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Relativistic Mechanics

12.2.1 Proper Time and Proper Velocity

As you progress along your world line, your watch runs slow; while the clock on the wall
ticks off an interval df, your watch only advances dt:

dt = /1 —u?/c?dt. (12.37)

(I’ll use u for the velocity of a particular object—you, in this instance—and reserve v for
the relative velocity of two inertial systems.) The time T your watch registers (or, more
generally, the time associated with the moving object) is called proper time. (The word
suggests a mistranslation of the French propre, meaning “own.”) In some cases 7 may be
a more relevant or useful quantity than f. For one thing, proper time is invariant, whereas
“ordinary” time depends on the particular reference frame you have in mind.

Now, imagine you’re on a flight to Los Angeles, and the pilot announces that the plane’s
velocity is %c, due South. What precisely does he mean by “velocity”? Well, of course, he
means the displacement divided by the time:

dl
u=—,
dt
and, since he is presumably talking about the velocity relative to ground, both dl and d¢
are to be measured by the ground observer. That’s the important number to know, if you're
concerned about being on time for an appointment in Los Angeles, but if you’re wondering
whether you’ll be hungry on arrival, you might be more interested in the distance covered
per unit proper time:

(12.38)

_dl

T dr
This hybrid quantity-—distance measured on the ground, over time measured in the airplane—
is called proper velocity; for contrast, I’ll call u the ordinary velocity. The two are related
by Eq. 12.37:

(12.39)
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For speeds much less than ¢, of course, the difference between ordinary and proper velocity
is negligible.

From a theoretical standpoint, however, proper velocity has an enormous advantage over
ordinary velocity: it transforms simply, when you go {rom one inertial system to another.
In fact,  is the spatial part of a 4-vector,

(12.40)
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whose zeroth component is

(12.42)
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For the numerator, dx*, is a displacement 4-vector, while the denominator, 4, is invariant.
Thus, for instance, when you go from system S to system S, moving at speed v along the

common x x axis,
7=y~ Bnh,

=y - BnY),

» (12.43)
7=,
=
More generally,
= Ay, (12.44)

n* is called the proper velocity 4-vector, or simply the 4-velocity.
By contrast, the transformation rule for ordinary velocities is extremely cumbersome,
as we found in Ex. 12.6 and Prob. 12.14:

dx Uy —V )
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_ D = » 12.45
T i v (1 — vy /c?) ( )
. dz U,
i, =

di y(1 —vuy/c?)”

The reason for the added complexity is plain: we’re obliged to transform both the numerator
dl and the denominator dt, whereas for proper velocity the denominator dt is invariant, so
the ratio inherits the transformation rule of the numerator alone.

Problem 12.24

(a) Equation 12.40 defines proper velocity in terms of ordinary velocity. Invert that equation
to get the formula for u in terms of 1.

(b) What is the relation between proper velocity and rapidity (Eq. 12.34)? Assume the velocity
is along the x direction, and find n as a function of 6.

Problem 12.25 A car is traveling along the 45° line in & (Fig. 12.25), at (ordinary) speed
2/+5)c.

(a) Find the components u and uy of the (ordinary) velocity.

(b) Find the components 1), and 7y of the proper velocity.

(¢) Find the zeroth component of the 4-velocity, n°.

System & is moving in the x direction with (ordinary) speed +/2/5 c, relative to S. By using
the appropriate transformation laws:

(d) Find the (ordinary) velocity components #y and iy in S.
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45°

Figure 12.25

(e) Find the proper velocity components iy and 7jy in S.

(f) As a consistency check, verify that

u

n=

Problem 12.26 Find the invariant product of the 4-velocity with itself, n*n,,.

Problem 12.27 Consider a particle in hyperbolic motion,

x(t)y =y b2+ (D2, y=2z=0.

(a) Find the proper time T as a function of ¢, assuming the clocks are set so that T = 0 when
t = 0. [Hint: Integrate Eq. 12.37.]

(b) Find x and v (ordinary velocity) as functions of 7.

(c) Find n* (proper velocity) as a function of .

