C HAPTER 12

Distribution Systems - General

12.1 Distribution System

12.2 Classification of Distribution Systems

12.3 A.C. Distribution

12.4 D.C. Distribution

12.5 Methods of Obtaining 3-Wire D.C. System

12.6 Overhead Versus Underground System
12.7 Connection Schemes of Distribution System
12.8 Requirements of a Distribution System
12.9 Design Considerations in Distribution System

Introduction

The electrical energy produced at the gen erating station is conveyed to the consum ers through a network of transmission and distribution systems. It is often difficult to draw a line between the transmission and distribution systems of a large power system. It is impossible to distinguish the two merely by their voltage because what was considered as a high voltage a few years ago is now considered as a low voltage. In general, distribution system is that part of power system which distributes power to the consumers for utilisation.

The transmission and distribution systems are similar to man's circulatory system. The transmission system may be compared with arteries in the human body and distribution system with capillaries. They serve the same purpose of supplying the ultimate consumer in the city with the lifegiving blood of civilisation-electricity. In this chapter, we shall confine our attention to the general introduction to distribution system.

12.1 Distribution System

That part of power system which distributes electric power for local use is known as distribution system.

In general, the distribution system is the electrical system between the sub-station fed by the transmission system and the consumers meters. It generally consists of feeders, distributors and the service mains. Fig. 12.1 shows the single line diagram of a typical low tension distribution system.
(i) Feeders. A feeder is a conductor which connects the sub-station (or localised generating station) to the area where power is to be distributed. Generally, no tappings are taken from the feeder so that current in it remains the same throughout. The main consideration in the design of a feeder is the current carrying capacity.
(ii) Distributor. A distributor is a conductor from which tappings are taken for supply to the consumers. In Fig. 12.1, $A B, B C, C D$ and $D A$ are the distributors. The current through a distributor is not constant because tappings are taken at various places along its length. While designing a distributor, voltage drop along its length is the main consideration since the statutory limit of voltage variations is $\pm 6 \%$ of rated value at the consumers' terminals.
(iii) Service mains. A service mains is generally a small cable which connects the distributor to the consumers' terminals.

12.2 Classification of Distribution Systems

A distribution system may be classified according to ;
(i) Nature of current. According to nature of current, distribution system may be classified as (a) d.c. distribution system (b) a.c. distribution system. Now-a-days, a.c. system is universally adopted for distribution of electric power as it is simpler and more economical than direct current method.
(ii) Type of construction. According to type of construction, distribution system may be classified as (a) overhead system (b) underground system. The overhead system is generally employed for distribution as it is 5 to 10 times cheaper than the equivalent underground system. In general, the underground system is used at places where overhead construction is impracticable or prohibited by the local laws.
(iii) Scheme of connection. According to scheme of connection, the distribution system may be classified as (a) radial system (b) ring main system (c) inter-connected system.

Fig. 12.1 Each scheme has its own advantages and disadvantages and those are discussed in Art.12.7.

12.3 A.C. Distribution

Now-a-days electrical energy is generated, transmitted and distributed in the form of alternating current. One important reason for the widespread use of alternating current in preference to direct current is the fact that alternating voltage can be conveniently changed in magnitude by means of a transformer. Transformer has made it possible to transmit a.c. power at high voltage and utilise it at a safe potential. High transmission and distribution voltages have greatly reduced the current in the conductors and the resulting line losses.

There is no definite line between transmission and distribution according to voltage or bulk capacity. However, in general, the a.c. distribution system is the electrical system between the stepdown substation fed by the transmission system and the consumers' meters. The a.c. distribution system is classified into (i) primary distribution system and (ii) secondary distribution system.
(i) Primary distribution system. It is that part of a.c. distribution system which operates at voltages somewhat higher than general utilisation and handles large blocks of electrical energy than the average low-voltage consumer uses. The voltage used for primary distribu-
tion depends upon the amount of power to be conveyed and the distance of the substation required to be fed. The most commonly used primary distribution voltages are $11 \mathrm{kV}, 6.6$ kV and 3.3 kV . Due to economic considerations, primary distribution is carried out by 3phase, 3-wire system.

Fig. 12.2
Fig. 12.2 shows a typical primary distribution system. Electric power from the generating station is transmitted at high voltage to the substation located in or near the city. At this substation, voltage is stepped down to 11 kV with the help of step-down transformer. Power is supplied to various substations for distribution or to big consumers at this voltage. This forms the high voltage distribution or primary distribution.
(ii) Secondary distribution system. It is that part of a.c. distribution system which includes the range of voltages at which the ultimate consumer utilises the electrical energy delivered to him. The secondary distribution employs 400/230 V, 3-phase, 4-wire system.
Fig. 12.3 shows a typical secondary distribution system. The primary distribution circuit delivers power to various substations, called distribution substations. The substations are situated near the consumers' localities and contain stepdown transformers. At each distribution substation, the voltage is stepped down to 400 V and power is delivered by 3-phase,4-wire a.c. system. The voltage between any two phases is 400 V and between any phase and neutral is 230 V. The single phase domestic loads are connected between any one phase and the neutral, whereas 3-phase 400 V motor
 loads are connected across 3phase lines directly.

Fig. 12.3

12.4 D.C. Distribution

It is a common knowledge that electric power is almost exclusively generated, transmitted and distributed as a.c. However, for certain applications, d.c. supply is absolutely necessary. For instance, d.c. supply is required for the operation of variable speed machinery (i.e., d.c. motors), for electrochemical work and for congested areas where storage battery reserves are necessary. For this purpose, a.c. power is converted into d.c. power at the substation by using converting machinery e.g., mercury arc rectifiers, rotary converters and motor-generator sets. The d.c. supply from the substation may be obtained in the form of (i) 2-wire or (ii) 3-wire for distribution.
(i) 2-wire d.c. system. As the name implies, this system of distribution consists of two wires. One is the outgoing or positive wire and the other is the return or negative wire. The loads such as lamps, motors etc. are connected in parallel between the two wires as shown in Fig. 12.4. This system is never used for transmission purposes due to low efficiency but may be employed for distribution of d.c. power.

Fig. 12.4

Fig. 12.5
(ii) 3-wire d.c. system. It consists of two outers and a middle or neutral wire which is earthed at the substation. The voltage between the outers is twice the voltage between either outer and neutral wire as shown in Fig. 12.5. The principal advantage of this system is that it makes available two voltages at the consumer terminals viz., V between any outer and the neutral and 2 V between the outers. Loads requiring high voltage (e.g., motors) are connected across the outers, whereas lamps and heating circuits requiring less voltage are connected between either outer and the neutral. The methods of obtaining 3-wire system are discussed in the following article.

12.5 Methods of Obta ining 3-wire D.C. System

There are several methods of obtaining 3-wire d.c. system. However, the most important ones are:
(i) Two generator method. In this method, two shunt wound d.c. generators G_{1} and G_{2} are connected in series and the neutral is obtained from the common point between generators as shown in Fig. 12.6 (i). Each generator supplies the load on its own side. Thus generator G_{1} supplies a load current of I_{1}, whereas generator G_{2} supplies a load current of I_{2}. The difference of load currents on the two sides, known as out of balance current $\left(I_{1}-I_{2}\right)$ flows through the neutral wire. The principal disadvantage of this method is that two separate generators are required.

Fig. 12.6
(ii) 3-wire d.c. generator. The above method is costly on account of the necessity of two generators. For this reason, 3-wire d.c. generator was developed as shown in Fig. 12.6 (ii). It consists of a standard 2-wire machine with one or two coils of high reactance and low resistance, connected permanently to diametrically opposite points of the armature winding. The neutral wire is obtained from the common point as shown.
(iii) Balancer set. The 3-wire system can be obtained from 2-wire d.c. system by the use of balancer set as shown in Fig. 12.7. G is the main 2 -wire d.c. gen-

Fig. 12.7
erator and supplies power to the whole system. The balancer set consists of two identical d.c shunt machines A and B coupled mechanically with their armatures and field windings joined in series across the outers. The junction of their armatures is earthed and neutral wire is taken out from here. The balancer set has the additional advantage that it maintains the potential difference on two sides of neutral equal to each other. This method is discussed in detail in the next chapter.

12.6 Overhead Versus Underground System

The distribution system can be overhead or underground. Overhead lines are generally mounted on wooden, concrete or steel poles which are arranged to carry distribution transformers in addition to the conductors. The underground system uses conduits, cables and manholes under the surface of streets and sidewalks. The choice between overhead and underground system depends upon a number of widely differing factors. Therefore, it is desirable to make a comparison between the two.
(i) Public safety. The underground system is more safe than overhead system because all distribution wiring is placed underground and there are little chances of any hazard.
(ii) Initial cost. The underground system is more expensive due to the high cost of trenching, conduits, cables, manholes and other special equipment. The initial cost of an underground system may be five to ten times than that of an overhead system.
(iii) Flexibility. The overhead system is much more flexible than the underground system. In the latter case, manholes, duct lines etc., are permanently placed once installed and the load expansion can only be met by laying new lines. However, on an overhead system, poles, wires, transformers etc., can be easily shifted to meet the changes in load conditions.
(iv) Faults. The chances of faults in underground system are very rare as the cables are laid underground and are generally provided with better insulation.
(v) Appearance. The general appearance of an underground system is better as all the distribution lines are invisible. This factor is exerting considerable public pressure on electric supply companies to switch over to underground system.
(vi) Fault location and repairs. In general, there are little chances of faults in an underground system. However, if a fault does occur, it is difficult to locate and repair on this system. On an overhead system, the conductors are visible and easily accessible so that fault locations and repairs can be easily made.
(vii) Current carrying capacity and voltage drop. An overhead distribution conductor has a considerably higher current carrying capacity than an underground cable conductor of the same material and cross-section. On the other hand, underground cable conductor has much lower inductive reactance than that of an overhead conductor because of closer spacing of conductors.
(viii) Useful life. The useful life of underground system is much longer than that of an overhead system. An overhead system may have a useful life of 25 years, whereas an underground system may have a useful life of more than 50 years.
(ix) Maintenance cost. The maintenance cost of underground system is very low as compared with that of overhead system because of less chances of faults and service interruptions from wind, ice, lightning as well as from traffic hazards.
(x) Interference with communication circuits. An overhead system causes electromagnetic interference with the telephone lines. The power line currents are superimposed on speech currents, resulting in the potential of the communication channel being raised to an undesirable level. However, there is no such interference with the underground system.
It is clear from the above comparison that each system has its own advantages and disadvan-
tages. However, comparative economics (i.e., annual cost of operation) is the most powerful factor influencing the choice between underground and overhead system. The greater capital cost of underground system prohibits its use for distribution. But sometimes non-economic factors (e.g., general appearance, public safety etc.) exert considerable influence on choosing underground system. In general, overhead system is adopted for distribution and the use of underground system is made only where overhead construction is impracticable or prohibited by local laws.

