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dangerous for it suggests problems with causality. Surely everyone must agree that
a person must be born before they die? And indeed they must. It is a remarkable
feature of Special Relativity that although the time ordering of events can be a
matter for debate this is only the case for causally disconnected events, i.e. events
which cannot influence each other. We shall return to this interesting discussion in
Part IV. For now we content ourselves with a thought experiment which illustrates
the breakdown of simultaneity.

Consider a train travelling along at a speed u relative to the platform. An observer
is standing in the middle of the train. Suppose that a flashlight is attached to each
end of the train and that the flashlights flash on for a brief instant. If the observer
receives the light from each flashlight at the same time then she will conclude
that the flashes occurred simultaneously, for the light from each flashlight had to
travel the same distance (half the length of the train) at the same speed. Now
consider a second observer standing on the platform watching proceedings. They
must observe that our first observer does indeed receive the light from either end
of the train at a particular instant in time. However, from their viewpoint the light
from the front of the train has less distance to travel than the light from the rear of
the train since the observer on the train is moving towards the point of emission at
the front of the train and away from the point of emission at the rear of the train.
None of what has been said so far is controversial; it holds in classical theory too.
Here comes the difference. As a result of the 2nd postulate, the observer on the
platform still sees each pulse of light travel at the same speed c. Now since both
pulses arrive at the centre of the train at the same time, and the pulse from the front
had less distance to travel, it follows that it must have been emitted later than the
light from the rear of the train. Classical physics avoids this conclusion because
although the light from the front has less distance to travel it is travelling more
slowly (its speed is ¢ — u) than the light from the rear (its speed is ¢ + u) and the
reduction in speed compensates the reduction in distance. You might like to check
that this compensation is exact and that both observers agree that the pulses were
emitted at the same time according to classical physics.

6.2 LORENTZ TRANSFORMATIONS

In Section 5.1 we derived the Galilean transformation equations which relate
the co-ordinates of an event in one inertial frame to the co-ordinates in a second
inertial frame. For their derivation we relied upon the idea of absolute time and,
as the last section showed, this is a flawed concept in Special Relativity. We must
therefore seek new equations to replace the Galilean transformations. These new
equations are the so-called Lorentz transformations.

To derive the Lorentz transformations we shall follow the methods of Section 5.1.
We shall define our two inertial frames S and S’ exactly as before, and as illustrated
in Figure 5.1, i.e. " is moving along the positive x axis at a speed v relative to S.
Since the motion is parallel to the x and x” axes it follows that

Y=y (6.17)
7=z (6.18)
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as before. Recall that we want to express the co-ordinates in S” in terms of those
measured in S. Again in order for the 1st postulate to remain valid the transforma-
tions must be of the form

x' =ax + bt, (6.19a)
t' =dx +et. (6.19b)

Notice that we have not assumed that there exists a unique time variable, i.e. we
allow for ¢' # ¢. Our goal is to solve for the coefficients a, b, d and e. As with the
derivation of the Galilean transforms we require that the origin O’ (i.e. the point
x" = 0) move along the x-axis according to x = vz. Substituting this information
into Eq. (6.19a) yields

—bja =v. (6.20)

Similarly we require that the origin O move along the line x" = —vt’. From
Eqgs. (6.19) the point x = 0 satisfies x" = bt and t' = et such that x’ = —vt’ implies
that

—b/e =v. (6.21)

Egs. (6.20) and (6.21) imply that e =a and b = —av. Substituting these into
Egs. (6.19) gives

x' =ax — avt,

t' =dx +at. (6.22)

We have two unknowns, a and d, remaining and have two postulates to implement.
Let us first implement the 2nd postulate. We shall do this by considering a pulse
of light emitted at the origins O and O’ when they are coincident, i.e. when
t =t" = 0. We know that this pulse must travel outwards along the x and x’ axes
such that it satisfies x = ¢t and x" = ¢t/ i.e. it travels out at the same speed ¢ in
both frames. These two equations must be simultaneous solutions to Egs. (6.22)
and so we require that

ct' =act — avt,

t' =dct +at. (6.23)

From which it follows directly that

d=-=. (6.24)
¢
It only remains to determine the value of a. Let us summarise progress so far. We
have reduced Eqgs. (6.19a) and (6.19b) to

x' ' =a(x —vt), (6.252)
r_ _uw
t_aQ &). (6.25b)
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Now it is time to make use of the 1st postulate which says that if Eqs. (6.25) are
true then so necessarily are
x =a(x +vt"), (6.262)

/
t=a (z/ + %) . (6.26b)
C

This makes manifest the equivalence of the two frames. It can be seen by consid-
ering Figure 5.1 and swapping the primed and unprimed co-ordinate labels around
whilst at the same time reversing the direction of v. We can determine the coefficient
a now by substituting for x’ and ¢’ using Eqgs. (6.25) into either of Egs. (6.26), i.e.

av’ix ) v?
X =alax —avt + avt — =ax|1——
c2? c?

