to economic
analysis, in which the economist makes use of mathematical symbols in the
statement of the problem and also draws upon known mathematical theorems to
aid in reasoning. As far as the specific subject matter of analysis goes. it can be
micro- or macroeconomic theory. public finance, urban economics, or what not.

Using the term mathematical economics in the broadest possible sense, one
may very well say that every elementary textbook of economics today exemplifies
mathematical economics insofar as geometrical methods are frequently utilized to
derive theoretical results. Conventionally, however, mathematical economics is
reserved to describe cases employing mathematical techniques beyond simple
geometry, such as matrix algebra, differential and integral calculus, differential
equations, difference equations. etc. It 1s the purpose of this book to introduce the
reader to the most fundamental aspects of these mathematical methods— those
encountered daily in the current economic literature.

1.1 MATHEMATICAL VERSUS NONMATHEMATICAL
ECONOMICS

Since mathematical economics is merely an approach to economic analysis, it
should not and does not differ from the nonmathematical approach to economic
analysis in any fundamental way. The purpose of any theoretical analysis.
regardless of the approach. is always to derive a set of conclusions or theorems
from a given set of assumptions or postulates via a process of reasoning. The
major difference between “mathematical economics™ and “literary economics™
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lies principally in the fact that, in the former, the assumptions and conclusions are
stated 1n mathematical symbols rather than words and in equations rather than
sentences, moreover, in place of literary logic, use is made of mathematical
theorems—of which there exists an abundance to draw upon—in the reasoning
process. Inasmuch as symbols and words are really equivalents (witness the fact
that symbols are usually defined in words), it matters little which is chosen over
the other. But it is perhaps beyond dispute that symbols are more convenient to
use in deductive reasoning, and certainly are more conducive to conciseness and
preciseness of statement.

The choice between literary logic and mathematical logic, again, is a matter of
little import, but mathematics has the advantage of forcing analysts to make their
assumptions explicit at every stage of reasoning. This is because mathematical
theorems are usually stated in the “if-then” form, so that in order to tap the
“then” (result) part of the theorem for their use, they must first make sure that
the “if”" (condition) part does conform to the explicit assumptions adopted.

Granting these points, though, one may still ask why it is necessary to go
beyond geometric methods. The answer is that while geometric analysis has the
important advantage of being visual, it also suffers from a serious dimensional
limitation. In the usual graphical discussion of indifference curves, for instance,
the standard assumption is that only o commodities are available to the
consumer. Such a simplifying assumption is not willingly adopted but is forced
upon us because the task of drawing a three-dimensional graph is exceedingly
difficult and the construction of a four- (or higher) dimensional graph is actually a
physical impossibility. To deal with the more general case of 3, 4, or n goods, we
must instead resort to the more flexible tool of equations. This reason alone
should provide sufficient motivation for the study of mathematical methods
beyond geometry.

In short, we see that the mathematical approach has claim to the following
advantages: (1) The “language” used is more concise and precise; (2) there exists
a wealth of mathematical theorems at our service; (3) in forcing us to state
explicitly all our assumptions as a prerequisite to the use of the mathematical
theorems, it keeps us from the pitfall of an unintentional adoption of unwanted
implicit assumptions; and (4) it allows us to treat the general n-variable case.

Against these advantages, one sometimes hears the criticism that a mathe-
matically derived theory is inevitably unrealistic. However, this criticism is not
valid. In fact, the epithet “unrealistic” cannot even be used in criticizing eco-
nomic theory in general, whether or not the approach is mathematical. Theory is
by its very nature an abstraction from the real world. It is a device for singling
out only the most essential factors and relationships so that we can study the crux
of the problem at hand. free from the many complications that do exist in the
actual world. Thus the statement * theory lacks realism” is merely a truism that
cannot be accepted as a valid criticism of theory. It then follows logically that it is
quite meaningless to pick out any one approach to theory as ‘unrealistic.” For
example, the theory of firm under pure competition is unrealistic, as is the theory
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of firm under imperfect competition, but whether these theories are derived
mathematically or not is irrelevant and immaterial.

In sum, we might liken the mathematical approach to a “mode of transporta-
tion” that can take us from a set of postulates (point of departure) to a set of
conclusions (destination) at a good speed. Common sense would tell us that, if
you intend to go to a place 2 miles away, you will very likely prefer driving to
walking, unless you have time to kill or want to exercise your legs. Similarly. as a
theorist who wishes to get to your conclusions more rapidly, you will find it
convenient to *“drive” the vehicle of mathematical techniques appropriate for your
particular purpose. You will, of course, have to take *“driving lessons” first; but
since the skill thus acquired tends to be of service for a long, long while, the time
and effort required would normally be well spent indeed.

For a serious “driver”—to continue with the metaphor—some solid lessons
in mathematics are imperative. It is obviously impossible to introduce all the
mathematical tools used by economists in a single volume. Instead. we shall
concentrate on only those that are mathematically the most fundamental and
economically the most relevant. Even so. if vou work through this book conscien-
tiously, you should at least become proficient enough to comprehend most of the
professional articles you will come across in such periodicals as the American
Economic Review, Quarterly Journal of Economics, Journal of Political Economy,
Review of Economics and Statistics. and Economic Journal. Those of you who,
through this exposure, develop a serious interest in mathematical economics can
then proceed to a more rigorous and advanced study of mathematics.

1.2 MATHEMATICAL ECONOMICS VERSUS ECONOMETRICS

The term “mathematical economics™ is sometimes confused with a related term.,
“econometrics.” As the “metric” part of the latter term implies, econometrics is
concerned mainly with the measurement of economic data. Hence it deals with
the study of empirical observations using statistical methods of estimation and
hypothesis testing. Mathematical economics, on the other hand, refers to the
application of mathematics to the purely rheorerical aspects of economic analysis,
with little or no concern about such statistical problems as the errors of measure-
ment of the variables under study.

In the present volume. we shall confine ourselves to mathematical economics.
That 1s, we shall concentrate on the application of mathematics to deductive
reasoning rather than inductive study. and as a result we shall be dealing
primarily with theoretical rather than empirical material. This is, of course, solely
a matter of choice of the scope of discussion. and it 1s by no means implied that
econometrics is less important.

Indeed, empirical studies and theoretical analyses are often complementary
and mutually reinforcing. On the one hand. theories must be tested against
empirical data for validity before they can be applied with confidence. On the
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other, statistical work needs economic theory as a guide, in order to determine
the most relevant and fruitful direction of research. A classic illustration of the
complementary nature of theoretical and empirical studies is found in the study
of the aggregate consumption function. The theoretical work of Keynes on the
consumption function led to the statistical estimation of the propensity to
consume, but the statistical findings of Kuznets and Goldsmith regarding the
relative long-run constancy of the propensity to consume (in contradiction to
what might be expected from the Keynesian theory), in turn, stimulated the
refinement of aggregate consumption theory by Duesenberry, Friedman, and
others.*

In one sense, however, mathematical economics may be considered as the
more basic of the two: for, to have a meaningful statistical and econometric
study, a good theoretical framework—preferably in a mathematical formulation
—is indispensable. Hence the subject matter of the present volume should be
useful not only for those interested in theoretical economics, but also for those
seeking a foundation for the pursuit of econometric studies.