12.7 Connection Schemes of Distribution System

All distribution of electrical energy is done by constant voltage system. In practice, the following distribution circuits are generally used :
(i) Radial System. In this system, separate feeders radiate from a single substation and feed the distributors at one end only. Fig. 12.8 (i) shows a single line diagram of a radial system for d.c. distribution where a feeder $O C$ supplies a distributor $A B$ at point A. Obviously, the distributor is fed at one end only i.e., point A is this case. Fig. 12.8 (ii) shows a single line diagram of radial system for a.c. distribution. The radial system is employed only when power is generated at low voltage and the substation is located at the centre of the load.

Fig. 12.8
This is the simplest distribution circuit and has the lowest initial cost. However, it suffers from the following drawbacks :
(a) The end of the distributor nearest to the feeding point will be heavily loaded.
(b) The consumers are dependent on a single feeder and single distributor. Therefore, any fault on the feeder or distributor cuts off supply to the consumers who are on the side of the fault away from the substation.
(c) The consumers at the distant end of the distributor would be subjected to serious voltage fluctuations when the load on the distributor changes.

Due to these limitations, this system is used for short distances only.
(ii) Ring main system. In this system, the primaries of distribution transformers form a loop. The loop circuit starts from the substation bus-bars, makes a loop through the area to be served, and returns to the substation. Fig. 12.9 shows the single line diagram of ring main system for a.c. distribution where substation supplies to the closed feeder LMNOPQRS. The distributors are tapped from different points M, O and Q of the feeder through distribution transformers. The ring main system has the following advantages :
(a) There are less voltage fluctuations at consumer's terminals.
(b) The system is very reliable as each distributor is fed via *two feeders. In the event of fault on any section of the feeder, the continuity of supply is maintained. For example, suppose that fault occurs at any point F of section SLM of the feeder. Then section SLM of the feeder can be isolated for repairs and at the same time continuity of supply is maintained to all the consumers via the feeder $S R Q P O N M$.

Fig. 12.9
(iii) Interconnected system. When the feeder ring is energised by two or more than two generating stations or substations, it is called inter-connected system. Fig. 12.10 shows the single line diagram of interconnected system where the closed feeder ring $A B C D$ is supplied by two substations S_{1} and S_{2} at points D and C respectively. Distributors are connected to

Fig. 12.10

[^0]points O, P, Q and R of the feeder ring through distribution transformers. The interconnected system has the following advantages :
(a) It increases the service reliability.
(b) Any area fed from one generating station during peak load hours can be fed from the other generating station. This reduces reserve power capacity and increases efficiency of the system.

12.8 Requirements of a Distribution System

A considerable amount of effort is necessary to maintain an electric power supply within the requirements of various types of consumers. Some of the requirements of a good distribution system are : proper voltage, availability of power on demand and reliability.
(i) Proper voltage. One important requirement of a distribution system is that voltage variations at consumer's terminals should be as low as possible. The changes in voltage are generally caused due to the variation of load on the system. Low voltage causes loss of revenue, inefficient lighting and possible burning out of motors. High voltage causes lamps to burn out permanently and may cause failure of other appliances. Therefore, a good distribution system should ensure that the voltage variations at consumers terminals are within permissible limits. The statutory limit of voltage variations is $\pm 6 \%$ of the rated value at the consumer's terminals. Thus, if the declared voltage is 230 V , then the highest voltage of the consumer should not exceed 244 V while the lowest voltage of the consumer should not be less than 216 V .
(ii) Availability of power on demand. Power must be available to the consumers in any amount that they may require from time to time. For example, motors may be started or shut down, lights may be turned on or off, without advance warning to the electric supply company. As electrical energy cannot be stored, therefore, the distribution system must be capable of supplying load demands of the consumers. This necessitates that operating staff must continuously study load patterns to predict in advance those major load changes that follow the known schedules.
(iii) Reliability. Modern industry is almost dependent on electric power for its operation. Homes and office buildings are lighted, heated, cooled and ventilated by electric power. This calls for reliable service. Unfortunately, electric power, like everything else that is man-made, can never be absolutely reliable. However, the reliability can be improved to a considerable extent by (a) interconnected system (b) reliable automatic control system (c) providing additional reserve facilities.

12.9 Design Considerations in Distribution System

Good voltage regulation of a distribution network is probably the most important factor responsible for delivering good service to the consumers. For this purpose, design of feeders and distributors requires careful consideration.
(i) Feeders. A feeder is designed from the point of view of its current carrying capacity while the voltage drop consideration is relatively unimportant. It is because voltage drop in a feeder can be compensated by means of voltage regulating equipment at the substation.
(ii) Distributors. A distributor is designed from the point of view of the voltage drop in it. It is because a distributor supplies power to the consumers and there is a statutory limit of voltage variations at the consumer's terminals ($\pm 6 \%$ of rated value). The size and length of the distributor should be such that voltage at the consumer's terminals is within the permissible limits.

SELF - TEST

1. Fill in the blanks by inserting appropriate words/figures.
(i) The underground system has \qquad initial cost than the overhead system.
(ii) A ring main system of distribution is \qquad reliable than the radial system.
(iii) The distribution transformer links the primary and \qquad distribution systems
(iv) The most common system for secondary distribution is. \qquad 3-phase, \qquad wire system.
(v) The statutory limit for voltage variations at the consumer's terminals is \qquad \% of rated value.
(vi) The service mains connect the \qquad and the \qquad
(vii) The overhead system is \qquad flexible than underground system.
2. Fill in the blanks by picking up correct words/figures from brackets.
(i) The main consideration in the design of a feeder is the \qquad
(current carrying capacity, voltage drop)
(ii) A 3-wire d.c. distribution makes available \qquad voltages.
(one, two, three)
(iii) Now-a-days \qquad system is used for distribution.
(a, c, d.c.)
(iv) The interconnected system. \qquad . the reserve capacity of the systems.
(increases, decreases)
(v) The major part of investment on secondary distribution is made on \qquad
(Distribution transformers, conductors, pole fittings)
(vi) The chances of faults in underground system are. \qquad as compared to overhead system.

> (less, more)

ANSWERS TO SELF-TEST

1. (i) more (ii) more (iii) secondary (iv) $400 / 230 \mathrm{~V}, 4$ (v) $=6$ (vi) distributor, consumer terminals (vii) more
2. (i) current carrying capacity (ii) two (iii) a.c. (iv) increases (v) distribution transformers (vi) less

CHAPTER REVIEW TOPICS

1. What do you understand by distribution system ?
2. Draw a single line diagram showing a typical distribution system.
3. Define and explain the terms : feeder, distributor and service mains.
4. Discuss the relative merits and demerits of underground and overhead systems.
5. Explain the following systems of distribution :
(i) Radial system
(ii) Ring main system
(iii) Interconnected system
6. Discuss briefly the design considerations in distribution system.
7. With a neat diagram, explain the complete a.c. system for distribution of electrical energy.
8. Write short notes on the following :
(i) Distribution transformers
(ii) 3-wire d.c. distribution
(iii) Primary distribution

DISCUSSION QUESTIONS

1. Can transmission and distribution systems be distinguished merely by their voltages ? Explain your answer.
2. It is suggested that since distribution transformer links the primary and utilisation voltage, secondary system is not essential. Is it a feasible proposition ?
3. What are the situations where the cost of underground system becomes comparable to overhead system ?
4. What are the effects of high primary voltage on the distribution system ?

C HAPTER 13

D.C. Distribution

13.1 Types of D.C. Distributors

13.2 D.C. Distribution Calculations

13.3 D.C. Distributor Fed at one End - Concentrated Loading
13.4 Uniformly Loaded Distributor Fed at One End
13.5 Distributor Fed at Both Ends Concentrated Loading
13.6 Uniformly Loaded Distributor Fed at Both Ends
13.7 Distributor with Both Concentrated and Uniform Loading

13.8 Ring Distributor

13.9 Ring Main Distributor with Interconnector
13.10 3-Wire D.C. System
13.11 Current Distribution in 3-Wire D.C. System
13.12 Balancers in 3-Wire D.C. System
13.13 Boosters
13.14 Comparison of 3-Wire and 2-Wire D.C. Distribution

Introduction

In the beginning of the electrical age, electricity was generated as a direct current and voltages were low. The resistance losses in the lines made it impracticable to transmit and distribute power for more than a few localities of the city. With the development of the transformer, a.c. has taken over the load formerly supplied by d.c. Now-a-days, electrical energy is generated, transmitted and distributed in the form of a.c. as an economical proposition. The transformer permits the transmission and distribution of a.c. power at high voltages. This has greatly reduced the current in the conductors (and hence their sizes) and the resulting line losses.

However, for certain applications, d.c. supply is absolutely necessary. For example, d.c. supply is required for the operation of variable speed machinery (e.g. d.c. motors), electrochemical work and electric traction. For this purpose, a.c. power is converted into d.c. power at the sub-station by using converting machinery e.g. mercury are rectifiers, rotary converters and motor-generator sets. The d.c. supply from the
sub-station is conveyed to the required places for distribution. In this chapter, we shall confine our attention to the various aspects of d.c. distribution.

13.1 Types of D.C. Distributors

The most general method of classifying d.c. distributors is the way they are fed by the feeders. On this basis, d.c. distributors are classified as:
(i) Distributor fed at one end
(ii) Distributor fed at both ends
(iii) Distributor fed at the centre
(iv) Ring distributor.
(i) Distributor fed at one end. In this type of feeding, the distributor is connected to the supply at one end and loads are taken at different points along the length of the distributor. Fig. 13.1 shows the single line diagram of a d.c. distributor $A B$ fed at the end A (also known as singly fed

Fig. 13.1 distributor) and loads I_{1}, I_{2} and I_{3} tapped off at points C, D and E respectively.
The following points are worth noting in a singly fed distributor :
(a) The current in the various sections of the distributor away from feeding point goes on decreasing. Thus current in section $A C$ is more than the current in section $C D$ and current in section $C D$ is more than the current in section $D E$.
(b) The voltage across the loads away from the feeding point goes on decreasing. Thus in Fig. 13.1, the minimum voltage occurs at the load point E.
(c) In case a fault occurs on any section of the distributor, the whole distributor will have to be disconnected from the supply mains. Therefore, continuity of supply is interrupted.
(ii) Distributor fed at both ends. In this type of feeding, the distributor is connected to the supply mains at both ends and loads are tapped off at different points along the length of the distributor. The voltage at the feeding points may or may not be equal. Fig. 13.2 shows a distributor $A B$ fed at the ends A and B and loads of I_{1}, I_{2} and I_{3} tapped off at points C, D and E respectively. Here, the load voltage goes

Fig. 13.2 on decreasing as we move away from one feeding point say A, reaches minimum value and then again starts rising and reaches maximum value when we reach the other feeding point B. The minimum voltage occurs at some load point and is never fixed. It is shifted with the variation of load on different sections of the distributor.

