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2.5 Spacetime curvature

Figure 2.4 repeats the previous example of non-Euclidean geometry on
the surface of a sphere. We have the triangle ABC of Figure 2.2(a) whose
three angles are each 90°. Consider what happens to a vector (shown by a
dotted arrow) as it is parallelly transported along the three sides of this
triangle. As shown in the figure, this vector is originally perpendicular to
AB when it starts its journey at A. When it reaches B it lies along CB. So
it keeps pointing along this line as it moves from B to C. At C it is again
perpendicular to AC. So, as it moves along CA from C to A, it maintains
this perpendicularity with the result that when it arrives at A it is pointing
along AB. In other words, one circuit around this triangle has resulted in a
change of direction of the vector by 90°, although at each stage it was
being moved parallel to itself!

A similar experiment with a triangle drawn on a flat piece of paper will
tell us that there is no resulting change in the direction of the vector when
it moves parallel to itself around the triangle. So our physical triangle
behaves differently from the flat Euclidean triangle.

The phenomenon illustrated in Figure 2.4 can also be described as
follows. If we had moved our vector from A to C along two different
routes — along AC and along AB followed by BC — we would have found
it pointing in two different directions. In fact, if we had taken any
arbitrary curves from A to C we would have found that the parallel
transport of a vector from A to C varies from curve to curve; that is, the
outcome depends on the path of transport from A to C.

Fig. 2.4 Parallel transport on a spherical surface.
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This is one of the properties that distinguishes a curved space from
a flat space. Let us consider it in more general terms for our four-
dimensional spacetime. Let a vector B; at P be transported parallelly to Q
and let us ask for the condition that the answer should be independent of
the curve joining P to Q. We have seen that under parallel transport from
a point {x’} to a neighbouring point {x’ + dx'}, the components of the
vector change according to (2.32). If it were possible to transport B; from
P to O without the result depending on which path is taken, then we
would be able to generate a vector field B'(x*), satisfying the differential
equation

3B,
Py Tl B, (2.44)

So the answer to our question depends on whether we can find a nontrivial
solution to (2.44).
The necessary condition for the existence of a solution is easily derived.
We differentiate (2.44) with respect to x” to get
32 B, 3 ar! 3B,

= I\ B)=—% B, + T} —
3x"axk ax”( wB1) axn * oxr

oI'z !
il Py + Dali | B
We now interchange the order of differentiation with respect to x” and x*
and use the result B;,, = B;.,. We then get the required necessary
condition as

m arm ar?': lTm I tm
e =T Sk + Dyl — Tl = 0. (2.45)

It is not obvious simply from the above expression that R;”;, should be
a tensor. Yet our result, in order to be significant, must clearly hold
whatever coordinates we employ to derive it. So we do expect R, to be
a tensor. A simple calculation shows that, for any twice differentiable
vector field B;,

Bink — Bitn = R 1nBp. (2.46)
Since the left-hand side is a tensor, so is the right-hand side, and, B,,
being an arbitrary vector, we have by the quotient law (see Exercise 10)
the result that R;™,, are the components of a tensor.

This tensor, known as the Riemann Christoffel tensor (or, more
commonly, the Riemann tensor), plays an important role in specifying the
geometrical properties of spacetime. Although we have derived (2.45) as a
necessary condition, a slightly more sophisticated technique shows that
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(2.45) is also the sufficient condition that a vector field Bi(x*) can be
defined over the spacetime by parallel transport.

Spacetime is said to be flar if its Riemann tensor vanishes everywhere.
Otherwise, it is said to be curved. Exercises 26 and 27 illustrate two other
ways in which this tensor distinguishes the properties of a curved
spacetime from those of a flat spacetime.

2.5.1 Symmetries of R,

It is more convenient to lower the second index of the Riemann tensor to
study its symmetry properties. Since the symmetry or antisymmetry of a
tensor does not depend on what coordinates are used, it is more
convenient to write (2.45) in the locally inertial coordinates (2.43). We
then get

Rium = 3(8ktim + Gimut — Ghm.it — Sit,km)- (2.47)
From this expression the following symmetries are immediately obvious:
Ritim = = Riim = — Rigmt = — Rimie. (2.48)
We also get relations of the following type:
Riim + Rimi + Rimie = 0. (2.49)

If we take all these symmetries into account, we find that of the
4* =256 components of the Riemann tensor, only 20 at most are
independent! Moreover, we will soon see that there are identities linking
their derivatives.