™ John M. Keynes, The General Theory of Employment, [nterest and Money, Harcourt, Brace and
Company, Inc., New York, 1936, Book III: Simon Kuznets, National Income: A Summary of Findings.
National Bureau of Economic Research, 1946, p. 53: Raymond Goldsmith, A Study of Saving in the
United States, vol. 1, Princeton University Press, Princeton, NI, 1955, chap. 3; James S. Duesenberry,
Income, Saving, and the Theory of Consumer Behavior, Harvard University Press, Cambridge, Mass.,
1949; Milton Friedman, 4 Theory of the Consumption Function, National Bureau of Economic
Research, Princeton University Press, Princeton, N.J., 1957.
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ECONOMIC MODELS

As mentioned before, any economic theory is necessarily an abstraction from the
real world. For one thing, the immense complexity of the real economy makes it
impossible for us to understand all the interrelationships at once; nor, for that
matter, are all these interrelationships of equal importance for the understanding
of the particular economic phenomenon under study. The sensible procedure is,
therefore, to pick out what appeal to our reason to be the primary factors and
relationships relevant to our problem and to focus our attention on these alone.
Such a deliberately simplified analytical framework is called an economic model,
since 1t 1s only a skeletal and rough representation of the actual economy.

2.1 INGREDIENTS OF A MATHEMATICAL MODEL

An economic model is merely a theoretical framework, and there is no inherent
reason why it must be mathematical. If the model is mathematical, however, it
will usually consist of a set of equarions designed to describe the structure of the
model. By relating a number of variables to one another in certain ways, these
equations give mathematical form to the set of analytical assumptions adopted.
Then, through application of the relevant mathematical operations to these
equations, we may seek to derive a set of conclusions which logically follow from
those assumptions.
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Variables, Constants, and Parameters

A variable is something whose magnitude can change, i.e., something that can
take on different values. Variables frequently used in economics include price,
profit, revenue, cost, national income, consumption, investment, imports, exports,
and so on. Since each variable can assume various values, it must be represented
by a symbol instead of a specific number. For example, we may represent price by
P, profit by =, revenue by R, cost by (, national income by Y, and so forth.
When we write P = 3 or C = 18, however, we are “freezing” these variables at
specific values (in appropriately chosen units).

Properly constructed, an economic model can be solved to give us the sofurion
values of a certain set of variables, such as the market-clearing level of price, or
the profit-maximizing level of output. Such variables, whose solution values we
seek from the model, are known as endogenous variables (originating from within).
However, the model may also contain variables which are assumed to be
determined by forces external to the model, and whose magnitudes are accepted
as given data only; such variables are called exogenous variables (originating from
without). It should be noted that a variable that is endogenous to one model may
very well be exogenous to another. In an analysis of the market determination of
wheat price ( P), for instance, the variable P should definitely be endogenous; but
in the framework of a theory of consumer expenditure, P would become instead a
datum to the individual consumer, and must therefore be considered exogenous.

Variables frequently appear in combination with fixed numbers or constants,
such as in the expressions 7P or 0.5R. A constant is a magnitude that does not
change and is therefore the antithesis of a variable. When a constant is joined to a
variable, it is often referred to as the coefficient of that variable. However, a
coefficient may be symbolic rather than numerical. We can, for instance, let the
symbol a stand for a given constant and use the expression ¢P in lieu of 7P in a
model, in order to attain a higher level of generality (see Sec. 2.7). This symbol «
is a rather peculiar case—it is supposed to represent a given constant, and yet,
since we have not assigned to it a specific number, it can take virtually any value.
In short. it 1s a constant that 1s variable! To identify its special status, we give it
the distinctive name parametric constant (or simply parameter).

It must be duly emphasized that, although different values can be assigned to
a parameter, it is nevertheless to be regarded as a datum in the model. It is for
this reason that people sometimes simply say “constant” even when the constant
is parametric. In this respect, parameters closely resemble exogenous variables,
for both are to be treated as “givens” in a model. This explains why many writers,
for simplicity, refer to both collectively with the single designation “parameters.”

As a matter of convention, parametric constants are normally represented by
the symbols a, b, ¢, or their counterparts in the Greek alphabet: «, 8, and y. But
other symbols naturally are also permissible. As for exogenous variables, in order
that they can be visually distinguished from their endogenous cousins, we shall
follow the practice of attaching a subscript 0 to the chosen symbol. For example,
if P symbolizes price, then P, signifies an exogenously determined price.
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Equations and Identities

Variables may exist independently, but they do not really become interesting until
they are related to one another by equations or by inequalities. At this juncture
we shall discuss equations only.

In economic applications we may distinguish between three types of equa-
tion: definitional equations, behavioral equations, and equilibrium conditions.

A definitional equation sets up an identity between two alternate expressions
that have exactly the same meaning. For such an equation, the identical-equality
sign = (read: “is identically equal to”) is often employed in place of the regular
equals sign = , although the latter is also acceptable. As an example, total profit is
defined as the excess of total revenue over total cost; we can therefore write

T=R—-C

A behavioral equation, on the other hand, specifies the manner in which a
variable behaves in response to changes in other variables. This may involve
either human behavior (such as the aggregate consumption pattern in relation to
national income) or nonhuman behavior (such as how total cost of a firm reacts to
output changes). Broadly defined, behavioral equations can be used to describe
the general institutional setting of a model, including the technological (e.g..
production function) and legal (e.g.. tax structure) aspects. Before a behavioral
equation can be written, however, it is always necessary to adopt definite
assumptions regarding the behavior pattern of the variable in question. Consider
the two cost functions

(2.1) C =175+ 10Q
(2.2) C =110 + Q?

where Q denotes the quantity of output. Since the two equations have different
forms, the production condition assumed in each is obviously different from the
other. In (2.1), the fixed cost (the value of C when Q = 0) is 75, whereas in (2.2) it
is 110. The variation in cost is also different. In (2.1), for each unit increase in Q,
there is a constant increase of 10 in C. But in (2.2), as Q increases unit after unit.
C will increase by progressively larger amounts. Clearly, it is primarily through
the specification of the form of the behavioral equations that we give mathemati-
cal expression to the assumptions adopted for a model.

The third type of equations, equilibrium conditions, have relevance only if our
model involves the notion of equilibrium. If so, the equilibrium condition is an
equation that describes the prerequisite for the attainment of equilibrium. Two of
the most familiar equilibrium conditions in economics are

Q,=0, [quantity demanded = quantity supplied]
and S=/ [intended saving = intended investment]

which pertain, respectively, to the equilibrium of a market model and the
equilibrium of the national-income model in its simplest form. Because equations
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of this type are neither definitional nor behavioral, they constitute a class by
themselves.

