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From relativity to cosmology

3.1 Historical background

In 1915 Einstein put the finishing touches to the general theory of
relativity. The Schwarzschild solution described in Chapter 2 was the first
physically significant solution of the field equations of general relativity. It
showed how spacetime is curved around a spherically symmetric
distribution of matter. The problem solved by Schwarzschild is basically a
local problem, in the sense that the distortions of spacetime geometry
from the Minkowski geometry of special relativity gradually diminish to
zero as we move further and further away from the gravitating sphere.
This result can be easily verified from the line element (2.123) by letting
the radial coordinate r go to infinity. In technical jargon, a spacetime
satisfying this property is called asymptotically flat. In general any
spacetime geometry generated by a local distribution of matter is expected
to have this property. Even from Newtonian gravity we expect an
analogous result: that the gravitational field of a local distribution of
matter will die away at'a large distance from the distribution. Can the
universe be approximated by a local distribution of matter?

Einstein felt that the answer to the above question would be in the
negative. Rather, he expected the universe to be filled with matter,
however far we are able to probe it. A Schwarzschild-type solution cannot
therefore provide the correct spacetime geometry of such a distribution of
matter. Since we can never get away from gravitating matter, the concept
of asymptotic flatness must break down. A new type of solution is
therefore needed to describe a universe filled everywhere with matter.
Einstein published such a solution in 1917.

Before we consider Einstein’s solution, it is worth noting that more than
two centuries earlier Newton also had attempted a solution describing a
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matter-filled universe of infinite extent. A highly symmetric distribution of
matter does lead to a solution in Newtonian gravity. Imagine, for
example, a uniform distribution of matter filling the infinite Euclidean
space. An observer viewing the universe from any vantage point will find
that it looks the same in all directions and that it presents the same aspect
from all vantage points. These two properties are known as isotropy and
homogeneity, and they will turn out to play simplifying roles in relativistic
cosmology as well. Newton found that such a universe would be static, for,
any particle of matter is being attracted equally in all directions, so it
should stay put where it is.

On the other hand, homogeneity precludes any pressure gradients in the
universe. And we know that any finite distribution of pressure-free matter
would tend to shrink under its own gravity. Stars are able to maintain a
stationary shape only because they have large enough pressure gradients
inside to withstand their own gravity. Clearly, in going from a finite to an
infinite universe something new has entered the argument: the boundary
conditions at infinity. Considerable ambiguity arises in Newtonian theory
when we try to interpret these boundary conditions.

Newton also found his solution to be unstable: any local inhomogeneity
would precipitate gravitational contraction that would tend to augment the
local inhomogeneity. Newton compared the instability of the solution to
that of a set of needles finely balanced on their points.

Nevertheless, in 1934 E. A. Milne and W. H. McCrea showed how
some of the problems of Newtonian cosmology can be resolved. The
reader interested in this approach may find some properties of Newtonian
cosmology outlined in Exercises 1 to 3 at the end of this chapter and also
in Chapter 4.

We will now return to Einstein’s solution of 1917.

3.2 The Einstein universe

It is evident from the field equations of general relativity derived in
Chapter 2 that their solution in the most general form - the solution of an
interlinked set of nonlinear partial differential equations — is beyond the
present range of techniques available to applied mathematics. It 1s
necessary to impose simplifying symmetry assumptions in order to make
any progress towards a solution. Just as Schwarzschild assumed spherical
symmetry in his local solution, FEinstein assumed homogeneity and
isotropy in his cosmological problem. He further assumed, like
Schwarzschild, that spacetime is static. This enabled him to choose a time
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coordinate ¢ such that the line element of spacetime could be described by
ds? = c2dr? — oy, dx*dx?, (3.1)

where a,, are functions of space coordinates x*(u, v=1, 2, 3) only.

