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So where do we stand? The null (no ether) result of the Michelson-Morley
experiment® and the apparent need of an ether to explain stellar aberration have
led us into an impasse. It is an impasse which Einstein was ultimately able to
overcome.

5.3 EINSTEIN’S POSTULATES

Einstein was particularly concerned with the breakdown of the principle of rel-
ativity implied by the presence of an ether. Just a few years earlier, Maxwell had
written down the equations which define the classical theory of electromagnetism.
The equations are beautiful and encode the idea that light is an electromagnetic
wave. However, the equations taken at face value seem to predict that light travels
at a speed ¢ = 1/,/eouo independently of the motion of either the source which
produced it or the observer who measures it’. This circumstance seems absurd:
for a wave travelling through a medium the speed is indeed independent of the
motion of the source but it certainly depends upon the motion of the observer. Of
course one can sidestep this problem by supposing that Maxwell’s equations are
only approximately correct and that the speed ¢ which appears in them ought to be
replaced by the speed of light appropriate to the frame in which one wants to use
the equations. This attempt to hold on to the ether has unpleasant consequences,
for example Coulomb’s Law would now be slightly different in different inertial
frames. With the evidence mounting, Einstein took the dramatic step of assuming
that the ether does not exist and that Maxwell’s equations are correct. At a stroke
he could explain the null result of Michelson-Morley, restore the principle of rel-
ativity to its central role in physics and keep the equations of Maxwell without
modification®.

In 1905, Einstein therefore made the two postulates that define his new theory
of space and time, and which we can state as follows.

1st postulate: The laws of physics are the same in all inertial frames. This is a
strong statement of the principle of special relativity which we discussed above and
which was anticipated by Galileo. We talk about ‘special relativity’ to remind us
that it is concerned only with the equivalence of inertial frames, i.e. it says nothing
about accelerated frames of reference. By this Einstein insists that there should be
no experiment in physics which can allow any one inertial frame to be singled out
as special. It is this principle which implies that the ether does not exist.

2nd postulate: The speed of light in vacuum is the same in all inertial frames.
This statement saves the laws of electromagnetism since if the speed of light did
vary from frame to frame then Maxwell’s equations would violate the 1st postulate.
It also explains in a trivial manner the null result of Michelson-Morley. We stress

6 Using masers, in 1959 Cedarholm & Townes constrained the speed of the ether relative to the Earth
to <30 m/s.

7 g is the permittivity, and i the permeability. of the vacuum.

8 We shall also see that his theory is able to explain the effect of stellar aberration.
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that this statement holds independently of the motion of the source or the observer.
It constitutes a clean break with classical thinking and it is the source of all of the
weird and wonderful physics we shall soon be encountering. As we shall see, it
can ony be true if we reject the notion of absolute time.

To illustrate how weird the 2nd postulate is consider the situation illustrated in
Figure 5.6. A light source sits at rest in S whilst a second frame S" moves towards
the light source with a speed v. The 2nd postulate implies that:

e An observer in S measures the light to travel towards an observer in S’ at
a speed ¢ + v. (When we say “an observer in §” we shall always mean an
observer at rest in S.)

e An observer in S measures the light to travel at speed c.

e An observer in S’ measures the light to travel at speed c.

The first two of these statements are reasonable but the third really does appear
to be outrageous. Nevertheless it is a necessary consequence of the 2nd postulate.

light source y y ’

0 x 0’ X

Figure 5.6 A light source sits at rest in S. A second frame S’ moves towards the light
source with a speed v.

PROBLEMS 5

5.1 A moving walkway moves at a speed of 0.7 ms™! relative to the ground and is
20.0 m long. If a passenger steps on at one end and walks at 1.3 ms™! relative
to the walkway, how much time does she require to reach the opposite end
if she walks (a) in the same direction as the walkway is moving? (b) in the
opposite direction?