2.2 THE REAL-NUMBER SYSTEM

Equations and variables are the essential ingredients of a mathematical model.
But since the values that an economic variable takes are usually numerical, a few
words should be said about the number system. Here, we shall deal only with
so-called “real numbers.”

Whole numbers such as 1.2.3. ... are called positive integers: these are the
numbers most frequently used in counting. Their negative counterparts
— 1. =2, =3, ... are called negarive integers: these can be employed. for example,

to indicate subzero temperatures (in degrees). The number 0 (zero), on the other
hand. is neither positive nor negative, and is in that sense unique. Let us lump all
the positive and negative integers and the number zero into a single category,
referring to them collectively as the set of all integers.

Integers. of course, do not exhaust all the possible numbers, for we have
fractions, such as 3. ;. and . which—if placed on a ruler-— would fall between
the integers. Also, we have negative fractions, such as — 4 and — % Together.
these make up the ser of all fractions.

The common property of all fractional numbers is that each is expressible as
a ratio of two integers; thus fractions qualify for the designation rational numbers
(in this usage. rational means ratio-nal). But integers are also rational. because
any integer n can be considered as the ratio n/1. The set of all integers and the set
of all fractions together form the ser of all rational numbers.

Once the notion of rational numbers is used. however. there naturally arises
the concept of irrational numbers—numbers that cannot be expressed as ratios of
a pair of integers. One example is the number V2 = 1.4142.... which is a
nonrepeating, nonterminating decimal. Another is the special constant 7 =
3.1415... (representing the ratio of the circumference of any circle to its diame-
ter), which is again a nonrepeating. nonterminating decimal, as is characteristic of
all irrational numbers.

Each irrational number. if placed on a ruler. would fall between two rational
numbers. so that, just as the fractions fill in the gaps between the integers on a
ruler. the irrational numbers fill in the gaps between rational numbers. The result
of this filling-in process is a continuum of numbers, all of which are so-called
“real numbers.”™ This continuum constitutes the ser of all real numbers. which is
often denoted by the symbol R. When the set R is displayed on a straight line (an
extended ruler). we refer to the line as the real line.

In Fig. 2.1 are listed (in the order discussed) all the number sets, arranged in
relationship to one another. If we read from bottom to top, however, we find in
effect a classificatory scheme in which the set of real numbers is broken down into
its component and subcomponent number sets. This figure therefore is a summary
of the structure of the real-number system.
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Integers —1 l— Fractions

Rational [rrational
numibers numbers

Real
numbers Figure 2.1

Real numbers are all we need for the first 14 chapters of this book, but they
are not the only numbers used in mathematics. In fact, the réason for the term
“real” is that there are also “imaginary” numbers, which have to do with the
square roots of negative numbers. That concept will be discussed later, in Chap.
15.

2.3 THE CONCEPT OF SETS

We have already employed the word “set” several times. Inasmuch as the concept
of sets underlies every branch of modern mathematics, it is desirable to familiarize
ourselves at least with its more basic aspects.

Set Notation

A set is simply a collection of distinct objects. These objects may be a group of
(distinct) numbers, or something else. Thus, all the students enrolled in a
particular economics course can be considered a set, just as the three integers 2, 3,
and 4 can form a set. The objects in a set are called the elements of the set.

There are two alternative ways of writing a set: by enumeration and by
description. 1f we let S represent the set of three numbers 2, 3, and 4, we can write,
by enumeration of the elements,

S =1{2,3.4)

But if we let I denote the set of all positive integers, enumeration becomes
difficult, and we may instead simply describe the elements and write

I = {x | x a positive integer}

which is read as follows: “I is the set of all (numbers) x, such that x is a positive
integer.” Note that braces are used to enclose the set in both cases. In the
descriptive approach, a vertical bar (or a colon) is always inserted to separate the
general symbol for the elements from the description of the elements. As another
example, the set of all real numbers greater than 2 but less than 5 (call it J)) can
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be expressed symbolically as
J={x]2<x<35)

Here, even the descriptive statement is symbolically expressed.

A set with a finite number of elements, exemplified by set S above, is called a
Jfinite set. Set I and set J, each with an infinite number of elements, are, on the
other hand, examples of an infinite set. Finite sets are always denumerable (or
countable), 1.e., their elements can be counted one by one in the sequence
1.2,3,... . Infinite sets may, however, be either denumerable (set I above), or
nondenumerable (set J above). In the latter case, there 1s no way to associate the
elements of the set with the natural counting numbers 1,2, 3,..., and thus the set
is not countable.

Membership in a set is indicated by the symbol € (a variant of the Greek
letter epsilon e for “element”), which is read: ““is an element of.” Thus, for the
two sets § and / defined above, we may write

2€S 3e S el 91 (etc.)

but obviously 8 & S (read: 8 is not an element of set S). If we use the symbol
R to denote the set of all real numbers, then the statement “x is some real
number” can be simply expressed by

x €R

Relationships between Sets

When two sets are compared with each other, several possible kinds of relation-
ship may be observed. If two sets S| and S, happen to contain identical elements,

S, =2.7.a,f} and S, ={2.a.7. 1)

then §, and §, are said to be equal (S, = §,). Note that the order of appearance
of the elements in a set 1s immaterial. Whenever even one element is different,
however, two sets are not equal.

Another kind of relationship is that one set may be a subser of another set. If
we have two sets

S$=1{1,3.5,7,9) and T={3.7)

then T is a subset of S. because every element of T is also an element of S. A
more formal statement of this is: T'is a subset of S if and only if “x € T implies
“x € 8.7 Using the set inclusion symbols C (is contained in) and D (includes),
we may then write

TcSs or SOoOT

It s possible that two given sets happen to be subsets of each other. When this
oceurs, however, we can be sure that these two sets are equal. To state this
formally: we can have §, € §, and §, € S, if and only if S, = §,.
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Note that, whereas the € symbol relates an individual element to a set. the C
symbol relates a subset to a set. As an application of this idea. we may state on the
basis of Fig. 2.1 that the set of all integers is a subset of the set of all rational
numbers. Similarly, the set of all rational numbers is a subset of the set of all real
numbers.

How many subsets can be formed from the five elements in the set S =
{1,3.5,7.9)? First of all, each individual element of S can count as a distinct
subset of S, such as {1}, (3}, etc. But so can any pair, triple, or quadruple of these
elements, such as (1.3}, {1,5},....{3.7.9). etc. For that matter, the set S itself
(with all its five elements) can be considered as one of its own subsets—every
clement of § is an element of S, and thus the set S itself fulfills the definition of a
subset. This is, of course, a limiting case. that from which we get the “largest”
possible subset of S, namely, S itself.