Advantages

(a) If a fault occurs on any feeding point of the distributor, the continuity of supply is maintained from the other feeding point.
(b) In case of fault on any section of the distributor, the continuity of supply is maintained from the other feeding point.
(c) The area of X-section required for a doubly fed distributor is much less than that of a singly fed distributor.
(iii) Distributor fed at the centre. In this type of feeding, the centre of the distributor is connected to the supply mains as shown in Fig. 13.3. It is equivalent to two singly fed distributors, each distributor having a common feeding point and length equal to half of the total length.

(iv) Ring mains. In this type, the distributor is in the form of a closed ring as shown in Fig.13.4. It is equivalent to a straight distributor fed at both ends with equal voltages, the two ends being brought together to form a closed ring. The distributor ring may be fed at one or more than one point.

13.2 D.C. Distribution Calculations

In addition to the methods of feeding discussed above, a distributor may have (i) concentrated loading (ii) uniform loading (iii) both concentrated and uniform loading. The concentrated loads are those which act on particular points of the distributor. A common example of such loads is that tapped off for domestic use. On the other hand, distributed loads are those which act uniformly on all points
 of the distributor.
Ideally, there are no distributed loads. However, a nearest example of distributed load is a large number of loads of same wattage connected to the distributor at equal distances.

In d.c. distribution calculations, one important point of interest is the determination of point of minimum potential on the distributor. The point where it occurs depends upon the loading conditions and the method of feeding the distributor. The distributor is so designed that the minimum potential on it is not less than 6% of rated voltage at the consumer's terminals. In the next sections, we shall discuss some important cases of d.c. distributors separately.

13.3 D.C. Distributor Fed at one End -Concentrated Loading

Fig. 13.5 shows the single line diagram of a 2-wire d.c. distributor $A B$ fed at one end A and having concentrated loads I_{1}, I_{2}, I_{3} and I_{4} tapped off at points C, D, E and F respectively.

Fig. 13.5
Let r_{1}, r_{2}, r_{3} and r_{4} be the resistances of both wires (go and return) of the sections $A C, C D, D E$ and $E F$ of the distributor respectively.

Current fed from point A

$$
\begin{aligned}
& =I_{1}+I_{2}+I_{3}+I_{4} \\
& =I_{1}+I_{2}+I_{3}+I_{4} \\
& =I_{2}+I_{3}+I_{4} \\
& =I_{3}+I_{4} \\
& =I_{4}
\end{aligned}
$$

Current in section $A C$
Current in section $C D$
Current in section $D E$
Current in section EF
Voltage drop in section AC $=r_{1}\left(I_{1}+I_{2}+I_{3}+I_{4}\right)$
Voltage drop in section $C D=r_{2}\left(I_{2}+I_{3}+I_{4}\right)$
Voltage drop in section $D E=r_{3}\left(I_{3}+I_{4}\right)$
Voltage drop in section $E F=r_{4} I_{4}$
\therefore Total voltage drop in the distributor

$$
=r_{1}\left(I_{1}+I_{2}+I_{3}+I_{4}\right)+r_{2}\left(I_{2}+I_{3}+I_{4}\right)+r_{3}\left(I_{3}+I_{4}\right)+r_{4} I_{4}
$$

It is easy to see that the minimum potential will occur at point F which is farthest from the feeding point A.

Example 13.1. A 2-wire d.c. distributor cable $A B$ is 2 km long and supplies loads of 100 A , 150A,200A and 50A situated $500 \mathrm{~m}, 1000 \mathrm{~m}, 1600 \mathrm{~m}$ and 2000 m from the feeding point A. Each conductor has a resistance of 0.01Ω per 1000 m . Calculate the p.d. at each load point if a p.d. of 300 V is maintained at point A.

Solution. Fig. 13.6 shows the single line diagram of the distributor with its tapped currents.
Resistance per 1000 m of distributor $=2 \times 0.01=0.02 \Omega$
Resistance of section $A C, R_{A C}=0.02 \times 500 / 1000=0.01 \Omega$
Resistance of section $C D, R_{C D}=0.02 \times 500 / 1000=0.01 \Omega$
Resistance of section $D E, R_{D E}=0.02 \times 600 / 1000=0.012 \Omega$
Resistance of section $E B, R_{E B}=0.02 \times 400 / 1000=0.008 \Omega$
Referring to Fig. 13.6, the currents in the various sections of the distributor are :
$\begin{array}{ll}I_{E B}=50 \mathrm{~A} ; & I_{D E}=50+200=250 \mathrm{~A} \\ I_{C D}=250+150=400 \mathrm{~A} \quad ; & I_{A C}=400+100=500 \mathrm{~A}\end{array}$

Fig. 13.6
P.D. at load point $C, \quad V_{C}=$ Voltage at A - Voltage drop in $A C$
$=V_{A}-I_{A C} R_{A C}$
$=300-500 \times 0.01=\mathbf{2 9 5} \mathbf{V}$
P.D. at load point $D, \quad V_{D}=V_{C}-I_{C D} R_{C D}$
$=295-400 \times 0.01=291 \mathbf{V}$
P.D. at load point $E, \quad V_{E}=V_{D}-I_{D E} R_{D E}$
$=291-250 \times 0 \cdot 012=\mathbf{2 8 8} \mathbf{~ V}$
P.D. at load point $B, \quad V_{B}=V_{E}-I_{E B} R_{E B}$

$$
=288-50 \times 0.008=287.6 \mathrm{~V}
$$

Example 13.2. A 2-wire d.c. distributor $A B$ is 300 metres long. It is fed at point A. The various loads and their positions are given below :

At point	distance from A in metres	concentrated load in amperes
C	40	30
D	100	40
E	150	100
F	250	50

If the maximum permissible voltage drop is not to exceed 10 V , find the cross-sectional area of the distributor. Take $\rho=1.78 \times 10^{-8} \Omega \mathrm{~m}$.

Solution. The single line diagram of the distributor along with its tapped currents is shown in Fig. 13.7. Suppose that resistance of 100 m length of the distributor is r ohms. Then resistance of various sections of the distributor is :

$$
R_{A C}=0.4 r \Omega ; R_{C D}=0.6 r \Omega ; R_{D E}=0.5 r \Omega ; R_{E F}=r \Omega
$$

Fig. 13.7
Referring to Fig. 13.7, the currents in the various sections of the distributor are :

$$
I_{A C}=220 \mathrm{~A} ; I_{C D}=190 \mathrm{~A} ; I_{D E}=150 \mathrm{~A} ; I_{E F}=50 \mathrm{~A}
$$

Total voltage drop over the distributor

$$
\begin{aligned}
& =I_{A C} R_{A C}+I_{C D} R_{C D}+I_{D E} R_{D E}+I_{E F} R_{E F} \\
& =220 \times 0 \cdot 4 r+190 \times 0 \cdot 6 r+150 \times 0 \cdot 5 r+50 \times r \\
& =327 r
\end{aligned}
$$

As the maximum permissible drop in the distributor is 10 V ,

$$
\therefore \quad 10=327 r
$$

or

$$
r=10 / 327=0.03058 \Omega
$$

X-sectional area of conductor $=\frac{* \rho l}{r / 2}=\frac{1 \cdot 78 \times 10^{-8} \times 100}{\frac{0 \cdot 03058}{2}}=116.4 \times 10^{-6} \mathrm{~m}^{2}=1.164 \mathrm{~cm}^{2}$
Example 13.3. Two tram cars $(A \& B) 2 \mathrm{~km}$ and 6 km away from a sub-station return 40 A and 20 A respectively to the rails. The sub-station voltage is 600 V d.c. The resistance of trolley wire is $0.25 \Omega / \mathrm{km}$ and that of track is $0.03 \Omega / \mathrm{km}$. Calculate the voltage across each tram car.

Solution. The tram car operates on d.c. supply. The positive wire is placed overhead while the rail track acts as the negative wire. Fig. 13.8 shows the single line diagram of the arrangement.

Fig. 13.8
Resistance of trolley wire and track/km

$$
=0.25+0.03=0.28 \Omega
$$

Current in section $S A=40+20=60 \mathrm{~A}$
Current in section $A B=20 \mathrm{~A}$
Voltage drop in section $S A=60 \times 0.28 \times 2=33.6 \mathrm{~V}$
Voltage drop in section $A B=20 \times 0.28 \times 4=22.4 \mathrm{~V}$
$\therefore \quad$ Voltage across tram $A=600-33.6=\mathbf{5 6 6 . 4} \mathrm{V}$
Voltage across tram $B=566 \cdot 4-22 \cdot 4=\mathbf{5 4 4} \mathrm{V}$
Example 13.4. The load distribution on a two-wire d.c. distributor is shown in Fig. 13.9. The cross-sectional area of each conductor is $0.27 \mathrm{~cm}^{2}$. The end A is supplied at 250 V . Resistivity of the wire is $\rho=1.78 \mu \Omega \mathrm{~cm}$. Calculate (i) the current in each section of the conductor (ii) the two-core resistance of each section (iii) the voltage at each tapping point.

Fig. 13.9

Solution.

(i) Currents in the various sections are :

$$
\begin{aligned}
\text { Section } C D, I_{C D} & =20 \mathrm{~A} ; \text { section } B C, I_{B C}=20+15=\mathbf{3 5} \mathbf{A} \\
\text { Section } A B, I_{A B} & =20+15+12=47 \mathrm{~A}
\end{aligned}
$$

(ii) Single-core resistance of the section of 100 m length

$$
=\rho \frac{l}{a}=1.78 \times 10^{-6} \times \frac{100 \times 100}{0.27}=0.066 \Omega
$$

[^1]The resistances of the various sections are :

$$
\begin{aligned}
R_{A B} & =0.066 \times 0.75 \times 2=0.099 \Omega ; R_{B C}=0.066 \times 2=0.132 \Omega \\
R_{C D} & =0.066 \times 0.5 \times 2=0.066 \Omega
\end{aligned}
$$

(iii) Voltage at tapping point B is

$$
V_{B}=V_{A}-I_{A B} R_{A B}=250-47 \times 0.099=245.35 \mathrm{~V}
$$

Voltage at tapping point C is

$$
V_{C}=V_{B}-I_{B C} R_{B C}=245.35-35 \times 0.132=\mathbf{2 4 0 . 7 3} \mathrm{V}
$$

Voltage at tapping point D is

$$
V_{D}=V_{C}-I_{C D} R_{C D}=240.73-20 \times 0.066=239.41 \mathrm{~V}
$$

TUTORIAL PROBLEMS

1. What should be the minimum cross-sectional area of each conductor in a two-core cable 100 m long to limit the total voltage drop to 4% of the declared voltage of 250 V when the conductors carry 60 A ? The resistivity of the conductor is $2.845 \mu \Omega \mathrm{~cm}$.
[$0.34 \mathrm{~cm}^{2}$]
2. A 2 -wire d.c. distributor, 500 m long is fed at one of its ends. The cross-sectional area of each conductor is $3.4 \mathrm{~cm}^{2}$ and the resistivity of copper is $1.7 \mu \Omega \mathrm{~cm}$. The distributor supplies 200 A at a distance of 300 m from the feeding point and 100 A at the terminus. Calculate the voltage at the feeding end if the voltage at the terminus is to be 230 V .
[241 V]
3. A 2-wire d.c. distributor $A B 500$ metres long is fed from point A and is loaded as under :

Distance from feeding point A (in metres)	100	300	400	500
Load (amperes)	20	40	40	50

If the specific resistance of copper is $1.7 \times 10^{-8} \Omega \mathrm{~m}$, what must be the cross-section of each wire in order that the voltage drop in the distributor shall not exceed 10 volts?
$\left[1.734 \mathrm{~cm}^{2}\right.$]
4. A 2-wire d.c. distributor is 250 m long. It is to be loaded as shown in Fig 13.10 at 50 m intervals. If the maximum voltage drop is not to exceed 10 V and the resistivity of core material is $0.7 \times 2.54 \mu \Omega \mathrm{~cm}$, determine the maximum cross-sectional area of each conductor.
[$1.602 \mathrm{~cm}^{2}$]

Fig. 13.10

13.4 Uniformly Loaded Distributor Fed at One End

Fig 13.11 shows the single line diagram of a 2-wire d.c. distributor $A B$ fed at one end A and loaded uniformly with i amperes per metre length. It means that at every 1 m length of the distributor, the load tapped is i amperes. Let l metres be the length of the distributor and r ohm be the resistance per metre run.

