"Use of Masks"

Ghulam Rasool

Lecturer

Department of Allied Health Sciences,

Sargodha Medical College, University of Sargodha.

This lecture

- SARS-CoV-2 and Covid-19
 - SARS-CoV-2 vs SARS-CoV-1
 - Viability and susceptibility
 - Main transmission modes
- Aerosols and aerosol transmission
- Face masks Main types

SARS-CoV-2 and Covid-19

Definitions

- Covid-19 = Coronavirus Disease 2019
- SARS-CoV-2 = the causative agent of Covid-19
- SARS = Severe Acute Respiratory Syndrome

SARS-CoV-2 and Covid-19

Definitions

- Covid-19 = Coronavirus Disease 2019
- SARS-CoV-2 = the causative agent of Covid-19
- SARS = Severe Acute Respiratory Syndrome

Coronavirus infections

- Coronavirus strains as a cause of common cold ("rhinitis"...)
- More severe infections caused by
 - SARS-CoV(-1) Outbreak in Asia, then worldwide (2002-2004)
 - MERS-CoV Outbreak in Middle East (2012-...)
 - SARS-CoV-2 Outbreak and pandemic (Dec. 2019-...)

SARS-CoV-2 vs SARS-CoV-1 – Similarities

79% of genetic similarity (RNA)

- Disease and epidemiology Main similarities
 - Common origin (bats)
 - Responsible for respiratory diseases
 - Both likely to lead to severe acute respiratory syndrome (SARS), likely to require oxygen supply and/or artificial ventilation
 - Similar viability and resistance patterns
 - Same high risk groups (older people, poor health status...)

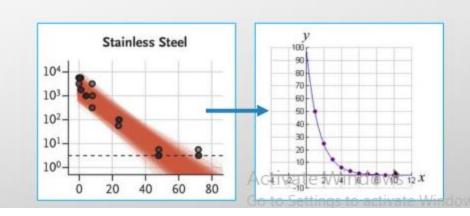
SARS-CoV-2 vs SARS-CoV-1 – Similarities

79% of genetic similarity (RNA)

- Disease and epidemiology Main similarities
 - Common origin (bats)
 - Responsible for respiratory diseases
 - Both likely to lead to severe acute respiratory syndrome (SARS), likely to require oxygen supply and/or artificial ventilation
 - Similar viability and resistance patterns
 - Same high risk groups (older people, poor health status...)

SARS-CoV-2 vs SARS-CoV-1 – Main differences

- SARS-CoV-1
 - More severe disease, with higher mortality rates (10% vs 0.5 to 3%)
- SARS-CoV-2
 - Higher receptor affinity in human cells More virulent
 - Some virus shedding <u>before</u> the onset of symptoms (up to 24 hours), possibly also in asymptomatic and very mild cases
 - Hidden transmission, making prevention more difficult
 - Highest virus load in nose and throat immediately after the onset of symptoms (only later after the onset of symptoms in SARS-CoV-1)
 - More easily transmissible
 - Wider variety of symptoms Less easily recognisable


SARS-CoV-2 vs SARS-CoV-1 – Main differences

- SARS-CoV-1
 - More severe disease, with higher mortality rates (10% vs 0.5 to 3%)
- SARS-CoV-2
 - Higher receptor affinity in human cells More virulent
 - Some virus shedding <u>before</u> the onset of symptoms (up to 24 hours), possibly also in asymptomatic and very mild cases
 - Hidden transmission, making prevention more difficult
 - Highest virus load in nose and throat immediately after the onset of symptoms (only later after the onset of symptoms in SARS-CoV-1)

 Mere apply transmissible.
 - More easily transmissible
 - Wider variety of symptoms Less easily recognisable

Viability of SARS-CoV-2

- Apparently more or less similar to SARS-CoV-1
- · Virus stays viable for
 - More than 3 hours in aerosols Median half-time (MHT) 1.1-1.2 hours
 - 72 hours on stainless steel and plastic MHT 5.6-6.8 hours
 - 24 hours on cardboard
 - 4 hours on copper
- Classical exponential viral decay
 - Steep decrease followed by a smoother curve and a final plateau

^{*} NIAID, 2020 (https://www.nejm.org/doi/10.1056/NEJMc2004973)

Susceptibility of SARS-CoV-2

- Rather classical susceptibility (still to be defined more precisely)
 - UV light
 - Heat
 - Desiccation
 - Alcohol (70% ethanol, hydroalcoholic solutions or gels...)
 - Bleach
 - Acetic acid
 - Hydrogen peroxide (H₂O₂)
 - Water and soap (hand washing!)

• ...