2.5.2 The Ricci and Einstein tensors

By the process of contraction we can construct lower rank tensors from
Rium- The tensor’
Ry = 8" Rim = R™ jim (2.50)

is called the Ricci tensor. If we use the locally inertial coordinate system,
we see immediately that

Rkl = le. (251)
Owing to the symmetries of (2.48), there are no other independent

second-rank tensors that can be constructed out of R,.
By further contraction we get a scalar:

R = R; = R, (2.52)
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R is called the scalar curvature. The tensor

G = g¥Ris — 384R (2.53)
will turn out to have a special role to play in Einstein’s general relativity.
This tensor is called the Einstein tensor.

2.5.3 Bianchi identities

The expression (2.47) suggests another symmetry for the components of
Rium- This symmetry is not algebraic, but involves calculus. In covariant
language we may express it as follows:
Rik[m;n + Rikn[;m + Rikmn;l = 0. (254)
These relations are known as the Bianchi identities. Their proof is most
easily given in the locally inertial system, as in (2.47).

But multiplying (2.54) by g™g*", and using (2.50)-(2.52), we can
deduce from these identities another that is of importance to relativity:

(R* — 1g*R)., = 0. (2.55)
In other words, the Einstein tensor G* has zero divergence.

2.6 Geodesics

So far we have talked about non-Euclidean geometries without mention-
ing whether they have the equivalents of straight lines in Euclidean
geometry. We now show how equivalent concepts do exist in the
Riemannian geometry under consideration here.

There are two properties of a straight line that can be generalized: the
property of ‘straightness’ and the property of ‘shortest distance’. Straight-
ness means that as we move along the line, its direction does not change.
Let us see how we can generalize this concept first.

Let x'(A) be the parametric representation of a curve in spacetime. Its
tangent vector is given by

. dxt
i —_ - 2.
u=- (2.56)

Our straightness criterion demands that #‘ should not change along the
curve. In going from A to A + dA, the change in u’ is given by

Aul = du k ox!.

The second expression on the right-hand side arises from the change
produced by parallel transport through a coordinate displacement &x’.
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However, éx' = u' SA. Therefore the condition of no change of direction
u' implies Au’ = 0; that is,

du’ ikl

T + Iiu*u’ = 0. (2.57)
This is the condition that our curve must satisfy in order to be straight.

The second property of a straight line in Euclidean geometry is that it is

the curve of shortest distance between two points. Let us generalize this
property in the following way. Let the curve, parametrized by A, connect
two points P; and P, of spacetime, with parameters A1 and A, respect-

ively. Then the ‘distance’ of P, from P, is defined as

i dyi dxk \12 ko
S(P,, p1)=f ( i ) dAEJ;ILdiL. (2.58)

1 \8%da da
We now demand that s(P,, P;) be ‘stationary’ for small displacements
of the curve connecting P; and P,, these displacements vanishing at P,
and P,.

This is a standard problem in the calculus of variations, and its solution

leads to the familiar Euler—Lagrange equations

d (aL) OJL

dA \axi/ ax'
where %/ = dx’/dA and L = [gy(dx'/dA)(dx*/dA)]"? is a function of x* and
%%, It is easy to see that (2.59) leads to

=0, (2.59)

d 1 dx* . 1 dx™ dx"
di (g"" L da ) T 28mi g an
If we substitute
ds = LdA (2.60)
and use (2.39), we get the above equation in the form
2, k qqd
%:T+ i,%%=0. - (2.61)

There are a few loose ends to be sorted out in the above derivation. First,
L would be real only for timelike curves. Thus if we want to use a real
parameter along the curve, then for spacelike curves we must replace ds
by
do =ids, i=(-1)". (2.62)
For null curves, L = 0. The above treatment therefore breaks down. It
is then more convenient to replace the integral (2.58) by another:

= “L2ax (2.63)
A, b



and consider 6/ = 0. We can always choose a new parameter A’ = A'(4)
such that the equation of the curve takes the same form as (2.61), with A’
replacing s.

It is easy to see that (2.61) is the same as (2.57). Although s in (2.61)
has the special meaning ‘length along the curve’, while A in (2.57) appears
to be general, it is not difficult to see that if (2.57) is satisfied then A must
be a constant multiple of s. This is because (2.57) has the first integral

gk 7 —7 =G, C = constant. (2.64)

These curves of ‘stationary distance’ are called geodesics. For timelike
curves C > 0, for spacelike curves C < 0, while for null curves C =0. 4 is
called an affine parameter.