Note that constraint of homogeneity implies that the coefficient of dr?
can only be a constant, which we have normalized to c?. Similarly, the
condition of isotropy tells us that there should be no terms of the form
dr dx* in the line element. This can be seen easily in the following way. If
we had terms like go,d¢dx* in the line element, then spatial displace-
ments dx# and —dx* would contribute oppositely to ds? over a small time
interval d¢, and such directional variation 1s forbidden by isotropy. Can we
say anything more about «,,?

Einstein believed that the universe has so much matter as to ‘close’ the
space. And this assumption led him to a specific form for a,,. We will now
elaborate a little on the notion of closed space and on how to arrive at a,,.
Let us begin with examples from lower-dimensional spaces.

As the simplest example of an open space is the Euclidean straight line
extending indefinitely in both directions, we can use a real variable r to
denote a typical point on the line with —o < r < . Figure 3.1(a) shows
such a straight line. Figure 3.1(b) shows an example of a closed curve Z;.
It has no boundary, but if we use a real variable r to denote points on the
curve then we will find that a finite range of r will suffice. If we go beyond
this range we will begin to go over the curve again and again. A familiar
simple example of this is the circle S| of radius S shown in Figure 3.1(c). If
we use the Euclidean measure of distance to locate a point and denote by
r the distance of this point from a fixed point N, we find that the range
0 = r < 27S describes all the points on the circle.

While both the curves in Figure 3.1(b) and 3.1(c) are closed, the circle
evidently has more symmetries than the curve Z,. This can be
demonstrated as follows. If we take a small section (an arc) of the circle
and slide it along the circle, it will always lie flush on it. We cannot do the
same for the curve ;. We can express this by saying that the circle S,
describes homogeneous space, while the curve X, does not.

Figure 3.2 illustrates the corresponding situation in two dimensions.
Two coordinates r and ¢ (0 <r < o, 0 < ¢ <2x) are needed to locate a
point on the Euclidean plane of Figure 3.2(a). The surface £, shown in
Figure 3.2(b) and the sphere S, of radius § shown in Figure 3.2(c) are
closed surfaces, of which S, is homogenous but X, is not. This latter
property can be casily verified by our technique of sliding a small section
of each surface along itself.
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Fig. 3.1 Curves in one-dimensional space. (a) A straight line extending from ~oo
to o. This is an example of open space. (b) A closed curve Z;. Starting from a
point N on it as the origin, we can use the length r along the curve to label points
on it. If the length of the curve is L, when r = L we come back to the starting
point. This is a closed space. (c) A closed space S; that is homogeneous: it is a
circle, If it has radius §, L = 27S.

There is another symmetry inherent in the spherical surface, which can
be demonstrated as follows. At any point O on it draw a small arc lying on
the surface and then rotate this arc around the point O, trying all the
while to keep the arc lying flush on the surface. Again the spherical
surface §, allows you to do this, but £, does not. This means that the
surface S, shows isotropy about O.

We can now see how to construct the homogenous and isotropic closed
space of three dimensions that Einstein wanted for his model of the
universe. It is S3, the 3-surface of a four-dimensional hypersphere of
radius §. The equation of such a 3-surface is given in Cartesian
coordinates x, x2, x3, and x, by
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Fig. 3.2 (a) The plane is an open two-dimensional space. From any point O on it
draw the straight line OX in any direction in the plane. The coordinates (r, ¢) in
the illustration show how to specify any point P on the plane. (b) An arbitrary
closed surface 2. (¢) A closed surface S, that is homogeneous and isotropic. It is
a sphere. Take any point O on S, and draw a small arc of a great circle OL lying
on 5;. As OL is rotated around O, the point L moves along a small circle on 5>
and the arc always stays on §,. This is an example of isotropy: as seen from O,
the surface S, shows no preferential direction.

(x1)? + (x2)% + (x3)* + (x4)* = §%. (3.2)
To use coordinates intrinsic to the surface we define
X, = Scosy, X; =sinycosf, X, = §sin xsin O cos ¢,
X3 = Ssinysin 8sin ¢. (3.3)

The spatial line element on the surface §; is therefore given by
do? = (dxy)? + (dx;)? + (dx3)* + (dx,)?