12.2.2 Relativistic Energy and Momentum

In classical mechanics momentum is mass times velocity. I would like to extend this
definition to the relativistic domain, butimmediately a question arises: Should Iuse ordinary
velocity or proper velocity? In classical physics n and u are identical, so there is no a priori
reason to favor one over the other. However, in the context of relativity it is essential that
we use proper velocity, for the law of conservation of momentum would be inconsistent
with the principle of relativity if we were to define momentum as mu (see Prob. 12.28).
Thus

mu

N

p=my= (12.46)

this is the relativistic momentum.
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Relativistic momentum is the spatial part of a 4-vector,
pt = mn*, (12.47)

and it is natural to ask what the temporal component,

PO=mn® = (12.48)

J1—u?/c?

represents. Einstein called
m

V1—u?/c?

the relativistic mass (so that pO = Myeic and p = meau; m itself was then called the rest
mass), but modern vsage has abandoned this terminology in favor of relativistic energy:

Mpel = (12.49)

m02

E=___— (12.50)

V1—u?/c?

(sop? = E /c‘).8 Because pY is (apart from the factor 1/c) the relativistic energy, p* is
called the energy-momentum 4-vector (or the momentum 4-vector, for short).

Notice that the relativistic energy is nonzero even when the object is stationary, we call
this rest energy:

Erest = mc”. (12.51)

The remainder, which is attributable to the motion, we call kinetic energy

1
Ek'm =F — mC2 = WlC2 —— — 11}. (1252)
V1—=u?/c?

In the nonrelativistic régime (1 < ¢) the square root can be expanded in powers of u?/c?,
giving
1 5, 3mu’
Exin = Emu + g 7—
the leading term reproduces the classical formula.
So far, this is all just notation. The physics resides in the experimental fact that £ and
p, as defined by Eqs. 12.46 and 12.50, are conserved:

+--0 (12.53)

In every closed® system, the total relativistic energy and momentum are
conserved.

8Since E and mye| differ only by a constant factor (c?), there’s nothing to be gained by keeping both terms in
circulation, and myq has gone the way of the two dollar bill.

91f there are external forces at work, then (just as in the classical case) the energy and momentum of the system
itself will nzor, in general, be conserved.
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“Relativistic mass” (if you care to use that term) is also conserved—but this is equivalent
to conservationof energy. Rest mass is not conserved—a fact that has been painfully familiar
to everyone since 1945 (though the so-called “conversion of mass into energy” is really a
conversion of rest energy into kinetic energy). Note the distinction between an invariant
quantity (same value in all inertial systems) and a conserved quantity (same value before
and after some process). Mass is invariant, but not conserved; energy is conserved but
not invariant; electric charge (as we shall see) is both conserved and invariant; velocity is
neither conserved nor invariant.

The scalar product of p# with itself is

PPy =—(p°) + (p-p) = —m’c%, (12.54)

as you can quickly check using the result of Prob. 12.26. In terms of the relativistic energy,

E? — p2c? = m2ct, (12.55)

This result is extremely useful, for it enables you to calculate £ (if you know p), or p
(knowing E), without ever having to determine the velocity.

Problem 12.28

(a) Repeat Prob. 12.2 using the (incorrect) definition p = mu, but with the (correct) Einstein
velocity addition rule. Notice that if momentum (so defined) is conserved in S, it is not
conserved in S. Assume all motion is along the x axis.

(b) Now do the same using the correct definition, p = mn. Notice that if momentum (so
defined) is conserved in S it is automatically also conserved in S. [Hint: Use Eq. 12,43 to
transform the proper velocity.] What must you assume about relativistic energy?

Problem 12.29 If a particle’s kinetic energy is » times its rest energy, what is its speed?
Problem 12.30 Suppose you have a collection of particles, all moving in the x direction, with

energies Ej, E5, F3, ...and momenta py, ps, p3, .... Find the velocity of the center of
momentum frame, in which the total momentum is zero.

12.2.3 Relativistic Kinematics

In this section we’ll explore some applications of the conservation laws to particle decays
and collisions.

Example 12.7

Two lumps of clay, each of (rest) mass m, collide head-on at %c (Fig. 12.26). They stick
together. Question: what is the mass (M) of the composite lump?