Example Let us calculate the null geodesics from ¢ = 0, r = 0 to the point
t=T,r =R, 8=0, ¢=¢;in the de Sitter spacetime

ds? = c?ds? — e2'[dr? + r?(d6? + sin? 6d¢?)],
where H = constant. It is not difficult to verify that the 6 and ¢ equations

of (2.61) are satisfied by 8 = 6, ¢ = ¢,. That is, our straight line moves in
the fixed (8, ¢) direction. The ¢ equation simplifies to

2
at | H o (dr)* 0.
di? 2 dA

The first integral (2.64) gives, on the other hand,

2
2 [9L) _ o (4 2.
dA dA

The two equations can be easily solved to give
(= i1+ 2 ¢ _*
= - —_— ) r - — ’
H Ay H A+ A

where A, is determined from the boundary condition that when r = R,
t = T. Note that a solution is possible only if R and T are related by the
condition

c
R=—(1-¢#7T),
g4

We next consider the special role played by géodesics in general relativity.

2.7 The principle of equivalence

Having described the machinery of vectors and tensors, and having
outlined the salient features of Riemannian geometry, we now make our
1
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first contact with physics and introduce the so-called principle of equi-
valence, which has played the key role in general relativity.

Let us go back to the purely mathematical result embodied in the
relations shown in (2.43) and attempt to describe their physical meaning.
These relations tell us that special (locally inertial) coordinates exist in the
neighbourhood of any point P in spacetime that behave like the
coordinates (¢, x, y, z) of special relativity. Physically, these coordinates
imply a special frame of reference in which a momentary illusion is created
at P and in a small neighbourhood of P that the geometry is of special
relativity. The illusion is momentary and local to P because we have seen
that the relations of (2.43) cannot be made to hold everywhere and at all
times.

In view of the assertion made in section 2.1 that gravitation manifests
itself as non-Euclidean geometry, we would have to argue that in the
above locally inertial frame gravitation has been transformed away
momentarily and in a small neighbourhood of P. How does this happen in
practice? Consider Einstein’s celebrated example of the freely falling lift.
A person inside such a lift feels weightless. The accelerated frame of
reference of the lift provides the locally inertial frame in the small
neighbourhood of the falling person. Similarly, a spacecraft circling
around the Earth is in fact freely falling in the Earth’s gravity, and the
astronauts inside it feel weightless.

It should be emphasized that this feeling of weightlessness in a falling
lift or a spacecraft is limited to local regions: there is no universal frame
that transforms away Earth’s gravity everywhere, at all times. If we
demand that the relations of (2.43) hold at all points of spacetime, we
would need to have dI'},/3x™ = 0 everywhere, leading to Ri, =0 — that
is, to a flat spacetime. Thus a curved spacetime with a non-vanishing
Riemann tensor is necessary to describe the genuine effects of gravitation.
(See Exercise 27.)

The weak principle of equivalence states that effects of gravitation can
be transformed away locally and over small intervals of time by using
suitably accelerated frames of reference. Thus it is the physical statement
of the mathematical relations given by (2.43). It is possible, however, to
go from here to a much stronger statement, the so-called strong principle
of equivalence, which states that any physical interaction (other than
gravitation, which has now been identified with geometry) behaves in a
locally inertial frame as if gravitation were absent. For example, Maxwell’s
equations will have their familiar form (of special relativity) in a locally
inertial frame. Thus an observer performing a local experiment in a freely
falling lift would measure the speed of light to be c.
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The strong principle of equivalence enables us to extend any physical
law that is expressed in the covariant language of special relativity to the
more general form it would have in the presence of gravitation. The law is
usually expressed in vectors, tensors, or spinors in the Minkowski
spacetime of special relativity. All we have to do is to write it in terms of
the corresponding entities in curved spacetime. Thus in the flat spacetime
of special relativity, the Maxwell electromagnetic field F* is related to the

current vector j* by
Fik = 4gjk, (2.65)

In curved spacetime the ordinary tensor derivative is replaced by the
covariant derivative:

Fi¥ = 4mjk, (2.66)

Notice that the effect of gravitation enters through the I'{, terms that are
present in (2.66). This generalization of (2.65) to (2.66) is called the
minimal coupling of the field with gravitation, since it is the simplest one
possible. '

So in order to describe how other interactions behave in the presence of
gravitation, we use the covariance under the general coordinate transfor-
mation as the criterion to be satisfied by their equations. It is immediately
clear from the example of the electromagnetic field that a light ray
describes a null geodesic.