Fig. 13.11

Fig. 13.12

Consider a point C on the distributor at a distance x metres from the feeding point A as shown in Fig. 13.12. Then current at point C is

$$
=i l-i x \text { amperes }=i(l-x) \text { amperes }
$$

D.C. Distribution

Now, consider a small length $d x$ near point C. Its resistance is $r d x$ and the voltage drop over length $d x$ is

$$
d v=i(l-x) r d x=i r(l-x) d x
$$

Total voltage drop in the distributor upto point C is

$$
V=\int_{0}^{x} i r(l-x) d x=\operatorname{ir}\left(l x-\frac{x^{2}}{2}\right)
$$

The voltage drop upto point B (i.e. over the whole distributor) can be obtained by putting $x=l$ in the above expression.
$\therefore \quad$ Voltage drop over the distributor $A B$

$$
\begin{aligned}
& =\operatorname{ir}\left(l \times l-\frac{l^{2}}{2}\right) \\
& =\frac{1}{2} i r l^{2}=\frac{1}{2}(i l)(r l) \\
& =\frac{1}{2} I R
\end{aligned}
$$

where

$$
\text { il }=I \text {, the total current entering at point } A
$$

$$
r l=R \text {, the total resistance of the distributor }
$$

Thus, in a uniformly loaded distributor fed at one end, the total voltage drop is equal to that produced by the whole of the load assumed to be concentrated at the middle point.

Example 13.5. A 2-wire d.c. distributor 200 metres long is uniformly loaded with 2 A /metre. Resistance of single wire is $0.3 \Omega / \mathrm{km}$. If the distributor is fed at one end, calculate :
(i) the voltage drop upto a distance of 150 m from the feeding point
(ii) the maximum voltage drop

Solution.

Current loading, $\quad i=2 \mathrm{~A} / \mathrm{m}$
Resistance of distributor per metre run,

$$
r=2 \times 0.3 / 1000=0.0006 \Omega
$$

Length of distributor, $\quad l=200 \mathrm{~m}$
(i) Voltage drop upto a distance x metres from feeding point

$$
\begin{equation*}
=i r\left(l x-\frac{x^{2}}{2}\right) \tag{SeeArt.13•4}
\end{equation*}
$$

Here,

$$
x=150 \mathrm{~m}
$$

$\therefore \quad$ Desired voltage drop $=2 \times 0.0006\left(200 \times 150-\frac{150 \times 150}{2}\right)=\mathbf{2 2 . 5} \mathbf{V}$
(ii) Total current entering the distributor,

$$
I=i \times l=2 \times 200=400 \mathrm{~A}
$$

Total resistance of the distributor,

$$
R=r \times l=0.0006 \times 200=0.12 \Omega
$$

\therefore Total drop over the distributor

$$
=\frac{1}{2} I R=\frac{1}{2} \times 400 \times 0 \cdot 12=24 \mathrm{~V}
$$

Example 13.6. A uniform 2-wire d.c. distributor 500 metres long is loaded with 0.4 amperel metre and is fed at one end. If the maximum permissible voltage drop is not to exceed 10 V , find the cross-sectional area of the distributor conductor. Take $\rho=1.7 \times 10^{-6} \Omega \mathrm{~cm}$.

Solution.

Current entering the distributor, $\quad I=i \times l=0.4 \times 500=200 \mathrm{~A}$
Max. permissible voltage drop $\quad=10 \mathrm{~V}$
Let r ohm be the resistance per metre length of the distributor (both wires).
Max. voltage drop

$$
\begin{array}{rlr}
& =\frac{1}{2} I R \\
10 & =\frac{1}{2} \operatorname{Irl} \\
r & =\frac{2 \times 10}{I \times l}=\frac{2 \times 10}{200 \times 500}=0.2 \times 10^{-3} \Omega & {[\because R=r l]}
\end{array}
$$

or
\therefore Area of cross-section of the distributor conductor is

$$
a=\frac{\rho l}{r / 2}=\frac{1.7 \times 10^{-6} \times 100^{*} \times 2}{0.2 \times 10^{-3}}=1.7 \mathrm{~cm}^{2}
$$

Example 13.7. A $250 \mathrm{~m}, 2$-wire d.c. distributor fed from one end is loaded uniformly at the rate of 1.6 A/metre. The resistance of each conductor is 0.0002Ω per metre. Find the voltage necessary at feed point to maintain 250 V (i) at the far end (ii) at the mid-point of the distributor.

Solution.

Current loading,

$$
i=1.6 \mathrm{~A} / \mathrm{m}
$$

$$
\text { Current entering the distributor, } \quad I=i \times l=1.6 \times 250=400 \mathrm{~A}
$$

Resistance of the distributor per metre run

$$
r=2 \times 0.0002=0.0004 \Omega
$$

$$
\text { Total resistance of distributor, } \quad R=r \times l=0.0004 \times 250=0.1 \Omega
$$

(i) Voltage drop over the entire distributor

$$
=\frac{1}{2} I R=\frac{1}{2} \times 400 \times 0 \cdot 1=20 \mathrm{~V}
$$

\therefore Voltage at feeding point $=250+20=270 \mathrm{~V}$
(ii) Voltage drop upto a distance of x metres from feeding point

$$
=i r\left(l x-\frac{x^{2}}{2}\right)
$$

Here $x=l / 2=250 / 2=125 \mathrm{~m}$
$\therefore \quad$ Voltage drop
$=1.6 \times 0.0004\left(250 \times 125-\frac{(125)^{2}}{2}\right)=15 \mathrm{~V}$
$\therefore \quad$ Voltage at feeding point $\quad=250+15=265 \mathrm{~V}$
Example 13.8. Derive an expression for the power loss in a uniformly loaded distributor fed at one end.

Solution. Fig. 13.13 shows the single line diagram of a 2-wire d.c. distributor $A B$ fed at end A and loaded uniformly with i amperes per metre length.

Let $\quad l=$ length of the distributor in metres

Fig. 13.13

$$
r=\text { resistance of distributor (both conductors) per metre run }
$$

Consider a small length $d x$ of the distributor at point C at a distance x from the feeding end A. The small length $d x$ will carry current which is tapped in the length $C B$.

$$
\therefore \quad \text { Current in } d x=i l-i x=i(l-x)
$$

[^2]Power loss in length $d x=$ (current in length $d x)^{2} \times$ Resistance of length $d x$

$$
=[i(l-x)]^{2} \times r d x
$$

Total power loss P in the whole distributor is

$$
\begin{aligned}
P & =\int_{0}^{l}[i(l-x)]^{2} r d x=\int_{0}^{l} i^{2}\left(l^{2}+x^{2}-2 l x\right) r d x \\
& =i^{2} r \int_{0}^{l}\left(l^{2}+x^{2}-2 l x\right) d x=i^{2} r\left[l^{2} x+\frac{x^{3}}{3}-\frac{2 l x^{2}}{2}\right]_{0}^{l} \\
& =i^{2} r\left[l^{3}+\frac{l^{3}}{3}-l^{3}\right]=i^{2} \times \frac{r l^{3}}{3} \\
\therefore \quad P & =\frac{i^{2} r l^{3}}{3}
\end{aligned}
$$

Example 13.9. Calculate the voltage at a distance of 200 m of a 300 m long distributor uniformly loaded at the rate of 0.75 A per metre. The distributor is fed at one end at 250 V . The resistance of the distributor (go and return) per metre is 0.00018Ω. Also find the power loss in the distributor.

Solution.

Voltage drop at a distance x from supply end

$$
=i r\left(l x-\frac{x^{2}}{2}\right)
$$

Here $i=0.75 \mathrm{~A} / \mathrm{m} ; l=300 \mathrm{~m} ; x=200 \mathrm{~m} ; r=0.00018 \Omega / \mathrm{m}$

$$
\therefore \quad \text { Voltage drop }=0.75 \times 0.00018\left[300 \times 200-\frac{(200)^{2}}{2}\right]=5.4 \mathrm{~V}
$$

Voltage at a distance of 200 m from supply end

$$
=250-5 \cdot 4=244 \cdot 6 \mathrm{~V}
$$

Power loss in the distributor is

$$
P=\frac{i^{2} r l^{3}}{3}=\frac{(0 \cdot 75)^{2} \times 0 \cdot 00018 \times(300)^{3}}{3}=911 \cdot 25 \mathrm{~W}
$$

TUTORIAL PROBLEMS

1. A 2 -wire d.c. distributor 500 m long is loaded uniformly at the rate of $0.4 \mathrm{~A} / \mathrm{m}$. If the voltage drop in the distributor is not to exceed 5 V , calculate the area of X -section of each conductor required when the distributor is fed at one end. Take resistivity of conductor material as $1.7 \times 10^{-8} \Omega \mathrm{~m}$. $\left[3 \cdot 4 \mathrm{~cm}^{2}\right]$
2. A uniformly distributed load on a distributor of length 500 m is rated at 1 A per metre length. The distributor is fed from one end at 220 V . Determine the voltage drop at a distance of 400 m from the feeding point. Assume a loop resistance of $2 \times 10^{-5} \Omega$ per metre.
3. A $250 \mathrm{~m}, 2$-wire d.c. distributor fed from one end is loaded uniformly at the rate of 0.8 A per metre. The resistance of each conductor is 0.0002Ω per metre. Find the necessary voltage at the feeding point to maintain 250 V at the far end of the distributor.
[260 V]

13.5 Distributor Fed at Both Ends - Concentrated Loading

Whenever possible, it is desirable that a long distributor should be fed at both ends instead of at one end only, since total voltage drop can be considerably reduced without increasing the cross-section of the conductor. The two ends of the distributor may be supplied with (i) equal voltages (ii) unequal voltages.
(i) Two ends fed with equal voltages. Consider a distributor $A B$ fed at both ends with equal voltages V volts and having concentrated loads $I_{1}, I_{2}, I_{3}, I_{4}$ and I_{5} at points C, D, E, F and G respectively as shown in Fig. 13.14. As we move away from one of the feeding points, say A, p.d. goes on decreasing till it reaches the minimum value at some load point, say E, and then again starts rising and becomes V volts as we reach the other feeding point B.