5.2 Convince yourself that the first of the three bulleted items listed at the end
of Section 5.3 is correct.
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6.1 TIME DILATION, LENGTH CONTRACTION AND SIMULTANEITY

In the next section we shall find the new equations which will replace the Galilean
transformation equations (5.1) and (5.2), but before that let us derive perhaps the
two most remarkable results in Einstein’s theory: the fact that time passes at dif-
ferent rates in different inertial frames and that it doesn’t make sense to speak of
the length of a metre rule without also stating the frame in which it is at rest.

Historically people have regarded distance and time as fundamental units. For
example, as defined by a standard length of material and an accurate periodic
device. Speed is then a derived quantity determined by the ratio of distance travelled
and time taken. Nowadays, the scientific community has stopped thinking of the
metre as fundamental. Instead the metre is defined to be the distance travelled in
a vacuum by light in a time of exactly 1/2,9979,2458 seconds. This might look
like a rather arbitrary definition but that particular sequence of numbers in the
denominator means that the metre so defined corresponds to the length of the
old standard metre, which was a metal bar kept locked in a vault in Paris. The
advantage of defining the metre in terms of the speed of light and the unit of time
means that we no longer have to worry about the fact that the metal bar is forever
changing as it expands and contracts. By defining the metre this way we have
chosen a value for the speed of light in a vacuum, i.e. ¢ = 2.99792458 x 10® m/s.
There is nothing particularly special about using the speed of light here, strictly
speaking one could define the metre to be the distance travelled by an average snail
in 15 minutes. Then the snail speed would be fundamental. However, given the
variability in snail speeds, this would not consitute a very reliable measure. Light
speed is much more preferable and it has the particular advantage that it is the only
speed which everyone agrees upon (by Einstein’s 2nd postulate); all other speeds
require the specification of an associated frame of reference.
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Although this definition of distance suits most people, it isn’t really the best
definition for physicists who work with particles travelling close to light speed. As
a result, the metre is sometimes rejected in favour of a distance measure such that
1 unit of distance is equal to the distance travelled by light in 1second. In these
units, which particle physicists prefer, ¢ = 1.

6.1.1 Time Dilation and the Doppler Effect

Conversely, one could define time by specifying a speed and a distance.
For example, we could make a clock by bouncing light between two mirrors
spaced by a known distance, as illustrated in Figure 6.1. We can think of one
‘tick’ of this clock as corresponding to the time it takes the light to travel
between the two mirrors and back. The time interval between any two events can
then be determined by counting the number of ‘ticks’ of the light-clock which
have elapsed between the two events. Of course there is nothing special about
light here, for example we could define time by bouncing a ball between two
walls.

N N
d light
R N

Figure 6.1 A light-clock viewed in its rest [rame.

This is a good place to discuss exactly how time measurements are to be made.
Consider an observer in some frame of reference S who is interested in making
some time measurements. Since Einstein’s theory is going to require that we drop
the notion of absolute time, we need to be more careful than usual in specifying
how the time of an event is determined. Ideally, the observer would like to have
a set of identical clocks all at rest in S with one clock at each point in space. For
convenience, the observer might choose that the clocks are all synchronised with
each other. The time of an event is then determined by the time registered on a
clock close to the event. Ideally the clock would be at the same place as the event
otherwise we should worry about just how the information travels from the event to
the clock. The observer can then determine the time of an event by travelling to the
clock co-incident with the event and reading the time at which the event occured
(we are imagining that the clock was stopped by the event and the time recorded).
Clearly this is not a very practicable way of measuring the time of an event but that
is not the point. We have succeeded in explaining in principle what we mean by
the time of an event. Most importantly, the time of the event clearly has nothing to
do with where the observer was when the event happened nor whether the observer
actually saw the event with their eyes. We may have laboured this point to excess
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but that is because there is room for much confusion if these ideas are not properly
appreciated.