At the other extreme. the “smallest” possible subset of S is a set that contains
no element at all. Such a set 1s called the null set, or empty set. denoted by the
symbol @& or { }. The reason for considering the null set as a subset of S is quite
interesting: If the null set is not a subset of S (@ ¢ §). then @ must contain at
least one element x such that x & §. But since by definition the null set has no
element whatsoever, we cannot say that @ ¢ S: hence the null set is a subset of
S.

Counting all the subsets of S. including the two limiting cases S and &. we
find a total of 2° = 32 subsets. In general, if a set has »n elements, a total of 2"
subsets can be formed from those elements.*

It is extremely important to distinguish the symbol @ or { } clearly from the
notation {0}; the former 1s devoid of elements, but the latter does contain an
element, zero. The null set is unique; there is only one such set in the whole
world, and it is considered a subset of any set that can be conceived.

As a third possible type of relationship. two sets may have no elements in
common at all. In that case, the two sets are said to be disjoint. For example, the
set of all positive integers and the set of all negative integers are disjoint sets. A
fourth type of relationship occurs when two sets have some elements in common
but some elements peculiar to each. In that event, the two sets are neither equal
nor disjoint; also, neither set is a subset of the other.

Operations on Sets

When we add, subtract, multiply, divide, or take the square root of some
numbers, we are performing mathematical operations. Sets are different from

* Ciiven a set with » elements {a. b, c..... iy we may first classifv its subsets into two categories:
onc with the element « in it, and one without. Each of these two can be further classified into two
subcategorics: one with the element 4 in it. and one without. Note that by considering the second
clement . we double the number of categories in the classification from 2 to 4 (= 2°). By the same
token, the consideration of the element ¢ will increase the total number of categories to § (= 2.
When all » elements are considered, the total number of categories will become the total number of
subsets, and that number is 2.
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numbers, but one can similarly perform certain mathematical operations on them.
Three principal operations to be discussed here involve the union, intersection,
and complement of sets.

To take the union of two sets 4 and B means to form a new set containing
those elements (and only those elements) belonging to A, or to B, or to both 4
and B. The union set is symbolized by 4 U B (read: “A4 union B”).

Example 1 1f A ={3,57yand B = {2,3,4.,8}, then
AU B=1{23,45,17.28)

This example illustrates the case in which two sets 4 and B are neither equal nor
disjoint and in which neither is a subset of the other.

Example 2 Again referring to Fig. 2.1, we see that the union of the set of ali
integers and the set of all fractions is the set of all rational numbers. Similarly, the
union of the rational-number set and the irrational-number set yields the set of all
real numbers.

The intersection of two sets A and B, on the other hand, is a new set which
contains those elements (and only those elements) belonging to both A and B. The
intersection set is symbolized by 4 M B (read: “ A intersection B ).

Example 3 From the sets A and B in Example 1, we can write
AN B={3}

Example 4 1f A ={-3,6,10} and B ={9,2.7.4), then A N B= &. Set 4 and
set B are disjoint; therefore their intersection is the empty set—no element is
common to 4 and B.

It is obvious that intersection is a more restrictive concept than union. In the
former, only the elements common to A and B are acceptable, whereas in
the latter, membership in either A or B is sufficient to establish membership in the
union set. The operator symbols N and U-—which, incidentally, have the same
kind of general status as the symbols v , +. +. etc.—therefore have the
connotations “and” and “or,” respectively. This point can be better appreciated
by comparing the following formal definitions of intersection and union:

Intersection: ANB={x|x€Aandx € B)

Union: AUB={x|x€Adorx € B}

Before explaining the complement of a set, let us first introduce the concept of
universal set. In a particular context of discussion. if the only numbers used are
the set of the first seven positive integers, we may refer to it as the universal set,
U. Then, with a given set, say, A = (3,6,7), we can define another set A (read:
*“the complement of A7) as the set that contains all the numbers in the universal
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set U/ which are not in the set 4. That is.
A={(x|x€Uandx & A)={1.2.4.5)

Note that. whereas the symbol U has the connotation “or™ and the symbol N
means “and.” the complement symbol ~ carries the implication of “not.”

Example 5 1f U = (56,7.8.9) and 4 = (5.6}, then A = {7.8.9).

Example 6 What is the complement of U? Since every object (number) under
consideration is included in the universal set, the complement of U must be
empty. Thus U = &,

The three types of set operation can be visualized in the three diagrams of
Fig. 2.2. known as Venn diagrams. In diagram a. the points in the upper circle
form a set A. and the points in the lower circle form a set B. The union of A4 and
B then consists of the shaded area covering both circles. In diagram b are shown
the same two sets (circles). Since their intersection should comprise only the
points common to both sets. only the (shaded) overlapping portion of the two
circles satisfies the definition. In diagram c. let the points in the rectangle be the
universal set and let 4 be the set of points in the circle: then the complement set
A will be the (shaded) area outside the circle.

Laws of Set Operations

From Fig. 2.2, it may be noted that the shaded area in diagram « represents not
only 4 U B but also B U A. Analogously. in diagram b the small shaded area is
the visual representation not only of 4 N B but also of B N 4. When formalized.

Union Intersection Complement
AUB ANB A

(b)

Figure 2.2
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this result is known as the commutative law (of unions and intersections):

AUB=BUA ANB=BnNA
These relations are very similar to the algebraic lawsa + b=5b + aanda X b =
b X a.

To take the union of three sets 4, B, and C, we first take the union of any two
sets and then “union” the resulting set with the third; a similar procedure is
applicable to the intersection operation. The results of such operations are
illustrated in Fig. 2.3. It is interesting that the order in which the sets are selected
for the operation is immaterial. This fact gives rise to the associative law (of
unions and intersections):

AU(BUC)=(4AUB)UC
AN(BNC)=(AnB)NC

These equations are strongly reminiscent of the algebraic laws a + (b + ¢) = (a
+bh)+canda X (bXc¢)y=(aXxb)Xec.
There is also a law of operation that applies when unions and intersections
are used in combination. This is the distributive law (of unions and intersections):
AU (BNC)=(AUB)Nn(4UC)
AN(BUuC)=(AnNnB)u(4nC)

These resemble the algebraic law a X (b + ¢) = (a X b) + (a X ¢).

Example 7 Verify the distributive law, given 4 = (4,5), B ={3,6,7), and C =
(2.3). To verify the first part of the law, we find the left- and right-hand
expressions separately:

Left: AUBNC)={45U{3) =345
Right: (AUB)N(AUC)={(3,4.56TN{2.3.45 =(3.4,5
AUuBuUCdC AN BNnC

oW

(b)

Figure 2.3
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Since the two sides yield the same result, the law is verified. Repeating the
procedure for the second part of the law, we have

Left: AN(BUC)={@4.5nNn{2,36,T) =0
Right: (AnBHuANCYy=guag=4y

Thus the law is again verified.

EXERCISE 2.3

1 Write the following in set notation:
(a) The set of all real numbers greater than 27.
(b) The set of all real numbers greater than 8 but less than 73.