3.4
= §2[dy? + sin? y(d6? + sin? 6dg¢?)]. (3-4)
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The ranges of 8, ¢, and x are given by
0<sy<m, 0<0=<m, 0= ¢=<2m. (3.5)

At this stage it is worth pointing that there are two alternatives open to
us. The first is what we have tacitly taken for granted, that y takes the
entire range 0 =< y <, and this gives us what is commonly known as
spherical space. If, however, we identify the antipodal points, the space is
called elliptical space.

Another way to express do? is through coordinates r, 8, ¢, with
r =sin x(0 < r < 1). In elliptical space r runs through this range once: in
spherical space it does so twice:

dr?

1—-r

do? = SZ[ 5

+ r2(d6? + sin? 6d¢2)]. (3.6)

The constant S is called the ‘radius’ of the universe. The line element for
the Einstein universe is therefore given by

ds? = c2d¢? — do?
= c2dr? — S?[dy* + sin? x(d6? + sin? 6d¢?)] (3.7)
2

= c2de? - 52[ ar

" + r?(d6? + sin? qubz)].
—r

2
Note that we have derived the line element (3.7) entirely from the
various assumptions of symmetry. The field equations have not yet been
used. We will now see what happens when we use the above line element
to compute the left-hand side of Einstein’s equations.
This is easily done with the machinery developed in Chapter 2. We

write xX® = ¢ct, x! = r, x> = 0, x> = ¢, so that
§? .
8o =1, 811=‘1 5 gn = —S%r?, £33 = ~S?%r?sin? 4.
—r
2
gW =1, gn__l r’ g2 = — L ’ g% = — 1 _
S? i S$2r2sinZ 0

Elementary calculus then tells us that the only nonzero components of ['%;
are the following:

r 1
rh:l—rz’ F%er%:-r_’ Thp=-r(l-r?,
r=-r(1—r?sin?2@, T% = —sinfcosh, T3 =cotbh,

Next, using the formulae given in the last chapter, we find the following
nonzero components of the Einstein tensor:

3
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1
R} —iR=R:-R=R3- R——E— (3.9)
To complete the field equations, Finstein used the energy tensor for
dust derived in (2.83). For dust at rest in the above frame of reference, u'

has only one component, the time component, nonzero. We therefore get

To poc?,
T!=T3=1T3;=0.

Thus the two equations (3.8) and (3.9) lead to two independent equations:

=g~y =0, (3.11)
Clearly, no sensible solution is possible from these equations, thus
suggesting that no static homogeneous isotropic and dense model of the
universe is possible under the Einstein equations.

It was his inability to generate such a model that led Einstein to modify
his equations (2.98) to (2.102), thus introducing the now famous (or
infamous) A-term. If we introduce this additional constant into the picture,
our equations in (3.11) are modified to

(3.10)

3 81 G
A“STZ‘-‘— P (3.12)
and
1
A— S—z = (). (313)
We now do have a sensible solution. We get
1\Y2 c
S=|-} =——1"+ 3.14
‘ (l) 2(nGpo) "2 G19

Einstein considered this solution as justifying his conjecture that with
sufficiently high density it should be possible to ‘close’ the universe. In
(3.14) we have the radius S of the universe as given by the matter density
Po, With the result that the larger the value of p,, the smaller
is the value of §. However, if A is a given universal constant like G,
both p, and S are determined in terms of A (as well as G and ¢). How
big is A?

In 1917 very little information was available about p,, from which A
could be determined. The value of

S = 10%° — 10* cm
quoted in those days is therefore only of historical interest. If we take p,
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as ~1073 gem ™3 as the rough estimate of mass density in the form of
galaxies (see Chapter 9), we get S ~ 10* cm and A = 10> cm 2.

The A-term introduces a force of repulsion between two bodies that
increases in proportion to the distance between them. The above value of
A is too small to make any detectable difference from the prediction of
standard general relativity (that is, with A = 0) in any of the Solar System
tests mentioned in Chapter 2. Thus the Einstein universe faced no threat
from the local tests of gravity. The model, however, did not survive much
longer than a decade, for reasons discussed below.