Let us return to the light-clock of Figure 6.1. In its rest frame, the time it takes
for light to do the roundtrip between the mirrors (one ‘tick’) is clearly

Aty = —. 6.1)
C

Now let us imagine what happens if the clock is moving relative to the observer.
To be specific let us put the clock in S" and an observer in S where the two
frames are as usual defined by Figure 5.1. If the observer was in S’ then the
time for one tick of the clock would be just Afy. Our task is to determine the
corresponding time when the observer is in S. According to this observer, the light
follows the path shown in Figure 6.2. We call At the time it takes for the light to
complete one roundtrip as measured in S. Accordingly the clock moves a distance
x2 —x; = vAt over the course of the roundtrip. Using Pythagoras’ Theorem, it
follows that the light travels a total distance 2(d? + v2Ar?/4)12. All of this is
as it would be in Galilean relativity. Now here comes the new idea. The light is
still travelling at speed ¢ in S (in classical theory the speed would be (c? 4 v?)!/?
by the simple addition of velocities). As a result, the time for the roundtrip in S
satisfies

2 2At2 1/2
At:;(d2+v4 ) . (6.2)
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Figure 6.2 The path taken by the light in a moving light-clock.

Squaring both sides and re-arranging allows us to solve for At:

2d 1
At = X ————— (6.3)

¢ JT=v2)2

The time measured in S is longer than the time measured in S” and we are forced
to conclude that in Einstein’s theory moving clocks run slow. This effect is also
known as ‘time dilation’, and it is negligibly small if v/c < 1 but when v ~ ¢
the effect is dramatic.
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The factor 1/,/1 — v2/c? appears so often in Special Relativity that it is given
its own symbol, i.e.

1
Y= ——— (6.4)
V1 —=v%/c?
and
At = y Al. (6.5)

For v/c <1 it follows that y > 1 and for v/c > 1 the theory doesn’t appear
to make much sense (unless we are prepared to entertain the idea of imaginary
time).

To conclude this section, let us quickly check that Ar = Aty in classical theory.
Replacing ¢ in Eq. (6.2) by (c¢* + v?)!/? gives

2 N

which has the solution At = 2d/c as expected.

Eq. (6.5) is quite astonishing: it really does violate our intuition that time is
absolute. We emphasise that this effect has nothing to do with the fact that we
have considered light bouncing between two mirrors. We used light because it
allows us to make use of Einstein’s 2nd postulate. If we had used a bouncing ball
then we would have become stuck when we had to figure out the speed of the
ball in S because we are not entitled to assume that velocities add in the classical
manner. When we have a little more knowledge and know how velocities add we
will be able to return to the bouncing ball and we shall conclude that time is dilated
exactly as for the light-clock. Clearly this must be the case for we are talking about
the time interval between actual events.

The fact that time is actually different from our intuitive perception of it is no
problem for physics, no matter how odd it may seem to us. There is a lesson to be
learnt here. Namely, we should not expect our intuition based upon everday expe-
riences to necessarily hold true in unfamiliar circumstances. In relativity theory,
the unfamiliar circumstance is when objects are travelling close to the speed of
light. The lesson also applies when tackling quantum theory. In this case common
sense breaks down when we explore systems on very small length scales.

Example 6.1.1 Muons are elementary particles rather like electrons but 207 times
heavier. Unlike electrons, muons are unstable and they decay to an electron and a
pair of neutrinos with a characteristic lifetime. For a muon at rest, this lifetime is
2.2 us.

Muons are created when cosmic rays impact upon the Earth’s atmosphere at an
altitude of 20 km and are observed to reach the Earth’s surface travelling at close
to the speed of light. (a) Use classical theory to estimate how far a typical muon
would travel before it decays (assume the muon is travelling at the speed of light).
(b) Now use time dilation to explain why the muons are able to travel the full 20 km
without decaying.
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Solution 6.1.1 (a) Muons travelling at speed ¢ will (on average) travel, according
to classical thinking, a distance c Aty before decaying where Aty = 2.2 us. Putting
the numbers in gives a distance of just 660 m.