1

Sad=—==Y (6.27)
V1 =v%/c?
We have succeeded in deriving the Lorentz transformations:
x' = y(x —vt), (6.28a)
i =yt —vx/c?), (6.28b)
Yy =y, (6.28¢)
7=z (6.28d)
Sometimes the inverse transformations will be more useful:
x =y +vt), (6.292)
t =yt +vx'/cP). (6.29b)

Eqgs. (6.28) are perhaps the most important equations we have derived so far in this
part of the book.

Example 6.2.1 Use the Lorentz transformations to derive the formula for time
dilation.

Solution 6.2.1 Let us consider the situation illustrated in Figure 6.6. A clock is at
restin S', let’s suppose it is at position x;. Now consider one tick of the clock. In §’,
we suppose that the tick starts at time t| and ends at time t, such that At =t} —t]
is the duration in the clock’s rest frame. The question is: ‘what is the duration of
the same tick as determined by an observer in S?’

There are two events to consider. Event 1 (start of the tick) has co-ordinates
(x4, ty) in 8" and event 2 (end of tick) which has co-ordinates (x|, t;) in S'. We want
to know the time of each event in S. Given that we know both the location and time of
the events in S’ we should use Eq. (6.29b) to give us the corresponding times in S:

n =y + vx()/cz),

= y(ty 4+ vxj/c?).
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Figure 6.6 A moving clock.

Subtracting these two equations gives
At =t — 1 = )/At/,

which is the required result. Notice that to derive this result it was crucial to be
clear that the clock is at rest in S'.

Example 6.2.2 Use the Lorentz transformations to derive the formula for length
contraction.

Solution 6.2.2 We now consider the situation illustrated in Figure 6.7 where we
have placed a ruler in S" such that it lies along the x'-axis with one end located
at x| and the other at x}. The length of the ruler in its rest frame is therefore
Ax" = xj — x|. The question now is: ‘what is the length of the ruler as determined
by an observer in S?’

X 0’ ’ 7’ X

Figure 6.7 A moving ruler.

Again there are two events to consider. Event 1 (measurement of one end of the
ruler) and event 2 (measurement of the other end of the ruler). The crucial point
now is that both events occur at the same time in S because that is what is meant
by a measurement of length. Let’s call this time to. Given that we know the location
of the two events in S" and the time of the events in S we should use Eq. (6.28a) to
give us the location of the events in S:

xp =y —vi),

x5 = y(x2 — vip).
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Figure 6.8 A ball bouncing back and forth between two points.

Subtracting these two equations gives
Ax’ = x! r_
X =xy—x; =yAx

1 /
= Ax = —Ax’,
vV

which is the required result.

Example 6.2.3 A ball is rolled at speed u from the point x| on the x-axis to the
point xo = x1 + L at which point it is reflected back again elastically, as illustrated
in Figure 6.8. In a frame moving with speed v along the positive x-axis compute:

(a) The spatial separation between the point where the ball starts its journey and
the point where it is reflected;

(b) The time taken for the outward part of the ball’s journey;

(c) The time taken for the return part of the ball’s journey.

Solution 6.2.3 (a) Event 1 is when the ball starts on its journey and has co-
ordinates (x1, t1) in S. Event 2 is when the ball arrives at the point of reflection. It
has co-ordinates (x2, ty + L/u). We are asked to find Ax" = x}, — x{. Note that it is
not going to be given by the length contraction formula since the two events are not
simultaneous in either S or S'. We know both Ax = x, —x;1 = L and At = L/u
and need Ax'. We therefore need to use Eq. (6.28a) which informs us that

Ax" = y(Ax — vAD),
— yL(1 —v/u) (6.30)

and y is of course evaluated using the relative speed of the two frames v.

(b) 1o get the time taken for the outward part of the journey we should use
Eq. (6.28b) (we hope that by now the reader is getting the hang of selecting the
correct equation to use), i.e.

At = y(At —vAx/c?),

out

_ VM_L(l NS 6.31)