3.3 The expanding universe

In the late nineteenth century the philosopher and scientist Ernst Mach
raised certain conceptual objections to Newton’s laws of motion. Mach
critically examined the role of a background against which motion is to be
measured and argued that unless there is a material background it is not
possible to attach any meaning to the concepts of rest or motion. Einstein
was greatly influenced by Mach’s discussion. The Einstein universe
described above includes matter-filled space and thus a background of
distant matter against which a local observer can measure motion and
formulate laws of mechanics. In fact, as we have just seen, the density of
matter determines the precise geometrical nature of spacetime in the
Einstein model.

Einstein believed this to be a unique feature of general relativity. He
felt that the presence of matter was essential to have a meaningful
spacetime geometry. However, his expectation that general relativity can
yield only such matter-filled spacetimes as solutions of the field equations
was proved wrong shortly after the publication of his paper in 1917. For in
1917 W. de Sitter published another solution of the field equations in
(2.102) with the line element given by

2 2 H*R? 2 dR® 2 2 02 2
ds® = c?|1 - 2 dr- — iR — R%(d@* + sin* 8d¢°),
)
2
(3.15)
where H is a constant related to A by
3 2
A= H. (3.16)
2

The remarkable feature of the de Sitter universe is that it is empty.
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Moreover, although the above coordinates give the impression that
the universe is static, it is possible to find a new set of coordinates
(1, 7,6, ¢)in terms of which the line element (3.15) takes the form

ds? = c2dr? — e2H[dr? + r2(d6? + sin? 8d¢?)]. (3.17)

It is easy to verify that test particles with constant values of (7, 8, ¢)
follow timelike geodesics in this model. Thus the proper separation
between any two particles measured at a given time ¢ increases with time
as e ' . That is, these particles are all moving apart from one another.

However, these particles have no material status. They have no masses
and they do not influence the geometry of spacetime. In the dynamic
sense the universe is empty, although in the kinematic sense it is
expanding. As Eddington once put it, the de Sitter universe has motion
without matter, in contrast to the Einstein universe, which has matter
without motion.

The de Sitter universe showed, however, that empty spacetimes could
be obtained as solutions of general relativity. For reasons discussed above,
a universe of this type fails to meet Mach’s criterion that there should be a
background of distant matter against which local motion can be measured.
Although the property of emptiness of the de Sitter universe was
embarrassing, its property of expansion turned out to contain the germ of
the truth. For by the end of the third decade of this century, the
observations of Hubble and Humason indicated that the universe is not
static but is indeed expanding.

Chapter 1 summarized these observations. The phenomenon of nebular
redshift observed by Hubble and Humason in the 1920s has now been
observed in practically all extragalactic objects. As mentioned in section
1.8, a Newtonian interpretation of such redshifts involves the Doppler
effect. How can we express this phenomenon in the language of general
relativity? Can we generate models of the universe that combine de
Sitter’s notion of expansion with Einstein’s notion of nonemptiness? The
Friedmann models to be discussed in Chapter 4 do just that, and were in
fact obtained by Friedmann between 1922 and 1924, five years before
Hubble’s data became well known.

The rest of this chapter outlines the kinematic features of the expanding
models of the universe. We will first describe how to generalize the
arguments that led FEinstein to the static line element (3.7). This
generalization will lead us to a nonstatic line element that preserves the
properties of homogeneity and isotropy assumed by Einstein, but is
potentially capable of explaining Hubble’s data.
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3.4 Simplifying assumptions of cosmology

Once we decide to generalize from a static to a non-static model of the
universe, our task becomes more complicated. Figure 3.3(a) shows a
spacetime diagram with a swarm of world lines representing particles
moving in arbitrary ways. There is no order in this picture, and where two
world lines intersect we have colliding particles. It would indeed be very

