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Suppose you use protons (me* =1 GeV) with E = 30 GeV. What E do you get? What
multiple of E does this amount to? (] GeV=10” electron volts.) [Because of this relativistic
enhancement, most modern elementary particle experiments invoive colliding beams, instead
of fixed targets. ]

Problem 12.35 In a pair annihilation experiment, an electron (mass m) with momentum
pe hits a positron (same mass, but opposite charge) at rest. They annihilate, producing two
photons. (Why couldn’t they produce just one photon?) If one of the photons emerges at 60°
to the incident electron direction, what is its energy?

12.2.4 Relativistic Dynamics

Newton’s first law is built into the principle of relativity. His second law, in the form

dp
F=—, 12.60

retains its validity in relativistic mechanics, provided we use the relativistic momentum.

Example 12.10

Motion under a constant force. A particle of mass m is subject to a constant force F. 1f it
starts from rest at the origin, at time = 0, find its position (x), as a function of time.

Solution:
dp
ar = F = p= Ft+ constant,
but since p = 0 at ¢ = 0, the constant must be zero, and hence
miu Fi
p = - = s
V1—u2/c?
Solving for u, we obtain
(F/m)t

(12.61)

J1+ (Ft/me)?

The numerator, of course, is the classical answer—it’s approximately right, if (F/m} < c.
But the relativistic denominator ensures that u never exceeds c; in fact,as f — o0, u — c.

To complete the problem we must integrate again:

F ]’ t ,
x(ty = — dt
mJo 1+ (Ft'/mc)?

mc? o me?
— ’ 21 — 2 _
= 1+ (Ft'/mc) . 5 I:\/l—l—(Ft/mc) lj|. (12.62)

In place of the classical parabola, x(f) = (F/2m)12, the graph is a hyperbola (Fig. 12.30); for
this reason, motion under a constant force is often called hyperbolic motion. It occurs, for
example, when a charged particle is placed in a uniform electric field.
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Figure 12.30
Work, as always, is the line integral of the force:
szpm. (12.63)

The work-energy theorem (“the net work done on a particle equals the increase in its
kinetic energy”) holds relativistically:

ap dl
Wf f [—udt

while
d
dp o _ df__mn
dt dt 1 —u2/c?
du d 2 dE
_ mu a4 =22 (264
(1—u?/c)32 dr di \ JT=uZ/2 dt
SO
f —— dt = Efinal — Einitial- (12.65)

(Since the rest energy is constant, it doesn’t matter whether we use the total energy, here,
or the kinetic energy.)

Unlike to the first two, Newton’s third law does not, in general, extend to the relativistic
domain, Indeed, if the two objects in question are separated in space, the third law is
incompatible with the relativity of simultaneity. For suppose the force of A on B at some
instant ¢ is F(¢), and the force of B on A at the same instant is —F{(7); then the third
law applies, in this reference frame. But a moving observer will report that these equal
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and opposite forces occurred at different times; in his system, therefore, the third law is
violated. Only in the case of contact interactions, where the two forces are applied at the
same physical point (and in the trivial case where the forces are constant), can the third law
be retained.

Because F is the derivative of momentum with respect to ordinary time, it shares the
ugly behavior of (ordinary) velocity, when you go from one inertial system to another: both
the numerator and the denominator must be transformed. Thus,!2

s dpy _ dpy _ dpy/di F,

y=E s = = ~ = , (12.66)
i Yy y(l_ﬁd_x) (1 = Buc/c)
¢ c dt
and similarly for the z component:
- F.
oy = Buyfe)
The x component is even worse:
| , At 0 ()
- dpx _ydpx—vyBdp® dt = ¢ \dt
x = - = = =
iy Yy P b= Pufe
c c dt
We calculated d E /dr in Eq. 12.64; putting that in,
- Fy —Bu-F)/c
F,=— plu-Ey/ . (12.67)

1 —Buy/c
Only in one special case are these equations reasonably tractable: If the particle is (instan-
taneously} at rest in S, so that u = 0, then

_ 1
F, = ;F_{_, Fy=F. (12.68)

That is, the component of F parailel to the motion of S is unchanged, whereas components
perpendicular are divided by y.

It has perhaps occurred to you that we could avoid the bad transformation behavior
of F by introducing a “proper” force, analogous to proper velocity, which would be the
derivative of momentum with respect to proper time:
_ 4r"
=
This is called the Minkowski force; it is plainly a 4-vector, since p* is a 4-vector and
proper time is invariant. The spatial components of K# are related to the “ordinary” force

by
di\ d |
K — ( ’) v _ 1 g (12.70)

dv) dr — /i —u?/c?

12Remember: v and 8 pertain to the motion of S with respect S—they are constants; u is the velocity of the
particle with respect to S.