In the same vein we can now describe a moving object that is acted on
by no other interaction except gravitation — for example, a probe moving
in the gravitational field of the Earth. In the absence of gravity, this object
would move in a straight line with uniform velocity; that is, with the
equation of motion,

dut

i 0, u' = 4-velocity. (2.67)

In the presence of gravity, (2.67) is modified to our geodesic equation
(2.61).

We end this section with another example that provides a clue about
how gravitational effects show up in spacetime geometry according to
general relativity. Consider the Minkowski spacetime with the standard
line element |

ds? = c2ds? — dx? — dy? — dz2. (2.68)

If we make the coordinate transformation for a constant g,
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2 ] tr
X = C—(C()sh—g-t— — 1) + x'COSh—g-—,
I4 C

C (2.69)
t’ !
y =y, z=12z, t=isinhg—~+f—,
g c c
this leads to the line element
gx'\?
d52 = (1 + ‘C—z) dl"2 - dx'2 — dy’z - lez. (270)

What interpretation can we give to (2.70)? The origin of the (x', y’, z")
system has a world line whose parametric form in the old coordinates is
given by

2 ' ’
x=£{wmﬁi—), y=0, z=0, t=<snh®. (@271
g c g C

Using the kinematics of special relativity, we can easily see that (2.71)
describes the motion of a point that has a uniform acceleration g in the
x-direction, a point that is momentarily at rest at the origin of (x, y, z) at
t = 0. We may interpret the line element (2.70) and the new coordinate
system as describing the spacetime in the rest frame of the uniformly
accelerated observer.

Direct calculation shows that not all T'; are zero in (2.70) at x’ =0,
y' =0, z' = 0. The frame is therefore non-inertial. For the neighbourhood
of the origin, the metric component
8 _ .2 (2.72)

c? c?

goo =~ 1+

where ¢ is the Newtonian gravitational potential for a uniform gravita-
tional field that induces an acceleration due to gravity = —g. We have
here the reverse situation to that of the falling lift: we seem to have
generated a pseudogravitational field by choosing a suitably accelerated
observer. The prefix ‘pseudo-’ is used because the gravitational field is not
real - it is an illusory effect arising from the choice of coordinates. The
Riemann tensor is zero. Nevertheless, the relation (2.72) is also suggestive
of the real gravitational field, as we will see in section 2.9.

2.8 Action principle and the energy tensors

Before examining relativity proper, let us see how we can write the laws of
physics in the covariant language in Riemannian spacetime using the
strong principle of equivalence. We take the familiar example of charged
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particles interacting with the electromagnetic field. The physical laws can
be derived from an action principle. First we write the action in
Minkowski spacetime:

1 , e, .
= — — —— [ FyF*d*x — —-jA,-d ’ 2.73
= = Sem, [as, = (o [FuF*aty = 32 [adds @73

here A; are the components of the 4-potential, which are related to the
field tensor Fy by

Ari — Ak = Fy, (2.74)

while e, and m, are the charge and rest mass of particle a, whose
coordinates are given by &' and the proper time by s, with

ds2 = ny da’ da*. (2.75)

How do we generalize (2.73) to Riemannian spacetime? First, we note
that n; in (2.75) are replaced by gy. Next, starting from the covariant
vector A;, we generate F by the covariant generalization of (2.74):

Ak;i - Ai,'k == Fik' (276)

However, since the expression (2.76) is antisymmetric in (i, k), the extra
terms involving the Christoffel symbols vanish and we are back to (2.74)!
The volume integral in (2.73) is modified to

fF,-kF‘"‘(— )12 d*x. (2.77)

The extra factor (—g)'/2 has crept in because the combination
(—8)"? dx!dx?dx?dx® = 4 e;p dx’ dxf dxk dx’

acts as a scalar. We therefore have the generalized form of (2.73):

=~ Som, [ds, ~ ——— [Fub* (~g)2dtx - 3 & fA dai.  (2.78)
The variation of the world line of particle a gives its equation of motion,
d?q’ da* da' e, . dd
+ry, 84 S _ e g S8 (2.79)

/
a ds, ds, my, ds,

while the variation of A; gives the field equations (2.66).

The transition from (2.73) to (2.78) has, however, introduced an
additional independent feature into the action, besides the particle world
lines and the potential vector. The new feature is the spacetime geometry
typified by the metric tensor g;. What will happen if we demand that the



Action principle and the energy tensors 55

gk are also dynamical variables and that the action & remains stationary
for small variations of the type

gik — 8 + O8uk"? (2.80)

From the generalized action principle, should we expect to get the
equations that determine the spacetime geometry? Let us investigate.