Time — Space

fe ab ¢ d
(b)
Fig.3.3 (a) An arbitrary bundle of world lines a, b, ¢, . . . describes particles
moving haphazardly. Intersecting world lines denote particle collisions. (b)
Particles move alopg nonintersecting world lines a, b, c,... which have no

wobbles or irregularities. This is the regularity expressed formally by the Weyl
postulate. Note that this regularity enables us to construct a sequence of spacelike
hypersurfaces orthogonal to the world lines of the bundle. These are hypersur-
faces of constant cosmic time ¢. Thus the cosmologist can talk of cosmic epochs ¢
= fy, t = ty, and so on in an unambiguous fashion.
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difficult to solve the Einstein field equations for such a mess of gravitating
matter. Fortunately, the real universe does not appear to be so messy.

Hubble’s observations indicate that the universe is (or at least seems to
be) an orderly structure in which the galaxies, considered as basic units,
are moving apart from one another. Thus Figure 3.3(b) represents a
typical spacetime section of the universe in which the world lines represent
the histories of galaxies. These world lines, unlike those of Figure 3.3(a),
are nonintersecting and form a funnel-like structure in which the
separation between any two world lines is steadily increasing.

This intuitive picture of regularity is often expressed formally as the
Weyl postulate, after the early work of the mathematician Hermann Weyl.
The postulate states that the world lines of galaxies designated as
fundamental observers form a 3-bundle of nonintersecting geodesics
orthogonal to a series of spacelike hypersurfaces.

To appreciate the full significance of Weyl’s postulate, let us try to
express it in terms of coordinates and metric of spacetime. Accordingly we
use three spacelike coordinates x* (u =1, 2, 3) to label a typical world line
in the 3-bundle of galaxy world lines. Further, let the coordinate x° label a
typical member of the series of spacelike hypersurfaces mentioned above.
Thus

x° = constant

is a typical spacelike hypersurface orthogonal to the typical world line
given by

x* = constant.

Although in practice the galaxies form a discrete set, we can extend the
discrete set (x*) to a continvum by the smooth fluid approximation. This
approximation is none other than the widely used device of going over
from a discrete distribution of particles to a continuum density
distribution. In this case we can treat the quantities x* as forming a
continuum along with x° and use them as the four coordinates x’ to
describe space and time.

It is worth emphasizing the importance of the nonintersecting world
lines. If two galaxy world lines did intersect, our coordinate system above
would break down, for we would than have two different values of x*
specifying the same spacetime point (the point of intersection). In the next
chapter we will, however, encounter an exceptional situation in which all
world lines intersect at one singular point!

Let the metric in terms of these coordinates be given by the tensor g;.
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What can we assert about this metric tensor on the basis of the Weyl
postulate? The orthogonality condition tells us that
gou = 0. (3.18)
Further, the fact that the line x# = constant is a geodesic tells us that the
geodesic equations

d?xf . dxf dx!

al Mdy ds 0 (3.19)
are satisfied for x' = constant, i =1, 2, 3. Therefore

ré =0, pu=1,2,3. (3.20)
From (3.18) and (3.20) we therefore get

08w _ o 41,23, (3.21)

dxH

Thus gy depends on x? only. We can therefore replace x° by a suitable
function of x° to make gy constant. Hence we take, without loss of
generality,

g = 1. (3.22)
The line element therefore becomes
ds? = (dx")? + g, dx#dx”
= c?de? + g, dx*dxY, (3.23)

where we have put ¢t = x°. This time coordinate is called the cosmic time.
It is easily seen that the spacelike hypersurfaces in Weyl’s postulate are
the surfaces of simultaneity with respect to the cosmic time. Moreover, ¢ 18
the proper time kept by any galaxy.

The second important assumption of cosmology is embodied in the
cosmological principle. This principle states that at any given cosmic time,
the universe is homogeneous and isotropic. That is, the surfaces
¢t = constant exhibit the properties discussed earlier in connection with the
Einstein universe. There we saw that the three-dimensional surface S; of a
hypersphere has the requisite properties of homogeneity and isotropy. But
is this the only alternative available?