Transmission of SARS-CoV-2

Transmission through airborne droplets (aerosols)

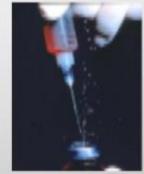
- Main transmission modes
 - Direct or close contact
 - 2. Exposure to contaminated surfaces
 - 3. Remote (at a distance) exposure to aerosols
- Main prevention means
 - Physical distance
 - 2. Cleaning and disinfection
 - 3. Wearing of masks

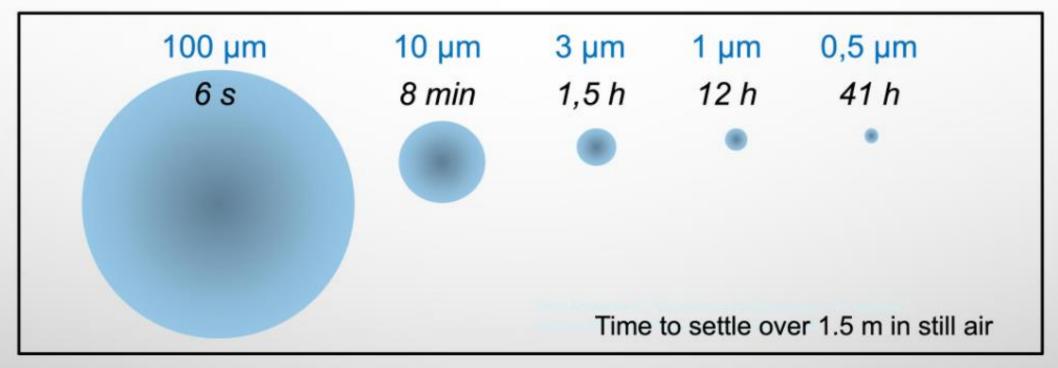
Activate Windows

Part II - Aerosols and aerosol transmission

Aerosols

Aerosols = liquid droplets or solid particles suspended in the air (or in a gas)

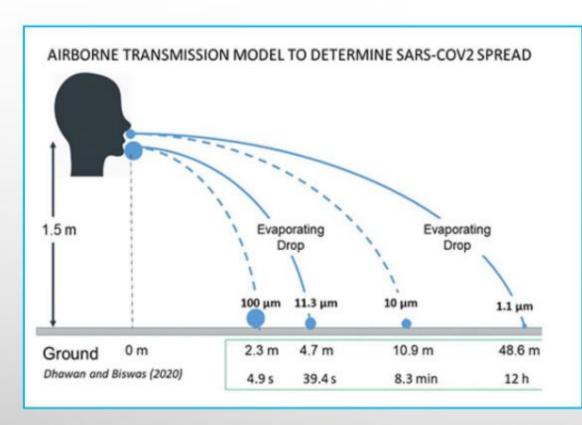



- Infectious aerosols
 - Suspended liquid droplets containing infectious agents
 - Possibly suspended biological agents (e.g. when droplets have evaporated)

Settling time of aerosols according to size

· Variety of particle sizes depending on the energy of the aerosol production

Settling time related to particle sizes (longer for smaller particles)


Coughing and sneezing as sources of aerosols

- Small droplets tend to stay suspended in the air and can possibly travel long distances (through air flows)
- Large droplets tend to settle quickly

- Coughing and sneezing
 - Highly energetic aerosol emission
 - Very effective mode of aerosol dissemination!
- Droplets also likely to be emitted while breathing (exhaling), talking...
 but in more limited number, and with much less energy

Aerosol dissemination and risk of infection

- Theoretically, time and distance for aerosol settling may be long (up of 12 hours and 48 meters)!
- In practice, dilution and viral decay occur with increasing time and distance
 - Virus load much lower
 - Risk of infection much lower

(https://source.wustl.edu/2020/04/aerosol-researchers-at-mckelvey-school-of-engineering-tackle-novel-coronavirus/)

^{*} Washington University, CASE, 2020

Importance of aerosols and air flows

- <u>Aerosols</u> are a major source of dissemination and transmission of SARS-CoV-2 (and other biological agents)
 - In natural conditions
 - In healthcare or laboratory conditions (aerosol-generating procedures or accidental spills)
- Controlling aerosols
 - Though personal protection
 - Personal Protective Equipment (PPE) <u>Different types of masks</u>
 - Through containment
 - Biosafety cabinets (BSCs)
 - Negative pressure and HEPA filtration

Part III – Face masks

Main types of face masks and respirators

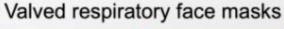
- Respiratory face masks (US: "respirators"):
 - N95, FFP2, FFP3, KN95...
 - R95, P95...
- Surgical masks
- Cloth masks Do-it-yourself (DIY) or manufactured
- Other masks and respirators*

^{*} Not covered in this course because expensive and generally not available in Pakistan

Respiratory face masks

Designed to protect the wearer from aerosol particles and droplets

- Different types: molded or not, with or without a valve...
- Numerous models (significant differences in design, composition...)