A glance at the action (2.78) shows that the last term does not
contribute anything under (2.80) if we keep the worldlines and A; fixed in
spacetime. The first two terms, however, do make contributions. Let us
consider them in that order. First note that

8(ds?) = dgy da' da*.

That is,
da’ da*
d .
6( Sa) 26g1k dSa dsa dsa
Therefore,
da’ da*
oS ema[ds, = § Def ma - s, g @381)

Let us consider this variation in a small 4-volume V' near a point P. If
we consider a locally inertial coordinate system near P we can identify the
above expression in a more familiar form. Let us first identify

da’
ds,
as the 4-momentum of particle a. Then cp?a)= E, = energy of the
particle, and we get
lem -(_i_a_" da* d c?
27 ds, ds, - 2E, 2E
Figure 2.5 shows the volume V' as a shaded region in the neighbourhood
of P, t being the local time coordinate and x*(u=1,2,3) the local

rectangular coordinates. The expression (2.81) can then be looked upon as
a volume integral over V" of the form

s em, [as. = 5 58 THdtr, (2.82)

péa) = cmg,

— PloPlndt PlayP (aydxa.

where T% is the sum of expressions
(m)

cc .,
I
E, P@P@

for each particle a that crosses a unit volume of the shaded region near P.
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Fig. 2.5 Three cases of particle motion in the locally inertial region T near a
typical point P of spacetime. The thick line on the x#-axes in each case represents
a unit 3-volume. All particles a, b, c, d, . . . crossing this volume are counted for
computing T%. (a) Particle world lines a, b, c, . . . are nearly parallel. This is the
dust approximation. (b) The particles move at random with speeds near the speed
of light, frequently changing directions through collisions. This is the relativistic
case. (c) The intermediate situation, in which the particles collide, change

directions, and generate pressures, but their motions are nonrelativistic. This is
the case of a fluid.

2.8.1 Energy tensor of matter

This expression for Ty is none other than the usual expression for the
energy tensor of matter. Since we will need this tensor frequently, it is
derived below for three different types of matter.
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Dust. This is the simplest situation, in which all the world lines going
through the shaded region in Figure 2.5(a) are more or less parallel,
indicating that the particles of matter are moving without any relative
motion in the neighbourhood of P. If we write the typical 4-velocity as !
and using a Lorentz transformation to make u’' = (1,0,0,0) (that is,
transforming to the rest frame of the dust) then the only non-zero
component of the energy tensor is

T = Emacz = pyc?,
a

where the summation is over a unit volume in the neighbourhood of P.

Here py is the rest mass density of dust. In any other Lorentz frame we get
Tik — pOCZuiuk, (283)
(m)

an expression that is easily generalized to any (non-Lorentzian) coordinate

system.

Relativistic particles: This situation represents the opposite extreme. Here
we have highly relativistic particles moving at random through V' (see
Figure 2.5(b)). The 4-momentum of a typical particle is then approxi-
mated to the form

, E
p‘=(—, P), E?=c?P? + m?c* = c?P?, P=|P|
c

Using the fact that the particles are moving randomly, we find that the
energy tensor has pressure components also:

T =2.E=¢, (2.84)

Pc?
3E
The factor 1 comes from randomizing in all directions. These are the only

nonzero pressure components. Here & is the energy density. Thus for
extreme relativistic particles we get
T = diag (e, 3¢, 1¢, 1¢). (2.85)
(m)
This form is also applicable to randomly moving neutrinos or photons.

T = 722 = T3 :E

Fluid: This situation is illustrated in Figure 2.5(c) and consists of a
collection of particles with small (nonrelativistic) random motions. If we
choose the frame in which the fluid as a whole is at rest as the frame of
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reference, we can evaluate the components of T as follows. Let a
typical particle have the momentum vector given by

mc? . - mv
P = p2\ 12 P = . p2\1/2
1=z T2

2\ -1/ 2
T® = > mc? (1 - %) ~ > mc? (1 + 50‘5) = pc?,

c

(k=1,2,3). (2.86)

Then

(2.87)

p2\ 12
T11=T22:T33=%2m02 (1_C_2) = p.

Here p and p are the density and pressure of the fluid. In a frame of
reference in which the fluid as a whole has a 4-velocity u’, the energy
tensor becomes
T* = (p + pc®)u'uk — pn*. (2.88)
(m) ‘
The generally covariant form of (2.88) is obviously

T* = (p + pcHuu* — pgk. (2.89)
(m)

Note that p is not just the rest-mass density, but also includes energy
density of internal motion, as seen in (2.87).

