Inheritance 385

measuring, say, the water level of the Pacific Ocean as the tides varied, we might want to be
able to represent negative feet-and-inches quantities. (Tide levels below mean-lower-low-water

are called minus tides; they prompt clam diggers to take advantage of the larger area of exposed
beach.)

Let’s derive a new class from Distance. This class will add a single data item to our feet-and-
inches measurements: a sign, which can be positive or negative. When we add the sign, we’ll

also need to modify the member functions so they can work with signed distances. Here’s the
listing for ENGLEN:

// englen.cpp

// inheritance using English Distances
#include <iostream>

using namespace std;

enum posneg { pos, neg }; //for sign in DistSign
[EETEEETEEEE i r i i rriirrrl
class Distance //English Distance class
{
protected: //NOTE: can't be private
int feet;
float inches;
public: //no-arg constructor
Distance() : feet(@), inches(0.0)
{ 1} //2-arg constructor)
Distance(int ft, float in) : feet(ft), inches(in)
{ 1}
void getdist() //get length from user
{
cout << "\nEnter feet: "; cin >> feet;

cout << "Enter inches: "; cin >> inches;

) 9

void showdist() const //display distance
{ cout << feet << "\'-" << inches << "\"'; }
s
[EETEEETEEEE i i r i il irrrl
class DistSign : public Distance //adds sign to Distance
{
private:
posneg sign; //sign is pos or neg
public:
//no-arg constructor
DistSign() : Distance() //call base constructor
{ sign = pos; } //set the sign to +

IDNVLIYIHN]

Chapter 9

//2- or 3-arg constructor
DistSign(int ft, float in, posneg sg=pos)

Distance(ft, in)
{ sign = sg; }

void getdist()
{
Distance::getdist();
char ch;

//call base constructor
//set the sign

//get length from user

//call base getdist()
//get sign from user

cout << "Enter sign (+ or -): "; cin >> ch;
sign = (ch=='+"') ? pos : neg;
}
void showdist() const //display distance
{
cout << ((sign==pos) ? "(+)" : "(-)"); [//show sign
Distance: :showdist(); //ft and in
}
}s
[EETEEELEEEE i i rrriirrg
int main()
{

DistSign alpha;
alpha.getdist();

DistSign beta(11, 6.25);

DistSign gamma(100, 5.5, neg);

cout << "\nalpha = ";

//no-arg constructor
//get alpha from user

//2-arg constructor
//3-arg constructor

//display all distances

alpha.showdist();

cout << "\nbeta = "; beta.showdist();

cout << "\ngamma = ";
cout << endl;
return 0;

}

gamma.showdist();

Here the DistSign class adds the functionality to deal with signed numbers. The Distance
class in this program is just the same as in previous programs, except that the data is protected.

Actually in this case it could be private, because none of the derived-class functions accesses
it. However, it’s safer to make it protected so that a derived-class function could access it if

necessary.