Respiratory face masks without a valve

· Performances fixed and tested according to various standards

Respiratory face masks – Standards and performances

Equivalence of standards (based on <u>minimum</u> efficiency levels)

USA (NIOSH-42CFR84)	Europe (EN149 / EN143)	China (GB2626)	Australia - N. Zealand (AS/NZE1716)	Korea (KMOEL 2017-64)
N95* (>95%)	FFP2/P2 (>94%)	KN95 (>95%)	P2 (>94%)	1st Class (>94%)
N99 (>99%)	FFP3 (>99%)	KN99 (>99%)	P3 (>99%)	-
N100 (>99.97%)	P3 (>99.95%)	-	-	-

^{*} R95 if also resistant to oil, P95 if oil-proof

Not a total equivalence, since testing methods and parameters may vary

Respiratory face masks – Standards and performances

Equivalence of standards (based on <u>minimum</u> efficiency levels)

	USA (NIOSH-42CFR84)	Europe (EN149 / EN143)	China (GB2626)	Australia - N. Zealand (AS/NZE1716)	Korea (KMOEL 2017-64)
	N95* (>95%)	FFP2/P2 (>94%)	KN95 (>95%)	P2 (>94%)	1st Class (>94%)
	N99 (>99%)	FFP3 (>99%)	KN99 (>99%)	P3 (>99%)	-
	N100 (>99.97%)	P3 (>99.95%)	-	-	-

^{*} R95 if also resistant to oil, P95 if oil-proof

Not a total equivalence, since testing methods and parameters may vary

N95 / FFP2 (or N99 / FFP3) are the protective masks generally recommended for high-risk situations in hospitals and medical laboratories

Respiratory face masks – Performances and fitting

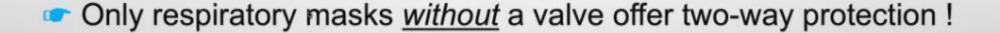
- · In actual conditions, suitable performances only achievable if masks are
 - Worn properly
 - Well-adjusted to the face ("fitting")
- · Importance of
 - Choice of a suitable model
 - Some training
 - Fit-testing

Fitting is suboptimal or poor in presence of facial hair (beard)

An issue for males, esp. in Muslim countries

Respiratory face masks – With or without a valve?

- Purposes
 - Facilitate exhaling ("exhaling valve")
 - Reduce moisture inside the mask
 - Facilitate breathing and improve wearing comfort
- Drawback
 - No filtration of the wearer's exhaled air
 - No protection of colleagues and patients if wearer infected



Respiratory face masks – With or without a valve?

- Purposes
 - Facilitate exhaling ("exhaling valve")
 - Reduce moisture inside the mask
 - Facilitate breathing and improve wearing comfort

- No filtration of the wearer's exhaled air
- No protection of colleagues and patients if wearer infected

Respiratory face masks – With or without a valve?

- Purposes
 - Facilitate exhaling ("exhaling valve")
 - Reduce moisture inside the mask
 - Facilitate breathing and improve wearing comfort

- No filtration of the wearer's exhaled air
- No protection of colleagues and patients if wearer infected
- Only respiratory masks <u>without</u> a valve offer two-way protection!
- Covid-19 context: valved masks not to be worn in healthcare settings!

Surgical masks

Designed to arrest bodily fluids from the wearer

- Characteristics
 - Generally three-layered –
 Filtering medium sandwiched between
 two layers of non-woven fabrics
 - No tight face fit
 - Usually, no safety rating... and no claimed protection of the wearer

Surgical masks

Designed to arrest bodily fluids from the wearer

- Characteristics
 - Generally three-layered –
 Filtering medium sandwiched between
 two layers of non-woven fabrics
 - No tight face fit
 - Usually, no safety rating... and no claimed protection of the wearer
 - Not considered personal protective equipment (PPE)
 - Covid-19 context: mostly recommended for Covid patients!

Surgical masks – Theory vs practice!

 Results from recent field studies (incl. before the Covid-19 outbreak) show no significant difference between the protection from N95 and surgical masks

Example of study*

- 2862 nurses in 7 US medical centers
- 2 groups randomly assigned N95 or surgical masks
- 4-year study (2011-2015)
- Incidence of Influenza virus disease (size of virus similar to SARS-CoV-2)

* Radonovitch LJ et al., JAMA 2019

(https://jamanetwork.com/journals/jama/article-abstract/2749214)

Surgical masks – Theory vs practice!

 Results from recent field studies (incl. before the Covid-19 outbreak) show no significant difference betwen the protection from N95 and surgical masks

Example of study*

- 2862 nurses in 7 US medical centers
- 2 groups randomly assigned N95 or surgical masks
- 4-year study (2011-2015)
- Incidence of Influenza virus disease (size of virus similar to SARS-CoV-2)

* Radonovitch LJ et al., JAMA 2019

(https://jamanetwork.com/journals/jama/article-abstract/2749214)

Surgical masks may offer some significant personal protection!

Cloth masks

- Many different types
 - · Home-made ("do-it-yourself", or DIY) or manufactured
 - No specification or performance standard
 - No defined or demonstrated protection
 - Huge differences in design and materials
 - Probably significant differences in effective protection

Activate Windows

Other types of masks and respirators

Half-face P3 respirator

Full-face P3 respirator

Half-face powered air purifying respirator (PAPR)

Full-face PAPR

Other types of masks and respirators

Half-face P3 respirator

Full-face P3 respirator

Half-face powered air purifying respirator (PAPR)

Full-face PAPR

- Usually not worn in front of patients or for laboratory activities
- Expensive and not readily available fof labs and hospitals in Pakistan

Questions, comments, suggestions...?