(b) Let us suppose that the muon is travelling at a speed u towards the Earth. In
the muon’s rest frame its lifetime is a mere Aty = 2.2 s but from the point of view
of an observer on Earth this lifetime is dilated to At = y Aty. If y is sufficiently
large it is therefore possible that the muon could travel the 20 km and reach the
Earth’s surface. We can determine how large u must be using

20 km
y Aty > P (6.7)

Since y = (1 — u?/c?)™V% we can solve this equation for u = 0.999¢. Today, the
lifetime of the muon has been measured as a function of its speed and it is found to
be in excellent agreement with the prediction of time dilation.

Before leaving our discussion of time dilation we pause to consider the situation
illustrated in Figure 6.3. Figure 6.3(a) shows our two frames S and S’ moving
relative to each other as shown. Time dilation says that, according to an observer
at rest in S, clocks in S’ run slow, i.e. that Az = y At’. This really does mean
that all clocks run slow and so according to S an observer in S" would age more
slowly. Now consider Figure 6.3(b). It represents exactly the same situation as
Figure 6.3(a) since one can either think of S’ moving relative to S or vice versa.
Now an observer in S’ will conclude that clocks in S run slow, i.e. that At = y At
and so from their perspective an observer at rest in S would age more slowly.
At first glance these two conclusions seem to contradict each other but they do
not since the observers are measuring intervals of time between different pairs
of events: the observer in S is using clocks at rest in S whereas the observer in

z S Z S’
2 —
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(b)

Figure 6.3 Two observers each conclude that the other is ageing more slowly than them-
selves. This is not a contradiction.
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S’ is using clocks at rest in S’. Thus it is the case that each concludes that the
other is aging more slowly. Reflecting upon Einstein’s 1st postulate we can see
that this symmetrical situation must be correct for otherwise one could distinguish
between the two inertial frames. Of course if the two observers were to meet up
and compare notes then at least one of them must have undergone an acceleration.
This would break the symmetry between the two and leads to the fascinating
possibility that one of the observers would be genuinely older than the other upon
meeting (see Section 14.1.1).

We have been very careful to explain what we mean by measurements of time
and have stressed that they have nothing to do with seeing events with our eyes.
Nevertheless, people do see things and it is interesting to ask how our perception
of things changes in Special Relativity. Referring to Figure 5.1 we could imagine
an observer situated at the origin O who is watching a clock speed away from
them. We suppose that the clock is at rest at the origin O’ in S’. If one tick of the
clock takes a time At’ in S’ what is the corresponding interval of time seen by
the observer in S? The key word here is ‘see’. Observations of events as we have
hitherto been discussing them have referred explicitly to a process which does not
depend upon the observer actually watching the event nor on where the observer
is located when the event takes place. In contrast, the act of seeing does depend
upon things like how far the observer is away from the things they are watching
and the quality of the eyesight of the person doing the seeing. That distance is
important when watching a moving clock becomes apparent once one appreciates
that the clock is becoming ever further away and as a result light takes longer and
longer to reach the observer. With this in mind, we can tackle the question in hand
and attempt to work out the time interval Aty perceived by our observer at the
origin O. According to all observers in S, including our observer standing at the
origin, the time of one tick of the clock is given by the time dilation formula, i.e.
At = y At'. However this is not what we want. The time interval At is longer
than Atz by an amount equal to the time it takes for light to travel the extra distance
the clock has moved over the course of the tick, i.e. light from the end of the
clock’s tick has to travel further before it reaches the observer by an amount equal
to vAt. Therefore the perceived time interval between the start and the end of the
tick is

1/2

At = yAF 4y AL =y ALY (1 n 3) NG <M> . (6.8)

c c 1—v/c

It is very important to be clear that this extra slowing down of the clock

is an ‘optical illusion’, in contrast to the time dilation effect which is a real

slowing down of time. To emphasise this point, if light travels at a finite speed

then moving clocks will appear to run slow even in classical theory such that
Atsee = AL'(1 +v/0).