Einstein, as we saw earlier, selected this alternative because he believed
space to be closed. However, if we do not insist on closed space, two more
alternatives are available to us, which can be seen in the following way.
First let us consider an analogy in lower dimensions.

Figure 3.4 shows three surfaces. Figure 3.4(a) shows a section of the
Euclidean plane, Figure 3.4(b) a spherical surface, Figure 3.4(c) a
saddle-shaped surface. Suppose we try to cover these surfaces with a plain
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(b)

(c)

Fig. 3.4 Examples of surfaces of (a) zero curvature (b) positive curvature, and (c)
negative curvature.

sheet of paper. We will find that our sheet fits exactly and smoothly on the
plane surface. If we try to cover the spherical surface, the sheet of paper
develops wrinkles, indicating that the sheet of paper has area in excess of
that needed to cover the surface. Similarly, in trying to cover the saddle
our paper will be torn, being short of the necessary covering area. These
differences can be expressed in differential geometry by the notion of
curvature. The plain surface has zero curvature, the spherical surface has
positive curvature, and the saddle has negative curvature. Our paper-
covering experiment tells us in general whether a given surface has a zero,
positive, or negative curvature. These ideas can be extended to higher
dimensions as well. .

In the Einstein universe the space sections were the 3-surfaces of
hyperspheres, and hence they had a constant positive curvature. The
constancy of curvature is necessary to ensure the properties of
homogeneity and isotropy; for if the curvature of space differs from place
to place, physical measurements could be devised to detect the
differences. We can similarly get other homogeneous and isotropic spaces
by considering them as 3-surfaces of constant negative curvature or of zero
curvature.

In terms of the Cartesian coordinates x, X5, X3, X4 used earlier, a
3-surface of constant negative curvature is given by an equation of the
form

7+ x5+ x3—x7=-S% (3.24)

where S is a constant. The substitution
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x1 = Ssinh ycos 6, x5 = Ssinh ysin @ cos ¢,
x3 = Ssinh xsin 0sin ¢, x4 = Scoshy (3.25)

gives

dx? + dx} + dx3 — dx3 = S?[dy? + sinh? x(d6* + sin? 0d¢?)]. (3.26)
Notice the minus sign in front of dx3. It means that we are embedding our
3-surface not in a Euclidean space but in a pseudo-Euclidean space. (In
Euclidean space the Pythagoras theorem holds with the line-element given
by dx? = dx} + dx} + dx3 + - - -. If some of the + signs on the right-hand

side are changed to — signs, the result is a pseudo-Euclidean space. Thus
Minkowski space is pseudo-Euclidean.) If we further substitute

r =sinhy, (3.27)
(3.26) becomes
2 o[_dr? 20102 4 <in2 2|
do- = 8§ > + r*(d6” + sin“ 0d¢ )| (3.28)
1+ r )
Compare this with the expression (3.6) for the space of positive curvature:
' dy? 1
do? = 82|~ " + r2(d6? + sin? 6.dg?) . (3.29)
L =7 )

Both the expressions can be combined into a single expression by
introducing a parameter k that takes values *1:

2
do? = §2

+ r2(d6? + sin2 0d¢?)|. (3.30)
1 — kr?

Notice that if we set k =0 we get the third alternative — the 3-surface of
zero curvature:

do? = $?[dr? + r2(d6? + sin? 8d¢?)]. (3.31)
The right-hand side of (3.31) is simply the Euclidean line element scaled
by the constant factor §.

The constant § can, however, depend on cosmic time, since we were
considering a typical ¢ = constant hypersurface in the above argument.
Thus the most general line element satisfying the Weyl postulate and the
cosmological principle is given by

dr?