2 Given the sets S, = {2,4,6), S, = (7,2,6}, S; = {4,2,6), and S, = (2,4), which of the
following statements are true?

(a) S, =S, (d)3 €57 (g)§ 28,

(b)y S, =R (e) 4 &8, (hy 2 C85,

(c) 5€5,; (f) S4CR (i) S 2412}

3 Referring to the four sets given in the preceding problem, find:
(a) S, U S, (c) §- NS5 (e) S, NS, NS,
(b) S, U S, (d) S, NS, (fHYS;u S us,

4 Which of the following statements are valid?

(a) AUV A=A (ey AN T =¢

(by AN A=4 (frAan U=4

(¢c) AUL = A4 {g) The complement of Ais A.
(dyALVU=U

§ Given 4 = {(4,5.6), B ={3,4,6,7}, and C = {2,3,06), verify the distributive law.

6 Verify the distributive law by means of Venn diagrams, with different orders of
suecessive shading,

7 Enumerate all the subsets of the set {a. b. ¢}.

8 Enumerate all the subsets of the set S ={1,3.5,7). How many subsets arc there
altogether?

9 Example 6 shows that @ is the complement of U. But since the null set is a subset of
any set, @ must be a subset of U. Inasmuch as the term “complement of U™ implies the
notion of being nor in U, whereas the term **subset of U™ implies the notion of being in U,
it seems paradoxical for @ to be both of these. How do you resolve this paradox?

2.4 RELATIONS AND FUNCTIONS

Our discussion of sets was prompted by the usage of that term in connection with
the various kinds of numbers in our number system. However, sets can refer as
well to objects other than numbers. In particular, we can speak of sets of
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“ordered pairs”—to be defined presently—which will lead us to the important
concepts of relations and functions.

Ordered Pairs

In writing a set {a, b}, we do not care about the order in which the elements a and
b appear, because by definition {a, b} = {b, a}. The pair of elements ¢ and & is in
this case an wunordered pair. When the ordering of a and b does carry a
significance, however, we can write two different ordered pairs denoted by (a, b)
and (b, a), which have the property that (a, b) # (b, a) unless a = b. Similar
concepts apply to a set with more than two elements, in which case we can
distinguish between ordered and unordered triples, quadruples, quintuples, and so
forth. Ordered pairs, triples, etc., collectively can be calied ordered sets.

Example 1 To show the age and weight of each student in a class, we can form
ordered pairs (a, w), in which the first element indicates the age (in years) and the
second element indicates the weight (in pounds). Then (19,127) and (127,19)
would obviously mean different things. Moreover, the latter ordered pair would
hardly fit any student anywhere.

Example 2 When we speak of the set of the five finalists in a contest, the order in
which they are listed is of no consequence and we have an unordered quintuple.
But after they are judged, respectively, as the winner, first runner-up, etc., the list
becomes an ordered quintuple.

Ordered pairs, like other objects, can be elements of a set. Consider the
rectangular (cartesian) coordinate plane in Fig. 2.4, where an x axis and a y axis
cross each other at a right angle, dividing the plane into four quadrants. This xy
plane is an infinite set of points, each of which represents an ordered pair whose
first element 1s an x value and the second element a y value. Clearly, the point
labeled (4, 2) is different from the point (2. 4); thus ordering is significant here.

With this visual understanding, we are ready to consider the process of
generation of ordered pairs. Suppose, from two given sets, x = {1,2}and y = (3,4},
we wish to form all the possible ordered pairs with the first element taken from
set x and the second element taken from set y. The result will, of course, be the set
of four ordered pairs (1, 3), (1,4), (2,3), and (2,4). This set is called the cartesian
product (named after Descartes), or direct product, of the sets x and y and is
denoted by x X vy (read: “x cross y”’). It is important to remember that, while x
and y are sets of numbers, the cartesian product turns out to be a set of ordered
pairs. By enumeration, or by description, we may express the cartesian product
alternatively as

xxy={(1,3).(1.4),(2,3),(2,4))
or xXy={(a,b)|a€ xandb € y)
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The latter expression may in fact be taken as the general definition of cartesian
product for any given sets x and y.

To broaden our horizon, now let both x and y include all the real numbers.
Then the resulting cartesian product

(2.3) xXy={(a,b)|a€ Rand b € R)

will represent the set of all ordered pairs with real-valued elements. Besides, each
ordered pair corresponds to a unique point in the cartesian coordinate plane of
Fig. 2.4, and, conversely, each point in the coordinate plane also corresponds to a
unique ordered pair in the set x X y. In view of this double uniqueness, a
one-to-one correspondence 1s said to exist between the set of ordered pairs in the
cartesian product (2.3) and the set of points in the rectangular coordinate plane.
The rationale for the notation x X y is now easy to perceive; we may associate it
with the crossing of the x axis and the y axis in Fig. 2.4. A simpler way of
expressing the set x X y in (2.3) 1s to write it directly as R X R; this is also
commonly denoted by R

Extending this idea, we may also define the cartesian product of three sets x,
v, and z as follows:

xXyXz={(a,b,c)|laE x.bEy, cE:z)

which is a set of ordered triples. Furthermore, if the sets x, y, and z each consist
of all the real numbers, the cartesian product will correspond to the set of all
points in a three-dimensional space. This may be denoted by R X R X R, or

Lt

(Quadrant 1) (Quadrant i)

(2, 4) (4, 4)
[ ] [ ]

] — 4
® -3 e [ ]
(2, 2) (4, 2)
L -2 [ ] [ ]
| J —1 [ ] [ ]
| | | i o | L J X
-3 -2 -1 0 1 2 3 4
[ J — —1 ® ®
(Quadrant |1) (Quadrant IV}

Figure 2.4
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more simply, R’. In the following development, all the variables are taken to be
real-valued; thus the framework of our discussion will generally be R?, or R?,. ..,
or R".

Relations and Functions

Since any ordered pair associates a y value with an x value, any collection of
ordered pairs—any subset of the cartesian product (2.3)—will constitute a
relation between y and x. Given an x value, one or more y values will be specified
by that relation. For convenience, we shall now write the elements of x X y
generally as (x, y)—rather than as (a, b), as was done in (2.3)—where both x
and y are variables.

Example 3 The set {(x. y) |y = 2x) is a set of ordered pairs including, for
example, (1,2), (0,0), and (—1, —2). It constitutes a relation, and its graphical
counterpart 1s the set of points lying on the straight line y = 2x, as seen in Fig.
2.5

Example 4 The set {(x, )|y < x}. which consists of such ordered pairs as
(1,0), (1,1), and (1, —4), constitutes another relation. In Fig. 2.5, this set
corresponds to the set of all points in the shaded area which satisfy the inequality
y < x.