Eq. (6.8) leads us on nicely to the Doppler effect for light. Let us consider
the situation illustrated in Figure 6.4. A light source is at rest in S" and is being
watched by someone at rest in S. The time interval A¢’ could just as well be the
time between the emission of successive peaks in a light wave, i.e. the frequency
of the wave is f' = 1/At’. The person watching the light source will instead see
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Figure 6.4 A light source of frequency f” at rest in S'.

a frequency f = 1/At. The two frequencies are related using Eq. (6.8):

L (1—v/c 172
f_f(l—i-v/c) . (6.9)

This is the result in the case that the light source is moving away from the observer,
in which case Eq. (6.9) tells us that f < f” and so the light appears shifted to shorter
frequencies, i.e. it is ‘red-shifted’. If the source is moving towards the observer we
should reverse the sign of v in Eq. (6.9) and therefore conclude at f > f’, i.e. the
light is now ‘blue-shifted’.

Example 6.1.2 How fast must the driver of a car be travelling towards a red traffic
light (A = 675 nm) in order for the light to appear amber (A = 575 nm)?

Solution 6.1.2 In the rest frame of the car, the traffic light is moving towards them
at a speed u. Our task is to determine u given the change in wavelength. We can
convert wavelengths to frequencies using ¢ = f\ and then use Eq. (6.9) to solve
Jor u. Because the source is moving towards the car we should use Eq. (6.9) with
v = —u and so

c B c 14+u/c 12
575 x 109m 675 x 10~%m \ 1 — u/c '
_ (75 > 148
515)  1-p8"
The solution to which is p = u/c = 0.159. It is often sensible to express speeds in

terms of the ratio u/c, although in this case expressing the result as a speed of just
over 13 km/s makes it clear that this effect is never going to impress a court of law.

6.1.2 Length contraction

We now shift our attention to the measurement of distances in different iner-
tial frames and to the phenomenon known as length contraction. Light bouncing
between mirrors can also be used to determine distances by accurately measuring
the time it takes for light to travel between the mirrors. Let us imagine a ruler of
length Ly when measured in its rest frame. Now we ask what is the length L of the
ruler when it is moving? Figure 6.5 shows a ruler moving with a speed v relative to
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Figure 6.5 Measuring the length of a moving ruler.

S. To measure the length of the ruler we shall mount a light-clock of equal length
next to it, as shown. The light-clock moves with the ruler. The light starts out from
one end of the ruler and reflects from a mirror located at the opposite end of the
ruler. Our strategy will be to determine the time taken for the roundtrip directly in S
and equate this to the time dilation result. As a result of time dilation, the roundtrip
time in S is related to the roundtrip time in the rest frame of the ruler Afy by

2L
At = yAtg =y =2 (6.10)
C

We shall now endeavour to determine this time interval by considering the journey
of the light from the viewpoint of S. According to an observer in S, the total time is

At = Atgy + Atiy, 6.11)

where Afoy is the time taken for the light to travel on its outward journey, i.e.
from A to B, and Af, is the time taken on the return journey. The figure shows
explicitly the two positions of the ruler when the light starts its journey (dashed
line) and when the light reaches the opposite end of the ruler (solid line). In
order not to clutter the picture we have not shown the third position of the ruler,
i.e. when the light finally returns back to its starting point. Since Einstein’s 2nd
postulate tells us the speed of light according to S, we can write

CAtOut =L+ UAtout

= Al‘out -

(6.12)

c—v

Each side of the first of these equations is equal to the total distance travelled by
the light on its outward journey (according to §) and it takes into account the fact
that the light has to travel a little further than the length of the ruler L as a result
of the ruler’s motion. Similarly for the return leg, the light has to travel a shorter
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distance than L, i.e.

cAtin = L — vAt,

= Aty = (6.13)

c+v

Adding together Eqgs. (6.12) and (6.13) and equating the result to Eq. (6.10) gives
an equation relating L and Ly, i.e.

L L 2L
+ =y . (6.14)
c+v c¢c—v c
Solving for L gives
L
L="2 (6.15)
14

Again a remarkable result; for the length of the ruler is smaller when it is in
motion than when it is at rest.