Fig. 13.14
All the currents tapped off between points A and E (minimum p.d. point) will be supplied from the feeding point A while those tapped off between B and E will be supplied from the feeding point B. The current tapped off at point E itself will be partly supplied from A and partly from B. If these currents are x and y respectively, then,

$$
I_{3}=x+y
$$

Therefore, we arrive at a very important conclusion that at the point of minimum potential, current comes from both ends of the distributor.
Point of minimum potential. It is generally desired to locate the point of minimum potential. There is a simple method for it. Consider a distributor $A B$ having three concentrated loads I_{1}, I_{2} and I_{3} at points C, D and E respectively. Suppose that current supplied by feeding end A is I_{A}. Then current distribution in the various sections of the distributor can be worked out as shown in Fig. 13.15 (i). Thus

$$
\begin{array}{ll}
I_{A C}=I_{A} ; & I_{C D}=I_{\mathrm{A}}-I_{1} \\
I_{D E}=I_{\mathrm{A}}-I_{1}-I_{2} ; & I_{E B}=I_{\mathrm{A}}-I_{1}-I_{2}-I_{3}
\end{array}
$$

(ii)

Fig. 13.15
Voltage drop between A and $B=$ Voltage drop over $A B$
or $\quad V-V=I_{A} R_{A C}+\left(I_{A}-I_{1}\right) R_{C D}+\left(I_{A}-I_{1}-I_{2}\right) R_{D E}+\left(I_{A}-I_{1}-I_{2}-I_{3}\right) R_{E B}$
From this equation, the unknown I_{A} can be calculated as the values of other quantities are generally given. Suppose actual directions of currents in the various sections of the distributor are indicated as shown in Fig. 13.15 (ii). The load point where the currents are coming from both sides of the distributor is the point of minimum potential i.e. point E in this case
(ii) Two ends fed with unequal voltages. Fig. 13.16 shows the distributor $A B$ fed with unequal voltages; end A being fed at V_{1} volts and end B at V_{2} volts. The point of minimum potential can be found by following the same procedure as discussed above. Thus in this case,
Voltage drop between A and $B=$ Voltage drop over $A B$
or
$V_{1}-V_{2}=$ Voltage drop over $A B$

Fig. 13.16
Example 13.10. A 2-wire d.c. street mains $A B, 600 \mathrm{~m}$ long is fed from both ends at 220 V . Loads of $20 \mathrm{~A}, 40 \mathrm{~A}, 50 \mathrm{~A}$ and 30 A are tapped at distances of $100 \mathrm{~m}, 250 \mathrm{~m}, 400 \mathrm{~m}$ and 500 m from the end A respectively. If the area of X-section of distributor conductor is $1 \mathrm{~cm}^{2}$, find the minimum consumer voltage. Take $\rho=1.7 \times 10^{-6} \Omega \mathrm{~cm}$.

Solution. Fig. 13.17 shows the distributor with its tapped currents. Let I_{A} amperes be the current supplied from the feeding end A. Then currents in the various sections of the distributor are as shown in Fig. 13.17.

Fig. 13.17
Resistance of 1 m length of distributor

$$
=2 \times \frac{1.7 \times 10^{-6} \times 100}{1}=3.4 \times 10^{-4} \Omega
$$

Resistance of section $A C, R_{A C}=\left(3.4 \times 10^{-4}\right) \times 100=0.034 \Omega$
Resistance of section $C D, R_{C D}=\left(3.4 \times 10^{-4}\right) \times 150=0.051 \Omega$
Resistance of section $D E, R_{D E}=\left(3.4 \times 10^{-4}\right) \times 150=0.051 \Omega$
Resistance of section $E F, R_{E F}=\left(3.4 \times 10^{-4}\right) \times 100=0.034 \Omega$
Resistance of section $F B, R_{F B}=\left(3.4 \times 10^{-4}\right) \times 100=0.034 \Omega$
Voltage at $B=$ Voltage at A - Drop over length $A B$
or

$$
\begin{aligned}
& V_{B}=V_{A}-\left[I_{A} R_{A C}+\left(I_{A}-20\right) R_{C D}+\left(I_{A}-60\right) R_{D E}\right. \\
&\left.+\left(I_{A}-110\right) R_{E F}+\left(I_{A}-140\right) R_{F B}\right]
\end{aligned}
$$

or

$$
\begin{aligned}
220=220-\left[0.034 I_{A}+0.051\right. & \left(I_{A}-20\right)+0.051\left(I_{A}-60\right) \\
& \left.+0.034\left(I_{A}-110\right)+0.034\left(I_{A}-140\right)\right]
\end{aligned}
$$

$$
=220-\left[0.204 I_{A}-12.58\right]
$$

or

$$
\begin{aligned}
0 \cdot 204 I_{A} & =12 \cdot 58 \\
I_{A} & =12 \cdot 58 / 0 \cdot 204=61 \cdot 7 \mathrm{~A}
\end{aligned}
$$

\therefore
The *actual distribution of currents in the various sections of the distributor is shown in Fig. 13.18. It is clear that currents are coming to load point E from both sides i.e. from point D and point F. Hence, E is the point of minimum potential.
$\therefore \quad$ Minimum consumer voltage,

$$
V_{E}=V_{A}-\left[I_{A C} R_{A C}+I_{C D} R_{C D}+I_{D E} R_{D E}\right]
$$

[^3]

Fig. 13.18

$$
\begin{aligned}
& =220-[61.7 \times 0.034+41.7 \times 0.051+1.7 \times 0.051] \\
& =220-4.31=215.69 \mathrm{~V}
\end{aligned}
$$

Example 13.11. A 2-wire d.c. distributor $A B$ is fed from both ends. At feeding point A, the voltage is maintained as at 230 V and at B 235 V. The total length of the distributor is 200 metres and loads are tapped off as under :
$\begin{array}{ll}25 A \text { at } 50 \text { metres from } A & ; 50 \text { A at } 75 \text { metres from } A \\ 30 A \text { at } 100 \text { metres from } A & ; 40 \text { A at } 150 \text { metres from } A\end{array}$
The resistance per kilometre of one conductor is 0.3Ω. Calculate :
(i) currents in various sections of the distributor
(ii) minimum voltage and the point at which it occurs

Solution. Fig. 13.19 shows the distributor with its tapped currents. Let I_{A} amperes be the current supplied from the feeding point A. Then currents in the various sections of the distributor are as shown in Fig 13.19.

Fig. 13.19
Resistance of 1000 m length of distributor (both wires)

$$
=2 \times 0.3=0 \cdot 6 \Omega
$$

Resistance of section $A C, R_{A C}=0.6 \times 50 / 1000=0.03 \Omega$
Resistance of section $C D, R_{C D}=0.6 \times 25 / 1000=0.015 \Omega$
Resistance of section $D E, R_{D E}=0.6 \times 25 / 1000=0.015 \Omega$
Resistance of section $E F, R_{E F}=0.6 \times 50 / 1000=0.03 \Omega$
Resistance of section $F B, R_{F B}=0.6 \times 50 / 1000=0.03 \Omega$
Voltage at $B=$ Voltage at $A-$ Drop over $A B$
or
or
or

$$
\begin{aligned}
& V_{B}=V_{A}-\left[I_{A} R_{A C}+\left(I_{A}-25\right) R_{C D}+\left(I_{A}-75\right) R_{D E}\right. \\
&\left.+\left(I_{A}-105\right) R_{E F}+\left(I_{A}-145\right) R_{F B}\right]
\end{aligned}
$$

$$
235=230-\left[0.03 I_{A}+0.015\left(I_{A}-25\right)+0.015\left(I_{A}-75\right)\right.
$$

$$
\left.+0.03\left(I_{A}-105\right)+0.03\left(I_{A}-145\right)\right]
$$

$$
235=230-\left[0 \cdot 12 I_{A}-9\right]
$$

$\therefore \quad I_{A}=\frac{239-235}{0 \cdot 12}=33.34 \mathrm{~A}$
(i) $\therefore \quad$ Current in section $A C, I_{A C}=I_{A}=33.34 \mathrm{~A}$

Current in section $C D, I_{C D}=I_{A}-25=33.34-25=8.34 \mathrm{~A}$

$$
\begin{aligned}
\text { Current in section } D E, I_{D E} & =I_{A}-75=33.34-75=-41.66 \mathrm{~A} \text { from } D \text { to } E \\
& =41.66 \mathrm{~A} \text { from } E \text { to } D \\
\text { Current in section } E F, I_{E F} & =I_{A}-105=33.34-105=-71.66 \mathrm{~A} \text { from } E \text { to } F \\
& =71.66 \mathrm{~A} \text { from } F \text { to } E \\
\text { Current in section } F B, I_{F B} & =I_{A}-145=33.34-145=-111.66 \mathrm{~A} \text { from } F \text { to } B \\
& =\mathbf{1 1 1 . 6 6 ~ A} \text { from } B \text { to } F
\end{aligned}
$$

(ii) The actual distribution of currents in the various sections of the distributor is shown in Fig. 13.20. The currents are coming to load point D from both sides of the distributor. Therefore, load point D is the point of minimum potential.

Fig. 13.20

$$
\text { Voltage at } \begin{aligned}
D, V_{D} & =V_{A}-\left[I_{A C} R_{A C}+I_{C D} R_{C D}\right] \\
& =230-[33.34 \times 0.03+8.34 \times 0.015] \\
& =230-1 \cdot 125=\mathbf{2 2 8} .875 \mathbf{V}
\end{aligned}
$$

Example 13.12. A two-wire d.c. distributor $A B, 600$ metres long is loaded as under :
Distance from A (metres) : 150300350450
Loads in Amperes : 100200250300
The feeding point A is maintained at 440 V and that of B at 430 V . If each conductor has a resistance of 0.01Ω per 100 metres, calculate :
(i) the currents supplied from A to B, (ii) the power dissipated in the distributor.

Solution. Fig. 13.21 shows the distributor with its tapped currents. Let I_{A} amperes be the current supplied from the feeding point A. Then currents in the various sections of the distributor are as shown in Fig.13.21.