Figure 2.5
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Figure 2.6

Observe that, when the x value is given, it may not always be possible to
determine a unique y value from a relation. In Example 4, the three exemplary
ordered pairs show that if x = 1, y can take various values, such as 0, 1, or —4,
and yet in each case satisfy the stated relation. Graphically. two or more points of
a relation may fall on a single vertical line in the xy plane. This is exemplified in
Fig. 2.5, where many points in the shaded area (representing the relation y < x)
fall on the broken vertical line labeled x = a.

As a special case, however, a relation may be such that for each x value there
exists only one corresponding y value. The relation in Example 3 is a case in
pomnt. In that case. y is said to be a funcrion of x, and this is denoted by y = f(x),
which 1s read: “y equals f of x.”” [ Note: f( x) does nor mean f times x.] A function is
therefore a set of ordered pairs with the property that any x value uniguely
determines a y value.* It should be clear that a function must be a relation, but a
relation may not be a function.

Although the definition of a function stipulates a unique y for each x. the
converse is not required. In other words, more than one x value may legitimately
be associated with the same y value. This possibility is illustrated in Fig. 2.6,
where the values x, and x, in the x set are both associated with the same value
(¥y) in the y set by the function y = f(x).

A function is also called a mapping. or transformation; both words connote
the action of associating one thing with another. In the statement y = f(x). the
functional notation f may thus be interpreted to mean a rule by which the set x is
“mapped” (*“transformed”) into the set y. Thus we may write

fix—oy

* This definition of ““function” corresponds to what would be called a single-valued function in the
older terminology. What was formerly called a muttivalued function is now referred to as a relation.
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f .\’2$—**“"**’(x27 ¥a2)

{
.\’ 1 T (x * )‘ ) !
X1 X2 ‘\'l A +v T ' ! r
(Domain) (Range)
“ X
R | X2

0

(a) (b)

Figure 2.7

where the arrow indicates mapping, and the letter f symbolically specifies a rule of
mapping. Since f represents a particular rule of mapping, a different functional
notation must be employed to denote another function that may appear in the
same model. The customary symbols (besides /) used for this purpose are g, F. G.
the Greek letters ¢ (phi) and ¢ (ps1), and their capitals, ® and ¥. For instance,
two variables y and z may both be functions of x, but if one function is written as
¥ = f(x), the other should be written as z = g(x), or z = ¢(x). It is also
permissible, however, to write y = p(x) and z = z(x), thereby dispensing with the
symbols f and g entirely.

In the function y = f(x), x is referred to as the argument of the function, and
y 18 called the value of the function. We shall also alternatively refer to x as the
independent variable and y as the dependent variable. The set of all permissible
values that x can take in a given context is known as the domain of the function.
which may be a subset of the set of all real numbers. The y value into which an x
value is mapped is called the image of that x value. The set of all images is called
the range of the function, which is the set of all values that the y variable will
take. Thus the domain pertains to the independent variable x, and the range has
to do with the dependent variable y.

As illustrated in Fig. 2.7a, we may regard the function f as a rule for mapping
each point on some line segment (the domain) into some point on another line
segment (the range). By placing the domain on the x axis and the range on the y
axis, as in diagram b, however, we immediately obtain the familiar two-dimen-
sional graph, in which the association between x values and y values is specified
by a set of ordered pairs such as (x,. y,) and (x,, »,).

In economic models, behavioral equations usually enter as functions. Since
most variables in economic models are by their nature restricted to being
nonnegative real numbers,* their domains are also so restricted. This is why most

* We say " nonnegative™ rather than ** positive” when zero values are permissible.
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geometric representations in economics are drawn only in the first quadrant. In
general, we shall not bother to specify the domain of every function in every
economic model. When no specification is given, it is to be understood that the
domain (and the range) will only include numbers for which a function makes
economic sense.

Example 5 The total cost C of a firm per day is a function of its daily output Q:
C = 150 + 7Q. The firm has a capacity limit of 100 units of output per day. What
are the domain and the range of the cost function? Inasmuch as Q can vary only
between 0 and 100, the domain is the set of values 0 < Q < 100; or more
formally,

Domain = {Q |0 < Q < 100}

As for the range, since the function plots as a straight line, with the minimum C
value at 150 (when Q = 0) and the maximum C value at 850 (when Q = 100), we
have

Range = {C ] 150 < C < 850}

Beware, however, that the extreme values of the range may not always occur
where the extreme values of the domain are attained.

EXERCISE 24

1 Given §) = (3,6,9), §, = {4, b}, and S; = {m, n), find the cartesian products:
(a) S, X 8, (h) S, X 5 (¢} Sy X S,

2 From the information in the preceding problem, find the cartesian product §; X S, X S;.

3 In general, is it true that §; X S, = §, X §? Under what conditions will these two
cartesian products be equal?
4 Does each of the following, drawn in a rectangular coordinate plane, represent a
function?

(a) A circle - (h) A triangle (¢) A rectangle

5 If the domain of the function y = 5 + 3xis the set {x | | < x < 4}, find the range of the
function and express it as a set.

6 For the function y = —x*, if the domain is the set of all nonnegative real numbers,
what will its range be?

2.5 TYPES OF FUNCTION

The expression y = f(x) is a general statement to the effect that a mapping is
possible, but the actual rule of mapping is not thereby made explicit. Now let us
consider several specific types of function, each representing a different rule of

mapping.
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Constant Functions

A function whose range consists of only one element is called a constant function.
As an example, we cite the function

y=f(x)=1

which is alternatively expressible as y = 7 or f(x) = 7, whose value stays the
same regardless of the value of x. In the coordinate plane, such a function will
appear as a horizontal straight line. In national-income models, when investment
(1) 1s exogenously determined, we may have an investment function of the form
I = $100 million, or I = I, which exemplifies the constant function.

Polynomial Functions

The constant function is actually a “degenerate” case of what are known as
polynomial functions. The word ‘““polynomial” means “multiterm,” and a poly-
nomial function of a single variable x has the general form

(2.4) y=ao+a]x+a2x2+---+ax"

n

in which each term contains a coefficient as well as a nonnegative-integer power
of the variable x. (As will be explained later in this section, we can write x' = x
and x° = 1 in general; thus the first two terms may be taken to be ¢,x° and a,x',
respectively.) Note that, instead of the symbols a, b, ¢,..., we have employed the
subscripted symbols a, a,,..., a, for the coefficients. This is motivated by two
considerations: (1) we can economize on symbols, since only the letter a is *“ used
up” in this way; and (2) the subscript helps to pinpoint the location of a
particular coefficient in the entire equation. For instance, in (2.4), a, is the
coefficient of x2, and so forth.

