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12.1.4 The Structure of Spacetime

(i) Four-vectors. The Lorentz transformations take on a simpler appearance when expressed

in terms of the quantities

L= p=2. (12.21)
C

Using x° (instead of r) and 8 (instead of v) amounts to changing the unit of time from the
second to the meter—1 meter of x® corresponds to the time it takes light to travel 1 meter
(in vacuum). If, at the same time, we number the x, v, z coordinates, so that

d=x, =y, =z (12.22)
then the Lorentz transformations read

50 = y(xo —,Bxl),

! (12.23)
2 = X2,
3= 43
Or, in matrix form:
(N [ v e 0 0 [
! —yp Y 0 0 xl
= . (12.24)
2 0 0 10 x2
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Letting Greek indices run from 0 to 3, this can be distilled into a single equation:

3

=) (Ahx, (12.25)
v=>0

where A is the Lorentz transformation matrix in Eq. 12.24 (the superscript u labels the
row, the subscript v labels the column). One virtue of writing things in this abstract manner
is that we can handle in the same format a more general transformation, in which the relative
motion is nof along a common x X axis; the matrix A would be more complicated, but the
structure of Eq. 12.25 is unchanged.

If this reminds you of the rotations we studied in Sect. 1.1.5, it’s no accident. There we
were concerned with the change in components when you switch to a rotated coordinate
system; here we are interested in the change of components when you go to a moving




12.1. THE SPECIAL THEORY OF RELATIVITY 501

system. In Chapter 1 we defined a (3-) vector as any set of three components that transform
under rotations the same way (x, y, z) do; by extension, we now define a 4-vector as any
set of four components that transform in the same manner as (x°, x!, x2, x?) under Lorentz

transformations:
3

at = Aka". (12.26)
v=0
For the particular case of a transformation along the x axis:

a’ = y(a® — Bal),

al - V(al _ﬁao)’
} (12.27)

J

There is a 4-vector analog to the dot product (A-B = A, By + Ay By + A; B;), butit’s
not just the sum of the products of like components; rather, the zeroth components have a
minus sign:

—a®h® + alb! +ab? + a’b . (12.28)
This is the four-dimensional scalar product; you should check for yourself (Prob. 12.17)
that it has the same value in all inertial systems:

a0 +a'b! + @%0* + @ = —a%0 + @bl + &% + B, (12.29)

Just as the ordinary dot product is invariant (unchanged) under rotations, this combination
is invariant under Lorentz transformations.

To keep track of the minus sign it is convenient to introduce the covariant vector a,,,
which differs from the contravariant a* only in the sign of the zeroth component:

a, = (ap, a1, a2, @3) = (—a’, a'. a*, @) (12.30)

You must be scrupulously careful about the placement of indices in this business: upper
indices designate contravariant vectors; lower indices are for covariant vectors. Raising
or lowering the temporal index costs a minus sign (a@g = —a); raising or lowering a spatial
index changes nothing (a; = a!, a2 = a?, a3 = a?). The scalar product can now be written
with the summation symbol,

3
> aub*, (12.31)
=0
or, more compactly still,
a,b". (12.32)

Summation is implied whenever a Greek index is repeated in a product—once as a covariant
index and once as contravariant. This is called the Einstein summation convention, after
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its inventor, who regarded it as one of his most important contributions. Of course, we
could as well take care of the minus sign by switching to covariant b:

a,b* = atb, = —a"b® + a'b! + a®b* + a®b°, (12.33)

Problem 12,17 Check Eq. 12.29, using Eq. 12.27. [This only proves the invariance of the
scalar product for transformations along the x direction. But the scalar product is also invariant
under rotations, since the first term is not affected at all, and the last three constitute the three-
dimensional dot product a-b. By a suitable rotation, the x direction can be aimed any way you
please, so the four-dimensional scalar product is actually invariant under arbitrary Lorentz
transformations. ]

Problem 12.18
(a) Write out the matrix that describes a Galilean transformation (Eq. 12.12).
(b) Write out the matrix describing a Lorentz transformation along the y axis.

(c) Find the matrix describing a Lorentz transformation with velocity v along the .x axis tollowed
by a Lorentz transformation with velocity v along the y axis. Does it matter in what order the
transformations are carried out?

Problem 12.19 The parallel between rotations and Lorentz transformations is even more strik-
ing if we introduce the rapidity:
8 =tanh~ ' (v/c). (12.34)

(a) Express the Lorentz transformation matrix A (Eq. 12.24) in terms of €, and compare it to
the rotation matrix (Eq. 1.29).

In some respects rapidity is a more natural way to describe motion than velocity. [See E.
F. Taylor and J. A. Wheeler, Spacetime Physics {(San Francisco: W. H. Freeman, 1966).] For
one thing, it ranges from —oo to +00, instead of —¢ to +¢. More significantly, rapidities add.
whereas velocities do not.

(b) Express the Einstein velocity addition law in terms of rapidity.

(ii) The invariant interval. Suppose event A occurs at (x, x}, x3. x3). and event B

at (x%, x}y, x%, x%). The difference,

Axt = xY — xl, (12.35)

is the displacement 4-vector. The scalar product of Ax* with itself is a quantity of special
importance; we call it the interval between two events:

I = (Ax) (A = —(Axh? + (AxDH? + (AxD)? + (A3 = =22+ 4%, (12.36)

where 7 is the time difference between the two events and d is their spatial separation. When
you transform to a moving system, the fime between A and B is altered (¢ # ¢), and so is
the spatial separation (d # d), but the interval I remains the same.