Fig. 13.21
Resistance of 100 m length of distributor (both wires)

$$
=2 \times 0.01=0.02 \Omega
$$

Resistance of section $A C, R_{A C}=0.02 \times 150 / 100=0.03 \Omega$
Resistance of section $C D, R_{C D}=0.02 \times 150 / 100=0.03 \Omega$
Resistance of section $D E, R_{D E}=0.02 \times 50 / 100=0.01 \Omega$
Resistance of section $E F, R_{E F}=0.02 \times 100 / 100=0.02 \Omega$
Resistance of section $F B, R_{F B}=0.02 \times 150 / 100=0.03 \Omega$
Voltage at $B=$ Voltage at $A-$ Drop over $A B$
or

$$
\begin{aligned}
V_{B}=V_{A}-\left[I_{A} R_{A C}+\left(I_{A}-100\right)\right. & R_{C D}+\left(I_{A}-300\right) R_{D E} \\
& \left.+\left(I_{A}-550\right) R_{E F}+\left(I_{A}-850\right) R_{F B}\right]
\end{aligned}
$$

$$
\left.\begin{array}{ll}
\text { or } & 430
\end{array}\right)=440-\left[0.03 I_{A}+0.03\left(I_{A}-100\right)+0.01\left(I_{A}-300\right)\right.
$$

The actual distribution of currents in the various sections of the distributor is shown in Fig.13.22. Incidentally, E is the point of minimum potential.
(i) Referring to Fig. 13.22, it is clear that

Fig. 13.22
Current supplied from end $A, I_{A}=437.5 \mathrm{~A}$
Current supplied from end $B, I_{B}=412.5 \mathrm{~A}$
(ii) Power loss in the distributor

$$
\begin{aligned}
& =I_{A C}^{2} R_{A C}+I_{C D}^{2} R_{C D}+I_{D E}^{2} R_{D E}+I_{E F}^{2} R_{E F}+I_{F B}^{2} R_{F B} \\
& =(437.5)^{2} \times 0.03+(337.5)^{2} \times 0.03+(137.5)^{2} \times 0.01+(112 \cdot 5)^{2} \times 0.02+(412.5)^{2} \times 0.03 \\
& =5742+3417+189+253+5104=14,705 \mathrm{watts}=\mathbf{1 4 . 7 0 5} \mathbf{k W}
\end{aligned}
$$

Example 13.13. An electric train runs between two sub-stations 6 km apart maintained at voltages 600 V and 590 V respectively and draws a constant current of 300 A while in motion. The track resistance of go and return path is $0.04 \Omega / \mathrm{km}$. Calculate :
(i) the point along the track where minimum potential occurs
(ii) the current supplied by the two sub-stations when the train is at the point of minimum potential
Solution. The single line diagram is shown in Fig. 13.23 where substation A is at 600 V and substation B at 590 V . Suppose that minimum potential occurs at point M at a distance $x \mathrm{~km}$ from the substation A. Let I_{A} amperes be the current supplied by the sub-station A. Then current supplied by sub-station B is $300-I_{A}$ as shown in Fig 13.23.

Fig. 13.23
Resistance of track (go and return path) per km

$$
\begin{align*}
& =0.04 \Omega \\
\text { Track resistance for section } A M, \quad R_{A M} & =0.04 \times \Omega \\
\text { Track resistance for section } M B, \quad R_{M B} & =0.04(6-x) \Omega \\
\text { Potential at } M, V_{M} & =V_{A}-I_{A} R_{A M} \tag{i}\\
\text { Also, } \quad \text { Potential at } M, V_{M} & =V_{B}-\left(300-I_{A}\right) R_{M B} \tag{ii}
\end{align*}
$$

From equations (i) and (ii), we get,
or
or
or
or
or

$$
\begin{aligned}
V_{A}-I_{A} R_{A M} & =V_{B}-\left(300-I_{A}\right) R_{M B} \\
600-0.04 x I_{A} & =590-\left(300-I_{A}\right) \times 0.04(6-x) \\
600-0.04 x I_{A} & =590-0.04\left(1800-300 x-6 I_{A}+I_{A} \times x\right) \\
600-0.04 x I_{A} & =590-72+12 x+0.24 I_{A}-0.04 x I_{A} \\
0.24 I_{A} & =82-12 x \\
I_{A} & =341.7-50 x
\end{aligned}
$$

Substituting the value of I_{A} in eq. (i), we get,

$$
\begin{align*}
& V_{M}=V_{A}-(341.7-50 x) \times 0.04 x \\
& V_{M}=600-13.7 x+2 x^{2} \tag{iii}
\end{align*}
$$

(i) For V_{M} to be minimum, its differential coefficient w.r.t. x must be zero i.e.
or
i.e. minimum potential occurs at a distance of 3.425 km from the sub-station A.
(ii) \therefore Current supplied by sub-station A

$$
=341.7-50 \times 3.425=341.7-171.25=\mathbf{1 7 0 . 4 5} \mathbf{A}
$$

$$
\text { Current supplied by sub-station } B=300-I_{A}=300-170 \cdot 45=129 \cdot 55 \mathrm{~A}
$$

TUTORIAL PROBLEMS

1. A 2-wire d.c. distributor $A B$ is fed at both ends at the same voltage of 230 V . The length of the distributor is 500 metres and the loads are tapped off from the end A as shown below :

Load :	100 A	60 A	40 A	100 A
Distance :	50 m	150 m	250 m	400 m

If the maximum voltage drop of 5.5 V is to be allowed, find the X -sectional area of each conductor and point of minimum potential. Specific resistance of conductor material may be taken as $1.73 \times 10^{-8} \Omega \mathrm{~m}$.
[$1.06 \mathrm{~cm}^{2} ; 250 \mathrm{~m}$ from A]
2. A d.c. distributor $A B$ is fed at both ends. At feeding point A, the voltage is maintained at 235 V and at B at 236 V . The total length of the distributor is 200 metres and loads are tapped off as under :

20 A at 50 m from A
40 A at 75 m from A
25 A at 100 m from A
30 A at 150 m from A
The resistance per kilometre of one conductor is $0 \cdot 4 \Omega$. Calculate the minimum voltage and the point at which it occurs.
[232.175 V ; 75 m from point A]
3. A two conductor main $A B, 500 \mathrm{~m}$ in length is fed from both ends at 250 volts. Loads of $50 \mathrm{~A}, 60 \mathrm{~A}, 40$ A and 30 A are tapped at distance of $100 \mathrm{~m}, 250 \mathrm{~m}, 350 \mathrm{~m}$ and 400 m from end A respectively. If the Xsection of conductor be $1 \mathrm{~cm}^{2}$ and specific resistance of the material of the conductor is $1.7 \mu \Omega \mathrm{~cm}$, determine the minimum consumer voltage.
[245.07 V]

13.6 Uniformly Loaded Distributor Fed at Both Ends

We shall now determine the voltage drop in a uniformly loaded distributor fed at both ends. There can be two cases $v i z$. the distributor fed at both ends with (i) equal voltages (ii) unequal voltages. The two cases shall be discussed separately.
(i) Distributor fed at both ends with equal voltages. Consider a distributor $A B$ of length l metres, having resistance r ohms per metre run and with uniform loading of i amperes per

$$
\begin{aligned}
& \frac{d}{d x}\left(600-13 \cdot 7 x+2 x^{2}\right)=0 \\
& \therefore \quad x=13 \cdot 7 / 4=3.425 \mathrm{~km}
\end{aligned}
$$

metre run as shown in Fig. 13.24. Let the distributor be fed at the feeding points A and B at equal voltages, say V volts. The total current supplied to the distributor is $i l$. As the two end voltages are equal, therefore, current supplied from each feeding point is $i l / 2$ i.e.
Current supplied from each feeding point

$$
=\frac{i l}{2}
$$

Fig. 13.24
Consider a point C at a distance x metres from the feeding point A. Then current at point C is

$$
=\frac{i l}{2}-i x=i\left(\frac{l}{2}-x\right)
$$

Now, consider a small length $d x$ near point C. Its resistance is $r d x$ and the voltage drop over length $d x$ is

$$
d v=i\left(\frac{l}{2}-x\right) r d x=i r\left(\frac{l}{2}-x\right) d x
$$

$\therefore \quad$ Voltage drop upto point $C=\int_{0}^{x} \operatorname{ir}\left(\frac{l}{2}-x\right) d x=\operatorname{ir}\left(\frac{l x}{2}-\frac{x^{2}}{2}\right)$

$$
=\frac{i r}{2}\left(l x-x^{2}\right)
$$

Obviously, the point of minimum potential will be the mid-point. Therefore, maximum voltage drop will occur at mid-point i.e. where $x=l / 2$.
$\therefore \quad$ Max. voltage drop $=\frac{i r}{2}\left(l x-x^{2}\right)$

$$
\begin{aligned}
& =\frac{i r}{2}\left(l \times \frac{l}{2}-\frac{l^{2}}{4}\right) \\
& =\frac{1}{8} i r l^{2}=\frac{1}{8}(i l)(r l)=\frac{1}{8} I R
\end{aligned}
$$

where

$$
\text { il }=I \text {, the total current fed to the distributor from both ends }
$$

$$
r l=R, \text { the total resistance of the distributor }
$$

$$
\text { Minimum voltage }=V-\frac{I R}{8} \text { volts }
$$

(ii) Distributor fed at both ends with unequal voltages. Consider a distributor $A B$ of length l metres having resistance r ohms per metre run and with a uniform loading of i amperes per metre run as shown in Fig. 13.25. Let the distributor be fed from feeding points A and B at voltages V_{A} and V_{B} respectively.
Suppose that the point of minimum potential C is situated at a distance x metres from the feeding point A. Then current supplied by the feeding point A will be $* i x$.

[^4]
D.C. Distribution

$\therefore \quad$ Voltage drop in section $A C=\frac{i r x^{2}}{2}$ volts

Fig. 13.25
As the distance of C from feeding point B is $(l-x)$, therefore, current fed from B is $i(l-x)$.
$\therefore \quad$ Voltage drop in section $B C=\frac{i r(l-x)^{2}}{2}$ volts
Voltage at point $C, V_{C}=V_{A}-$ Drop over $A C$

$$
\begin{equation*}
=V_{A}-\frac{i r x^{2}}{2} \tag{i}
\end{equation*}
$$

Also, voltage at point $C, V_{C}=V_{B}$ - Drop over $B C$

$$
\begin{equation*}
=V_{B}-\frac{i r(l-x)^{2}}{2} \tag{ii}
\end{equation*}
$$

From equations (i) and (ii), we get,

$$
V_{A}-\frac{i r x^{2}}{2}=V_{B}-\frac{i r(l-x)^{2}}{2}
$$

Solving the equation for x, we get,

$$
x=\frac{V_{A}-V_{B}}{i r l}+\frac{l}{2}
$$

As all the quantities on the right hand side of the equation are known, therefore, the point on the distributor where minimum potential occurs can be calculated.