KH (12.69)
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while the zeroth component,

dp® 1dE
dt cdt’
is, apart from the 1/¢, the (proper) rate at which the energy of the particie increases—in
other words, the (proper) power delivered to the particle.

Relativistic dynamics can be formulated in terms of the ordinary force or in terms of
the Minkowski force. The latter is generally much neater, but since in the long run we
are interested in the particle’s trajectory as a function of ordinary time, the former is often
more useful. When we wish to generalize some classical force law, such as Lorentz’s, to
the relativistic domain, the question arises: Does the classical formula correspond to the
ordinary force or to the Minkowski force? In other words, should we wrnite

KV (12.71)

F=gE+uxB),

or should it rather be
K =¢g(E +u xB)?

Since proper time and ordinary time are identical in classical physics, there is no way at this
stage to decide the issue. The Lorentz force law, as it turns out, is an ordinary force—later
on I'll explain why this is so, and show you how to construct the electromagnetic Minkowski
force.

Example 12.11

The typical trajectory of a charged particle in a uniform magnetic field is cyclotron motion
(Fig. 12.31). The magnetic force pointing toward the center,

F = QuB,

provides the centripetal acceleration necessary to sustain circular motion. Beware, however—
in special relativity the centripetal force is not mu?/ R, as in classical mechanics. Rather, as
you can see from Fig. 12.32, dp = p d@, so

_dp  df
“ar  Par TPy

do

A P
B P dp\‘: p+dp

Figure 12.31 Figure 12.32
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(Classically, of course, p = mu, so F = muz/R.) Thus,

iU
QuB = P
or
p = QBR. (12.72)

In this form the relativistic cyclotron formula is identical to the nonrelativistic one, Eq. 5.3—the
only difference is that p is now the relativistic momentum.

Example 12.12

Hidden momentum. As a model for a magnetic dipole m, consider a rectangular loop of wire
carrying a steady current. Picture the current as a strean: of noninteracting positive charges
that move freely within the wire. When a uniform electric field E is applied (Fig. 12.33),
the charges accelerate in the left segment and decelerate in the right one.!3 Find the total
momentum of all the charges in the loop.
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Figure 12.33

Solution: The momenta of the left and right segments cancel, so we need only consider the
top and the bottom. Say there are N charges in the top segment, going at speed u+ to the
right, and N_ charges in the lower segment, going at (slower) speed «_ to the left. The current
({ = Au) is the same in all four segments {or else charge would be piling up somewhere); in

particular,

ON_ ON_ Il
== 'y, = U_, so N+uy = —,
] + ] tU4 0

where Q is the charge of each particle, and / is the length of the rectangle. Classically, the
momentum of a single particle is p = Mu (where M is its mass), and the total momentum (to

the right) is
1! Il
Pelassical = MNiuy —MN_u_ = Ma - M@‘ =0.

BThis is not a very realistic model for a current-carrying wire, obviously, but other models lead to exactly the
same result. See V. Hnizdo, Am. J. Phys. 65,92 (1997).
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as one would certainly expect (after all, the loop as a whole is not moving). But relativistically
p = yMu, and we get

MIi
p=y+MN uy —y MN_u_ = ?(}4 —¥-)
which is not zero, because the particles in the upper segment are moving faster.

In fact, the gain in energy (y M cz), as a particle goes up the left segment, is equal to the work
done by the electric force, Q £ w, where w is the height of the rectangle, so

QFw

V+—V——W,

and hence

IHEw

D= 2

¢
But /lw is the magnetic dipole moment of the loop; as vectors, m points into the page and p
is to the right, so

1
p=—-2—(me).
¢

Thus a magnetic dipole in an electric field carries linear momentum, even though it is not
moving! This so-called hidden momentum is strictly relativistic, and purely mechanical; it
precisely cancels the electromagnetic momentum stored in the fields (see Ex. 8.3; note that
both results can be expressed in the form p = 11V /c?).

Problem 12.36 In classical mechanics Newton’s law can be written in the more familiar form
F = ma. The relativistic equation, F = dp/dt, cannot be so simply expressed. Show, rather,

that
m u(u-aj

F= m[a-l— c2—u2]’ (12.73)

where a = du/dt is the ordinary acceleration.

Problem 12.37 Show that it is possible to outrun a light ray, if you're given a sufficient head
start, and your feet generate a constant force.

Problem 12.38 Define proper acceleration in the obvious way:

dnt d?xt

,Lt=______ .
o T dr dr2

(12.74)

(a) Find o0 and @ in terms of u and a (the ordinary acceleration).
(b) Express o af* in terms of u and a.
(c) Show that nay, = 0.

(d) Write the Minkowski version of Newton’s second law, Eq. 12.70, in terms of «*. Evaluate
the invariant product K#p,,.