We may now relax our restriction to the locally inertial coordinate
system at P. The generalized form of (2.82) is then

|
53 cm, f dse =5 f T (—g)'" g . (2.90)
a C m

2.8.2 Energy tensor of the electromagnetic field

We next consider the variation of the second term of (2.73). If we keep A;
fixed, the Fy, as given by (2.76) or (2.74), remain unchanged under the
variation of g;. Hence

O FyF™* (—g)'?) = FyFu8(g"g"™(—g)"?).
From (2.24) we get -
og*gn = — g™ Ogu,
that is,
og = — g gk Sgmn. (2.91)
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Also, from (2.40) we have
8 (—g)'? = 18"%(—8)" ogu- (2.92)
Substituting these expressions into the variation of the second term of the
action gives
1 . ' 1 .
am—f FyFk(~g)2d*x = — | T*(—g)28gxd*x, (2.93
oy Fuf(=8) 3 b L) (78) 708 (2.93)
with the electromagnetic energy tensor given by
. 1 _ .
Tzkz___ lanan lk___Fl Flk 2.04
(m) . (3 g 1F) (2.94)
It is obvious from our two examples that the energy tensor of any term
in the action of the form A is related to the variation of A by

1 .
SA = — | Tk(—g)128g, d*x. 2.95
> (A)( g) “ogudix (2.95)

In theories defined only in Minkowski space the appearance of energy
tensors is somewhat ad hoc. They do not enter explicitly into any dynamic
or field equations. They appear only through their divergences, the typical
conservation of energy and momentum being given by

T* = 0. (2.96)
In our curved spacetime framework the T% find a natural expression
through the variation of g;,. It was this variation of the metric tensor that
led Hilbert to derive the field equations of general relativity shortly after

FEinstein had proposed them from heuristic considerations. We now turn
our attention to this topic.

2.9 Gravitational equations

The preceding section showed that the variation of the action & with
respect to g leads us to the energy tensor of various interactions. We still
do not have dynamic equations that tell us how to determine the gy in
terms of the distribution of matter and energy. It was Einstein’s conjecture
that the energy tensors should act as the ‘sources’ of gravity. Following the
general trend of nineteenth-century physics, especially the Maxwell
equations, Einstein looked for an expression that would act like a wave
equation for g;, with Ty as the source. It is immediately clear that the
standard wave equation in the covariant form

gmngik;mn = KTika (297)
where k is a constant, will not do, for the left-hand side vanishes
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identically. Is there a second-rank tensor symmetric in its indices (like the
T.) that involves second derivatives of g;? Clearly, if the tensor is to
bring out the special feature of curvature of spacetime, it must be related
to the Riemann tensor. After trial and error, Einstein finally arrived at the
tensor Gy, of (2.53). His field equations of general relativity, published in
1915, took the form

Ry — 78xR = Gy = —kTy. (2.98)

These equations have the added advantage that in view of the Bianchi

identities in (2.55) we must have

T* , = 0. (2.99)
That is, the law of conservation of energy and momentum follows
naturally from (2.98).

Although there are 10 Einstein equations for 10 unknown g;, the
divergence condition of (2.99) reduces the number of independent
equations to 6. This underdeterminacy of the problem is due to the
general covariance of the theory: if g, is a solution, then so is any tensor
transform of g, obtained through a change of coordinates.

The expression (2.99) follows for any T°* obtained from an action
principle by the variation of g, (see Exercise 33). It is therefore pertinent
to ask whether the Einstein tensor can also be derived from an action
principle. This problem was solved by Hilbert soon after Einstein
proposed his equations of gravitation. Hilbert’s problem can be posed as
follows. Consider the variation of the term

[ R (g7 d*x

for g* — g* + 8g'* with the restriction that dg* and g’ ; vanish on the
boundary of V. It can be shown (see Exercise 34 and 35) that

o R ats = [ 3688, - e
== ﬁvég,-k(R"" — 18*R)(~g)"* d*x. (2.100)

Thus it follows that Einstein’s equations can be derived from an action

principle if we add to o the term
1 J’ ,
—— | R(—g)/2d*x. 2.101
2kc J¥ (-8 | ( )

If to the scalar R we add a constant (24, say) that is trivially a scalar, we
get a modified set of field equations:

Ry — 38uR + Agi = —KTi. (2.102)