Example 13.14. A two-wire d.c. distributor cable 1000 metres long is loaded with 0.5 A /metre. Resistance of each conductor is $0.05 \Omega / \mathrm{km}$. Calculate the maximum voltage drop if the distributor is fed from both ends with equal voltages of 220 V . What is the minimum voltage and where it occurs ?

Solution.

Current loading,
Resistance of distributor/m,

$$
i=0.5 \mathrm{~A} / \mathrm{m}
$$

Length of distributor, $\quad l=1000 \mathrm{~m}$
Total current supplied by distributor, $I=i l=0.5 \times 1000=500 \mathrm{~A}$
Total resistance of the distributor, $\quad R=r l=0 \cdot 1 \times 10^{-3} \times 1000=0 \cdot 1 \Omega$
$\therefore \quad$ Max. voltage drop $=\frac{I R}{8}=\frac{500 \times 0 \cdot 1}{8}=6.25 \mathrm{~V}$
Minimum voltage will occur at the mid-point of the distributor and its value is

$$
=220-6 \cdot 25=213 \cdot 75 \mathrm{~V}
$$

Example 13.15. A 2-wire d.c. distributor $A B 500$ metres long is fed from both ends and is loaded uniformly at the rate of 1.0 A /metre. At feeding point A, the voltage is maintained at 255 V and at B at 250 V . If the resistance of each conductor is $0 \cdot 1 \Omega$ per kilometre, determine :
(i) the minimum voltage and the point where it occurs
(ii) the currents supplied from feeding points A and B

Solution. Fig. 13.26 shows the single line diagram of the distributor.
Voltage at feeding point A,

$$
\begin{aligned}
V_{A} & =255 \mathrm{~V} \\
V_{B} & =250 \mathrm{~V} \\
l & =500 \mathrm{~m} \\
i & =1 \mathrm{~A} / \mathrm{m} \\
r & =2 \times 0 \cdot 1 / 1000=0.0002 \Omega
\end{aligned}
$$

(i) Let the minimum potential occur at a point C distant x metres from the feeding point A. As proved in Art. 13.6,

$$
\begin{aligned}
x & =\frac{V_{A}-V_{B}}{i r l}+\frac{l}{2}=\frac{255-250}{1 \times 0 \cdot 0002 \times 500}+500 / 2 \\
& =50+250=300 \mathrm{~m}
\end{aligned}
$$

i.e. minimum potential occurs at 300 m from point A.

$$
\text { Minimum voltage, } \begin{aligned}
V_{C} & =V_{A}-\frac{i r x^{2}}{2}=255-\frac{1 \times 0 \cdot 0002 \times(300)^{2}}{2} \\
& =255-9=246 \mathrm{~V} \\
\text { (ii) } \quad \text { Current supplied from } A & =i x=1 \times 300=300 \mathrm{~A} \\
\text { Current supplied from } B & =i(l-x)=1(500-300)=\mathbf{2 0 0} \mathbf{A}
\end{aligned}
$$

Fig. 13.26

Fig. 13.27

Example 13.16. A 800 metres 2 -wire d.c. distributor $A B$ fed from both ends is uniformly loaded at the rate of 1.25 A/metre run. Calculate the voltage at the feeding points A and B if the minimum potential of 220 V occurs at point C at a distance of 450 metres from the end A. Resistance of each conductor is $0.05 \Omega / \mathrm{km}$.

Solution. Fig. 13.27 shows the single line diagram of the distributor.
Current loading, $\quad i=1.25 \mathrm{~A} / \mathrm{m}$
Resistance of distributor/m, $\quad r=2 \times 0.05 / 1000=0.0001 \Omega$
Voltage at C,

$$
V_{C}=220 \mathrm{~V}
$$

$l=800 \mathrm{~m}$
Length of distributor,

$$
x=450 \mathrm{~m}
$$

Voltage drop in section $A C=\frac{i r x^{2}}{2}=\frac{1 \cdot 25 \times 0 \cdot 0001 \times(450)^{2}}{2}=12.65 \mathrm{~V}$
$\therefore \quad$ Voltage at feeding point $A, \quad V_{A}=220+12.65=\mathbf{2 3 2} \cdot \mathbf{6 5} \mathrm{V}$

$$
\begin{aligned}
\text { Voltage drop in section } B C & =\frac{\operatorname{ir}(l-x)^{2}}{2}=\frac{1 \cdot 25 \times 0 \cdot 0001 \times(800-450)^{2}}{2} \\
& =7.65 \mathrm{~V}
\end{aligned}
$$

$\therefore \quad$ Voltage at feeding point $B, \quad V_{B}=220+7 \cdot 65=\mathbf{2 2 7} \cdot \mathbf{6 5} \mathrm{V}$

Example 13.17.
(i) A uniformly loaded distributor is fed at the centre. Show that maximum voltage drop $=I R / 8$ where I is the total current fed to the distributor and R is the total resistance of the distributor.
(ii) A 2-wire d.c. distributor 1000 metres long is fed at the centre and is loaded uniformly at the rate of $1.25 \mathrm{~A} /$ metre. If the resistance of each conductor is $0.05 \Omega / \mathrm{km}$, find the maximum voltage drop in the distributor.
Solution. (i) Fig. 13.28 shows distributor $A B$ fed at centre C and uniformly loaded with i amperes/metre. Let l metres be the length of the distributor and r ohms be the resistance per metre run. Obviously, maximum voltage drop will occur at either end.
$\therefore \quad$ Max. voltage drop $=$ Voltage drop in half distributor

Fig. 13.28

$$
\begin{aligned}
& =\frac{1}{2}\left(\frac{i l}{2}\right)\left(\frac{r l}{2}\right)=\frac{1}{8}(i l)(r l) \\
& =\frac{1}{8} I R
\end{aligned}
$$

where \quad il $=I$, the total current fed to the distributor

$$
r l=R \text {, the total resistance of the distributor }
$$

(ii) Total current fed to the distributor is

$$
I=i l=1.25 \times 1000=1250 \mathrm{~A}
$$

Total resistance of the distributor is

$$
\begin{aligned}
R & =r l=2 \times 0.05 \times 1=0.1 \Omega \\
\text { Max. voltage drop } & =\frac{1}{8} I R=\frac{1}{8} \times 1250 \times 0 \cdot 1=\mathbf{1 5 . 6 2} \mathbf{V}
\end{aligned}
$$

Example 13.18. Derive an expression for the power loss in a uniformly loaded distributor fed at both ends with equal voltages.

Solution. Consider a distributor $A B$ of length l metres, having resistance r ohms per metre run with uniform loading of i amperes per metre run as shown in Fig.13.29. Let the distributor be fed at the feeding points A and B at equal voltages, say V volts. The total current supplied by the distributor is $i l$. As the two end voltages are equal, therefore, current supplied from each feeding point is $i l / 2$.

Current supplied from each feeding point $=\frac{i l}{2}$

Fig. 13.29
Consider a small length $d x$ of the distributor at point P which is at a distance x from the feeding end A.

$$
\text { Resistance of length } d x=r d x
$$

$$
\text { Current in length } d x=\frac{i l}{2}-i x=i\left(\frac{l}{2}-x\right)
$$

$$
\text { Power loss in length } d x=(\text { current in } d x)^{2} \times \text { Resistance of } d x
$$

$$
=\left[i\left(\frac{l}{2}-x\right)\right]^{2} \times r d x
$$

Total power loss in the distributor is

$$
\begin{aligned}
P & =\int_{0}^{l}\left[i\left(\frac{l}{2}-x\right)\right]^{2} r d x=i^{2} r \int_{0}^{l}\left(\frac{l^{2}}{4}-l x+x^{2}\right) d x \\
& =i^{2} r\left[\frac{l^{2} x}{4}-\frac{l x^{2}}{2}+\frac{x^{3}}{3}\right]_{0}^{l}=i^{2} r\left[\frac{l^{3}}{4}-\frac{l^{3}}{2}+\frac{l^{3}}{3}\right] \\
\therefore \quad P & =\frac{i^{2} r l^{3}}{12}
\end{aligned}
$$

13.7 Distributor with Both Concentrated and Uniform Loading

There are several problems where a distributor has both concentrated and uniform loadings. In such situations, the total drop over any section of the distributor is equal to the sum of drops due to concentrated and uniform loading in that section. We shall solve a few problems by way of illustration.

Example 13.19. A 2-wire d.c. distributor AB, 900 metres long is fed at A at 400 V and loads of $50 \mathrm{~A}, 100 \mathrm{~A}$ and 150 A are tapped off from C, D and E which are at a distance of $200 \mathrm{~m}, 500 \mathrm{~m}$ and 800 m from point A respectively. The distributor is also loaded uniformly at the rate of $0.5 \mathrm{~A} / \mathrm{m}$. If the resistance of distributor per metre (go and return) is 0.0001Ω, calculate voltage (i) at point B and (ii) at point D.

Solution. This problem can be solved in two stages. First, the drop at any point due to concentrated loading is found. To this is added the voltage drop due to uniform loading.

Drops due to concentrated loads. Fig. 400 V 13.30 shows only the concentrated loads tapped off from the various points. The cur-

Fig. 13.30 rents in the various sections are :

$$
I_{A C}=300 \mathrm{~A} ; I_{C D}=250 \mathrm{~A} ; I_{D E}=150 \mathrm{~A}
$$

Drop in section $A C=I_{A C} R_{A C}=300 \times(200 \times 0.0001)=6 \mathrm{~V}$
Drop in section $C D=250 \times(300 \times 0.0001)=7.5 \mathrm{~V}$
Drop in section $D E=150 \times(300 \times 0.0001)=4.5 \mathrm{~V}$
Total drop over $A B=6+7 \cdot 5+4 \cdot 5=18 \mathrm{~V}$
Drops due to uniform loading

$$
\begin{aligned}
& \text { Drop over } A B=\frac{i r l^{2}}{2}=\frac{0 \cdot 5 \times 0 \cdot 0001 \times(900)^{2}}{2}=20 \cdot 25 \mathrm{~V} \\
& \text { Drop over } A D=\operatorname{ir}\left(l x-\frac{x^{2}}{2}\right)
\end{aligned}
$$

Here,

$$
l=900 \mathrm{~m} ; x=500 \mathrm{~m}
$$

$$
\therefore \quad \text { Drop over } A D=0.5 \times 0.0001\left(900 \times 500-\frac{500^{2}}{2}\right)=16.25 \mathrm{~V}
$$

(i)
(ii) Voltage at point $D=V_{A}$ - Drop over $A D$ due to conc. and uniform loadings

$$
=400-(6+7 \cdot 5+16 \cdot 25)=\mathbf{3 7 0 \cdot 2 5} \mathrm{V}
$$

Example 13.20. Two conductors of a d.c. distributor cable $A B 1000 \mathrm{~m}$ long have a total resistance of $0 \cdot 1 \Omega$. The ends A and B are fed at 240 V . The cable is uniformly loaded at 0.5 A per metre length and has concentrated loads of $120 \mathrm{~A}, 60 \mathrm{~A}, 100 \mathrm{~A}$ and 40 A at points distant $200 \mathrm{~m}, 400 \mathrm{~m}$, 700 m and 900 m respectively from the end A. Calculate (i) the point of minimum potential (ii) currents supplied from ends A and B (iii) the value of minimum potential.