Depending on the value of the integer n (which specifies the highest power of
x ), we have several subclasses of polynomial function:

Case of n = 0O: y=a, [ constant function]
Caseof n = 1: y=a,+ax [/inear function]
Case of n = 2: y=ay+ ax+ a,x* [ guadratic function]
Caseof n =3 y=a,+ ax + a,x*+ a;x’ [cubic function]

and so forth. The superscript indicators of the powers of x are called exponents.
The highest power involved, i.e., the value of #, is often called the degree of the
polynomial function; a quadratic function, for instance, is a second-degree
polynomial, and a cubic function is a third-degree polynomial.* The order in
which the several terms appear to the right of the equals sign is inconsequential;

* In the several equations just cited, the last coefficient (a,) is always assumed to be nonzero;
otherwise the function would degenerate into a lower-degree polynomial.
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they may be arranged in descending order of power instead. Also, even though we
have put the symbol y on the left, it is also acceptable to write f(x ) in its place.

When plotted in the coordinate plane, a linear function will appear as a
straight line, as illustrated in Fig. 2.84. When x = 0, the linear function yields
¥ = a,; thus the ordered pair (0. a,) is on the line. This gives us the so-called “y
intercept” (or vertical intercept). because it is at this point that the vertical axis
intersects the line. The other coefficient, a,, measures the slope (the steepness of
incline) of our line. This means that a unit increase in x will result in an increment
in y in the amount of a,. What Fig. 2.8a illustrates is the case of @, > 0, involving
a positive slope and thus an upward-sloping line; if a, < 0, the line will be
downward-sloping.

A quadratic function, on the other hand, plots as a parabola—roughly, a
curve with a single built-in bump or wiggle. The particular illustration in Fig. 2.8)
implies a negative a,; in the case of a, > 0, the curve will “open” the other way,
displaying a valley rather than a hill. The graph of a cubic function will, in
general, manifest two wiggles, as illustrated in Fig. 2.8c. These functions will be
used quite frequently in the economic models discussed below.

Rational Functions
A function such as

x —1

)_x2+2x+4

in which y is expressed as a ratio of two polynomials in the variable x, is known
as a rational function (again, meaning ratio-nal). According to this definition, any
polynomial function must itself be a rational function, because it can always be
expressed as a ratio to 1, which is a constant function.

A special rational function that has interesting applications in economics is
the function

a
y=-

or Xy =a
which plots as a rectangular hyperbola, as in Fig. 2.84. Since the product of the
two variables is always a fixed constant in this case, this function may be used to
represent that special demand curve—with price P and quantity Q on the two
axes— for which the total expenditure PQ is constant at all levels of price. (Such a
demand curve is the one with a unitary elasticity at each point on the curve.)
Another application is to the average fixed cost (AFC) curve. With AFC on one
axis and output Q on the other, the AFC curve must be rectangular-hyperbolic
because AFC X Q(= total fixed cost) is a fixed constant.

The rectangular hyperbola drawn from xy = a never meets the axes, even if
extended indefinitely upward and to the right. Rather, the curve approaches the
axes asympiotically: as y becomes very large, the curve will come ever closer to the
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y axis but never actually reach it, and similarly for the x axis. The axes constitute
the asymptotes of this function.

Nonalgebraic Functions

Any function expressed in terms of polynomials and/or roots (such as square
root) of polynomials is an algebraic function. Accordingly, the functions discussed
thus far are all algebraic. A function such as y = Vx? + 3 is not rational, yet it is
algebraic.

However, exponential functions such as y = b*, in which the independent
variable appears in the exponent, are nonalgebraic. The closely related logarithmic
functions, such as y = log,x, are also nonalgebraic. These two types of function
will be explained in detail in Chap. 10. but their general graphic shapes are
indicated in Fig. 2.8¢ and f. Other types of nonalgebraic function are the
trigonometric (or circular) functions, which we shall discuss in Chap. 15 in
connection with dynamic analysis. We should add here that nonalgebraic func-
tions are also known by the more esoteric name of transcendental functions.

A Digression on Exponents

In discussing polynomial functions, we introduced the term exponents as indica-
tors of the power to which a variable (or number) is to be raised. The expression
62 means that 6 is to be raised to the second power; that is, 6 is to be multiplied
by itself, or 67 = 6 X 6 = 36. In general, we define

x"=xXxX-- Xx
" —
n terms

and as a special case, we note that x' = x. From the general definition, it follows
that exponents obey the following rules:

RulelI  x™ X x"=x"""  (for example, x* X x* = x")

PROOF x”’Xx"=(x><x><---Xx)(xXxX---Xx)

—
m terms H terms
=xXxX- - Xx=xmt"
m o+ nterms
xm / X4
Rule 11 — = X" {(x +0) (for example, — =X
e
m terms
r;iy\‘,, —
m XX x X XX -
PROOF — = = xXx X - Xx=x""
XX Xx X -+ XX S —
e m — nlerms

n terms
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because the n terms in the denominator cancel out n of the m terms in the
numerator. Note that the case of x = 0 1s ruled out in the statement of this rule.
This is because when x = 0, the expression x” /x" would involve division by zero,
which is undefined.

What if m < n:say, m = 2 and n = 5? In that case we get, according to Rule
Il x™ " = x> a negative power of x. What does this mean? The answer is
actually supplied by Rule II itself: When m = 2 and n = 5, we have

[

x- x X x _ 1 1

x5_x><x><x><x><x-x><x><x_x3

Thus x* = 1/x?, and this may be generalized into another rule:
_ 1
Rule 111 x "= o {(x #0)

To raise a (nonzero) number to a power of minus n is to take the reciprocal of its
nth power.

Another special case in the application of Rule II is when m = », which
ylé(cfs the expression x™ 1 = x" M = x!. To interpret the meaning of raising a
number x to the zeroth power, we can write out the term x” " in accordance
with Rule 11 above, with the result that x”/x™ = 1. Thus we may conclude that
any (nonzero) number raised to the zeroth power is equal to 1. (The expression 0"
is undefined.) This may be expressed as another rule:

Rule IV x% =1 (x #= 0)

As long as we are concerned only with polynomial functions, only (nonnega-
tive) integer powers are required. In exponential functions, however, the exponent
is a variable that can take noninteger values as well. In order to interpret a
number such as x'/~, let us consider the fact that, by Rule I above, we have

/2 2
X7 XV =xt = x

Since x'/* multiplied by itself is x. x'/? must be the square root of x. Similarly,

x'”? can be shown to be the cube root of x. In general, therefore, we can state the
following rule:

Rule V X]/" = :/J{
Two other rules obeyed by exponents are:
Rule VI (x"" )” = x"M"

Rule VI XM X " = xy )™
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EXERCISE 2.5

1 Graph the functions
(a) y =28+ 3x (by.y =8 — 3x (c)yy=3x+12
(In each case, consider the domain as consisting of nonnegative real numbers only.)

2 What is the major difference between (@) and (b) above? How is this difference reflected
in the graphs? What is the major difference between (@) and (¢)? How do their graphs
reflect it?

3 Graph the functions

(a) y=—x"+5x—2 (b y=x"+5x -2
with the set of values —5 < x < 5 as the domain. It is well known that the sign of the
coefficient of the x? term determines whether the graph of a quadratic function will have a
“hill” or a “valley.” On the basis of the present problem, which sign is associated with the
hill? Supply an intuitive explanation for this.