We could have anticipated the length contraction result knowing only the time
dilation result. The argument goes as follows. Let us consider again the muons
created in the upper atmosphere which we discussed in Example 6.1.1. From the
viewpoint of a muon, it still lives for 2.2 us yet has travelled all the way to the
Earth’s surface. However this is not such an impossible task as it would be in
classical theory for the 20 km is reduced by a factor of y. It has to be exactly the
same factor of y as before because we know that muons created at an altitude of
20 km on average just reach the Earth before decaying if they have a speed of 0.999¢
and from the viewpoint of such a muon the Earth moves towards it at that speed.

Example 6.1.3 A spaceship flies past the Earth at a speed of 0.990c. A crew member
on the ship measures its length to be 400m. How long is the ship as measured by
an observer on Earth?

Solution 6.1.3 This is a straightforward application of the length contraction result
expressed in Eq. (6.15) with Lo = 400 m. Hence

1
y = ———==7.09 (6.16)
A1 —0.9902
and so L = 400/7.09 = 56.4m. Perhaps the most common misuse of the length
contraction formula is to confuse L and Ly.

6.1.3 Simultaneity

Classical physics, with its absolute time, has an unambiguous notion of what it
means to say two events are simultaneous. However, since time is more subjective
in Special Relativity, having meaning only within the context of a specified inertial
frame, it may not be suprising to hear that two events that are simultaneous in
one inertial frame will not in general be simultaneous in another inertial frame.
Moreover, according to one observer event A may precede event B but according to
a second observer event B might occur first. This last statement sounds particularly
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dangerous for it suggests problems with causality. Surely everyone must agree that
a person must be born before they die? And indeed they must. It is a remarkable
feature of Special Relativity that although the time ordering of events can be a
matter for debate this is only the case for causally disconnected events, i.e. events
which cannot influence each other. We shall return to this interesting discussion in
Part IV. For now we content ourselves with a thought experiment which illustrates
the breakdown of simultaneity.

Consider a train travelling along at a speed u relative to the platform. An observer
is standing in the middle of the train. Suppose that a flashlight is attached to each
end of the train and that the flashlights flash on for a brief instant. If the observer
receives the light from each flashlight at the same time then she will conclude
that the flashes occurred simultaneously, for the light from each flashlight had to
travel the same distance (half the length of the train) at the same speed. Now
consider a second observer standing on the platform watching proceedings. They
must observe that our first observer does indeed receive the light from either end
of the train at a particular instant in time. However, from their viewpoint the light
from the front of the train has less distance to travel than the light from the rear of
the train since the observer on the train is moving towards the point of emission at
the front of the train and away from the point of emission at the rear of the train.
None of what has been said so far is controversial; it holds in classical theory too.
Here comes the difference. As a result of the 2nd postulate, the observer on the
platform still sees each pulse of light travel at the same speed c. Now since both
pulses arrive at the centre of the train at the same time, and the pulse from the front
had less distance to travel, it follows that it must have been emitted later than the
light from the rear of the train. Classical physics avoids this conclusion because
although the light from the front has less distance to travel it is travelling more
slowly (its speed is ¢ — u) than the light from the rear (its speed is ¢ + u) and the
reduction in speed compensates the reduction in distance. You might like to check
that this compensation is exact and that both observers agree that the pulses were
emitted at the same time according to classical physics.

6.2 LORENTZ TRANSFORMATIONS

In Section 5.1 we derived the Galilean transformation equations which relate
the co-ordinates of an event in one inertial frame to the co-ordinates in a second
inertial frame. For their derivation we relied upon the idea of absolute time and,
as the last section showed, this is a flawed concept in Special Relativity. We must
therefore seek new equations to replace the Galilean transformations. These new
equations are the so-called Lorentz transformations.

To derive the Lorentz transformations we shall follow the methods of Section 5.1.
We shall define our two inertial frames S and S’ exactly as before, and as illustrated
in Figure 5.1, i.e. " is moving along the positive x axis at a speed v relative to S.
Since the motion is parallel to the x and x” axes it follows that

Y=y (6.17)
7=z (6.18)