1— kr
where the 3-spaces ¢ =constant are Euclidean for k =0, closed with
positive curvature for k= *£1, and open with negative curvature for

k = —1. For reasons that will become clearer later, the scale factor S(¢) is
often called the expansion factor.

ds?= c?ds? — S?(¥) 5 + r3(de* +sin? 6d¢?)|,  (3.32)
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The line element (3.32) that we have obtained using partly intuitive and
partly heuristic arguments was rigorously derived in the 1930s by
H. P. Robertson and A. G. Walker (independently). If is often referred to
as the Robertson~Walker line element.

The Robertson—Walker line element is sometimes expressed in a
slightly different form with the help of the following radial coordinate
transformation:

2r
1+ (1= krH2
We then get the line element as
§2(1)

1+ K
4

This line element is manifestly isotropic in 7, 8, ¢. We will, however
continue to use (3.32).

Notice how the simplifying postulates of cosmology have reduced the
number of unknowns in the metric tensor from 10 to the single function
S(t) and the discrete parameter k that characterize the Robertson-
Walker metric. The task of the relativist is now simplified to solving an
ordinary differential equation in the independent variable ¢. We will defer
the solution of this problem to the next chapter.

We end this chapter with a discussion of some of the important
observational features of a typical Robertson—Walker spacetime. These
features show how a non-Euclidean geometry can substantially alter
conclusions based on naive Euclidean concepts.

(3.33)

F =

ds? = ¢2dr? — [d7? + 72(d6? + sin 0d¢?)]  (3.34)

+ 3.5 The redshift

Let us first try to understand how the nebular redshift found by Hubble
and Humason is accounted for by the Robertson—Walker model. We
begin by recalling that the basic units of Weyl’s postulate are galaxies with
constant coordinates x*. We can easily identify the x# with the
(r, 8, ¢) of Robertson-Walker spacetime. Thus each galaxy has a
constant set of coordinates (7, 8, ¢). This coordinate frame is often
referred to as the cosmological rest frame. As observers we are located in
our Galaxy, which also has constant (r, 8, ¢) coordinates. Later on, in
Chapter 9, we will show that this remark is only approximately correct,
because our Galaxy has a small motion relative to this cosmological frame.
Without loss of generality we can take r =0 for our vantage point.
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Although this assumption suggests that we are placing ourselves at the
centre of the universe, this does not confer any special status on us.
Because of the assumption of homogeneity, any galaxy could be chosen to
have r = 0. Our particular choice is simply dictated by convenience.

Consider a galaxy G at (7, 8y, ¢;) emitting light waves towards us. Let
us denote by ¢, the present epoch of observation. At what time should a
light wave leave Gy in order to arrive at r =0 at time ¢ = ¢(? To find the
answer to this question we need to know the path of the wave from G, to
us. Since light travels along null geodesics, as described in Chapter 2, we
need to calculate the null geodesic from G, to us.

From the symmetry of a spacetime we can guess that a null geodesic
from » = 0 to r = r; will maintain a constant spatial direction. That is, we
expect to have 6= 0;, ¢ = ¢; all along the null geodesic. This guess
proves to be correct when we substitute these values into the geodesic
equations. Accordingly we will assume that only r and ¢ change along the
null geodesic. Next we recall that a first integral of the null geodesic
equation is simply ds = 0. For the Robertson—-Walker line element this
gives us

Sdr
cdt = =* A= )i (3.35)
Since r decreases as ¢ increases along this null geodesic, we should take
the minus sign in the above relation. Suppose the null geodesic left G, at
time ¢;. Then we get from the above relation

ty r
cdt dr
f e f . (3.36)
0S8 o (1 — kr?)l2
Thus if we know S(¢) and k, we know the answer to our question.
However, consider what happens to successive wave crests emitted by
G 1. Suppose the wave crests were emitted at ¢; and ¢; + A¢; and received

by us at ¢y and tg + Atg, respectively. Then, comparably to (3.36), we
have -

J"°+A’1 cdr J’” dr
n+a S(1)  Jo (1 — ke
If S(¢) is a slowly varying function so that it effectively remains unchanged

over the small intervals A¢y and At;, we get by subtraction of (3.36) from
(3.37)

(3.37)
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