4 Graph the function y = 36/x, assuming that x and y can take positive values only.
Next, suppose that both variables can take negative values as well; how must the graph be
modified to reflect this change in assumption?

5 Condense the following expressions:
(a) x*x xP (b) x4 x x" x x¢ () x*x y*xz?

6 Find: (a) x'/x* (b) (x'7 x x!" Yy /x>

7 Show that x™/" = 'v!x’” = (;7;) . Specify the rules applied in each step.
8 Prove Rule VI and Rule VIL

2.6 FUNCTIONS OF TWO OR MORE INDEPENDENT
VARIABLES

Thus far, we have considered only functions of a single independent variable,
¥ = f(x). But the concept of a function can be readily extended to the case of two
or more independent variables. Given a function

z=g(x,p)

a given pair of x and y values will uniquely determine a value of the dependent
variable z. Such a function is exemplified by

z=ax + by or I=ay+ ax+ayx*+ by + byy?

Just as the function y = f{x) maps a point in the domain into a point in the
range, the function g will do precisely the same. However, the domain is in this
case no longer a set of numbers but a set of ordered pairs (x, y), because we can
determine z only when both x and y are specified. The function g is thus a
mapping from a point in a two-dimensional space into a point on a line segment
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(i.e., a point in a one-dimensional space), such as from the point (x,, y,) into the
point z, or from (x,, y,) into z, in Fig. 2.94.

If a vertical z axis 1s erected perpendicular to the xy plane, as i1s done in
diagram b, however, there will result a three-dimensional space in which the
function g can be given a graphical representation as follows. The domain of
the function will be some subset of the points in the xy plane, and the value of the
function (value of z) for a given point in the domain—say, (x,, y,)—can be
indicated by the height of a vertical line planted on that point. The association
between the three variables is thus summarized by the ordered triple (x,, y,, z,),
which is a specific point in the three-dimensional space. The locus of such ordered
triples, which will take the form of a surface, then constitutes the graph of the
function g. Whereas the function y = f(x) i1s a set of ordered pairs, the function

.\32*————-*’]"_ (x5, ¥2) Z2

) X P
(@)
z
(xb Vi, Zl)
(X2, ¥2, 22) v
¥
Vz \\\
— o
—
e
0 -
g //
Xy -
X2

(b)

Figure 2.9
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z = g(x. y) will be a set of ordered triples. We shall have many occasions to use
functions of this type in economic models. One ready application is in the area of
production functions. Suppose that output is determined by the amounts of
capital (K ) and labor (L) employed: then we can write a production function in
the general form Q = Q(K, L).

The possibility of further extension to the cases of three or more independent
variables is now self-evident. With the function y = h(u, v, w), for example, we
can map a point in the three-dimensional space, (u,, v,,w,), into a point in a
one-dimensional space (y,). Such a function might be used to indicate that a
consumer’s utility is a function of his consumption of three different commodities,
and the mapping is from a three-dimensional commodity space into a one-dimen-
sional utility space. But this time it will be physically impossible to graph the
function, because for that task a four-dimensional diagram is needed to picture
the ordered quadruples, but the world in which we live is only three-dimensional.
Nonetheless, in view of the intuitive appeal of geometric analogy, we can continue
to refer to an ordered quadruple (u,, v,,w,, y,) as a “point” in the four-dimen-
sional space. The locus of such points will give the (nongraphable) graph of the
function y = h(u, v, w), which is called a hypersurface. These terms, viz., point
and hypersurface. are also carried over to the general case of the n-dimensional
space.

Functions of more than one variable can be classified into various types, too.
For instance, a function of the form

y = al'xl + aZXZ + ot a,x,

is a linear function, whose characteristic is that every variable is raised to the first
power only. A guadratic function, on the other hand, involves first and second
powers of one or more independent variables. but the sum of exponents of the
variables appearing in any single term must not exceed two.

Note that instead of denoting the independent variables by x, u, v, w, etc., we
have switched to the symbols x,, x,,..., x,. The latter notation, like the system
of subscripted coefficients, has the merit of economy of alphabet, as well as of an
easier accounting of the number of variables involved in a function.

2.7 LEVELS OF GENERALITY

In discussing the various types of function, we have without explicit notice
introduced examples of functions that pertain to varying levels of generality. In
certain instances, we have written functions in the form

v=1 r=6x+4  y=x—-3x+1 (etc.)

Not only are these expressed in terms of numerical coefficients, but they also
indicate specifically whether each function is constant, linear, or quadratic. In
terms of graphs, each such function will give rise to a well-defined unique curve.
In view of the numerical nature of these functions, the solutions of the model
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based on them will emerge as numerical values also. The drawback is that, if we
wish to know how our analytical conclusion will change when a different set of
numerical coefficients comes into effect, we must go through the reasoning process
afresh each time. Thus, the results obtained from specific functions have very little
generality.

On a more general level of discussion and analysis, there are functions in the
form

y=ua y=a+ bx y=a-+ bx + cx? (etc.)

Since parameters are used, each function represents not a single curve but a whole
family of curves. The function y = a, for instance, encompasses not only the
specific cases y = 0, y = 1, and y = 2 but also y =4, y = —35,..., ad infinitum.
With parametric functions, the outcome of mathematical operations will also be
in terms of parameters. These results are more general in the sense that, by
assigning various values to the parameters appearing in the solution of the model,
a whole family of specific answers may be obtained without having to repeat the
reasoning process anew.

In order to attain an even higher level of generality, we may resort to the
general function statement y = f(x), or z = g(x, y). When expressed in this
form, the function is not restricted to being either linear, quadratic, exponential,
or trigonometric—all of which are subsumed under the notation. The analytical
result based on such a general formulation will therefore have the most general
applicability. As will be found below, however, in order to obtain economically
meaningful results, it 1s often necessary to impose certain qualitative restrictions
on the general functions built into a model, such as the restriction that a demand
function have a negatively sloped graph or that a consumption function have a
graph with a positive slope of less than 1.

To sum up the present chapter, the structure of a mathematical economic
model is now clear. In general, it will consist of a system of equations, which may
be definitional, behavioral, or in the nature of equilibrium conditions.* The
behavioral equations are usually in the form of functions, which may be linear or
nonlinear, numerical or parametric, and with one independent variable or many.
It is through these that the analytical assumptions adopted in the model are given
mathematical expression.

In attacking an analytical problem, therefore, the first step is to select the
appropriate variables—exogenous as well as endogenous—for inclusion in the
model. Next, we must translate into equations the set of chosen analytical
assumptions regarding the human, institutional, technological, legal, and other
behavioral aspects of the environment affecting the working of the variables. Only
then can an attempt be made to derive a set of conclusions through relevant
mathematical operations and manipulations and to give them appropriate eco-
nomic interpretations.

* Inequalities may also enter as an important ingredient of a model, but we shall not worry about
them for the time being.