Solution.

Distributor resistance per metre length,

$$
\begin{aligned}
r & =0 \cdot 1 / 1000=10^{-4} \Omega \\
i & =0 \cdot 5 \mathrm{~A} / \mathrm{m}
\end{aligned}
$$

Uniform current loading,
(i) Point of minimum potential. The point of minimum potential is not affected by the uniform loading of the distributor. Therefore, let us consider the concentrated loads first as shown in Fig. 13.31. Suppose the current supplied by end A is I. Then currents in the various sections will be as shown in Fig. 13.31.

Fig. 13.31
$V_{A}-V_{B}=$ Drop over the distributor $A B$

$$
240-240=I_{A C} R_{A C}+I_{C D} R_{C D}+I_{D E} R_{D E}+I_{E F} R_{E F}+I_{F B} R_{F B}
$$

or

$$
\begin{aligned}
0 & =10^{-4}[I \times 200+(I-120) 200+(I-180) 300+(I-280) 200+(I-320) \times 100] \\
0 & =1000 I-166000 \quad \therefore \quad I=166000 / 1000=166 \mathrm{~A}
\end{aligned}
$$

The actual distribution of currents in the various sections of the distributor due to concentrated loading is shown in Fig. 13.32. It is clear from this figure that D is the point of minimum potential.

Fig. 13.32
(ii) The feeding point A will supply 166 A due to concentrated loading plus $0.5 \times 400=200 \mathrm{~A}$ due to uniform loading.
\therefore Current supplied by $A, I_{A}=166+200=366 \mathrm{~A}$
The feeding point B will supply a current of 154 A due to concentrated loading plus $0.5 \times$ $600=300$ A due to uniform loading.
\therefore Current supplied by $B, I_{B}=154+300=454 \mathrm{~A}$
(iii) As stated above, D is the point of minimum potential.
\therefore Minimum potential, $V_{D}=V_{A}$ - Drop in $A D$ due to conc. loading - Drop in $A D$ due to uniform loading
Now, Drop in $A D$ due to conc. loading $=I_{A C} R_{A C}+I_{C D} R_{C D}$

$$
\begin{aligned}
& =166 \times 10^{-4} \times 200+46 \times 10^{-4} \times 200 \\
& =3.32+0.92=4.24 \mathrm{~V}
\end{aligned}
$$

Drop in $A D$ due to uniform loading $=\frac{i r^{*} l^{2}}{2}=\frac{0.5 \times 10^{-4} \times(400)^{2}}{2}=4 \mathrm{~V}$

$$
\therefore \quad V_{D}=240-4.24-4=231 \cdot 76 \mathrm{~V}
$$

Example 13.21. A d.c. 2-wire distributor $A B$ is 500 m long and is fed at both ends at 240 V . The distributor is loaded as shown in Fig 13.33. The resistance of the distributor (go and return) is 0.001Ω per metre. Calculate (i) the point of minimum voltage and (ii) the value of this voltage.

Solution. Let D be the point of $* *$ minimum potential and let x be the current flowing in section $C D$ as shown in Fig 13.33. Then current supplied by end B will be ($60-x$).

Fig. 13.33
(i) If r is the resistance of the distributor (go and return) per metre length, then,

$$
\begin{aligned}
\text { Voltage drop in length } A D & =I_{A C} R_{A C}+I_{C D} R_{C D} \\
& =(100+x) \times 100 r+x \times 150 r \\
\text { Voltage drop in length } B D & =\frac{i r l^{2}}{2}+(60-x) \times 250 r \\
& =\frac{1 \times r \times(200)^{2}}{2}+(60-x) \times 250 r
\end{aligned}
$$

Since the feeding points A and B are at the same potential,

$$
\begin{aligned}
\therefore & (100+x) \times 100 r+x \times 150 r & =\frac{1 \times r \times(200)^{2}}{2}+(60-x) 250 r \\
\text { or } & 100 x+10000+150 x & =20000+15000-250 x \\
\text { or } & 500 x & =25000 \quad \therefore x=50 \mathrm{~A}
\end{aligned}
$$

[^5]
D.C. Distribution

The actual directions of currents in the various sections of the distributor are shown in Fig. 13.34. Note that currents supplied by A and B meet at D. Hence point D is the point of minimum potential.

Fig. 13.34
(ii)

$$
\begin{aligned}
\text { Total current } & =160+1 \times 200=360 \mathrm{~A} \\
\text { Current supplied by } A, I_{A} & =100+x=100+50=150 \mathrm{~A} \\
\text { Current supplied by } B, I_{B} & =360-150=210 \mathrm{~A} \\
\text { Minimum potential, } V_{D} & =V_{A}-I_{A C} R_{A C}-I_{C D} R_{C D} \\
& =240-150 \times(100 \times 0.001)-50 \times(150 \times 0.001) \\
& =240-15-7.5=\mathbf{2 1 7 . 5} \mathbf{~ V}
\end{aligned}
$$

TUTORIAL PROBLEMS

1. A 2-wire d.c. distributor $A B, 1000 \mathrm{~m}$ long has a total resistance of $0 \cdot 1 \Omega$. The ends A and B are fed at 240
V. The distributor is uniformly loaded at $0.5 \mathrm{~A} /$ metre length and has concentrated loads of $120 \mathrm{~A}, 60$ A, 100 A and 40 A at points distant 200, 400, 700 and 900 m respectively from end A. Calculate:
(i) the point of minimum potential
(ii) value of minimum potential
(iii) current fed at both ends $\quad\left[(i) 400 \mathrm{~m}\right.$ from A (ii) $231 \cdot 76 \mathrm{~V}$ (iii) $\left.I_{A}=366 \mathrm{~A} ; I_{B}=454 \mathrm{~A}\right]$
2. A 2-wire d.c. distributor $A B$ is 300 metres long. The end A is fed at 205 V and end B at 200 V . The distributor is uniformly loaded at $0.15 \mathrm{~A} /$ metre length and has concentrated loads of $50 \mathrm{~A}, 60 \mathrm{~A}$ and 40 A at points distant $75,175,225 \mathrm{~m}$ respectively from the end A. The resistance of each conductor is 0.15Ω per kilometre. Calculate :
(i) the point of minimum potential
(ii) currents fed at ends A and B
$\left[(i) 175 \mathrm{~m}\right.$ from $\mathrm{A}($ ii $\left.) I_{A}=150 \mathrm{~A} ; I_{B}=\mathbf{4 5} \mathrm{A}\right]$
3. A d.c. 2 -wire distributor $A B$ is 450 m long and is fed at both ends at 250 V . The distributor is loaded as shown in Fig. 13.35. The resistance of each conductor is 0.05Ω per km. Find the point of minimum potential and its potential.
[261.74 m from A ; 247.35 V]

Fig. 13.35

13.8 Ring Distributor

A distributor arranged to form a closed loop and fed at one or more points is called a ring distributor. Such a distributor starts from one point, makes a loop through the area to be served, and returns to the
original point. For the purpose of calculating voltage distribution, the distributor can be considered as consisting of a series of open distributors fed at both ends. The principal advantage of ring distributor is that by proper choice in the number of feeding points, great economy in copper can be affected.

The most simple case of a ring distributor is the one having only one feeding point as shown in Fig. 13.36(ii). Here A is the feeding point and tappings are taken from points B and C. For the purpose of calculations, it is equivalent to a straight distributor fed at both ends with equal voltages.

Example 13.22. A 2-wire d.c. ring distributor is 300 m long and is fed at 240 V at point A . At point B, 150 m from A, a load of 120 A is taken and at $C, 100 \mathrm{~m}$ in the opposite direction, a load of 80 A is taken. If the resistance per 100 m of single conductor is 0.03Ω, find:
(i) current in each section of distributor
(ii) voltage at points B and C

Solution.

Resistance per 100 m of distributor

$$
=2 \times 0.03=0.06 \Omega
$$

Resistance of section $A B, R_{A B}=0.06 \times 150 / 100=0.09 \Omega$
Resistance of section $B C, R_{B C}=0.06 \times 50 / 100=0.03 \Omega$
Resistance of section $C A, R_{C A}=0.06 \times 100 / 100=0.06 \Omega$
(i) Let us suppose that a current I_{A} flows in section $A B$ of the distributor. Then currents in sections $B C$ and $C A$ will be $\left(I_{A}-120\right)$ and $\left(I_{A}-200\right)$ respectively as shown in Fig. $13.36(i)$.
According to Kirchhoff's voltage law, the voltage drop in the closed loop $A B C A$ is zero i.e.

$$
\begin{array}{lc}
& I_{A B} R_{A B}+I_{B C} R_{B C}+I_{C A} R_{C A}=0 \\
\text { or } & 0.09 I_{A}+0.03\left(I_{A}-120\right)+0.06\left(I_{A}-200\right)=0 \\
\text { or } & 0.18 I_{A}=15.6 \\
\therefore & I_{A}=15.6 / 0 \cdot 18=86.67 \mathrm{~A}
\end{array}
$$

or

The actual distribution of currents is as shown in Fig. 13.36 (ii) from where it is seen that B is the point of minimum potential.

Current in section $A B, I_{A B}=I_{A}=86 \cdot 67$ A from A to B
Current in section $B C, I_{B C}=I_{A}-120=86.67-120=-33.33 \mathrm{~A}$

$$
=33.33 \mathbf{A} \text { from } C \text { to } B
$$

Current in section $C A, I_{C A}=I_{A}-200=86.67-200=-113.33 \mathrm{~A}$

$$
=113 \cdot 33 \mathrm{~A} \text { from } A \text { to } C
$$

(ii) Voltage at point $B, V_{B}=V_{A}-I_{A B} R_{A B}=240-86.67 \times 0.09=232.2 \mathrm{~V}$

$$
\text { Voltage at point } C, \begin{aligned}
V_{C} & =V_{B}+I_{B C} R_{B C} \\
& =232.2+33.33 \times 0.03=\mathbf{2 3 3 . 2} \mathbf{~ V}
\end{aligned}
$$

Example 13.23. A 2-wire d.c. distributor $A B C D E A$ in the form of a ring main is fed at point A at 220 V and is loaded as under :
$10 A$ at $B ; 20 A$ at $C ; 30 A$ at D and $10 A$ at E.
The resistances of various sections (go and return) are : $A B=0.1 \Omega ; B C=0.05 \Omega ; C D=0.01$ $\Omega ; D E=0.025 \Omega$ and $E A=0.075 \Omega$. Determine :
(i) the point of minimum potential
(ii) current in each section of distributor

Solution. Fig. 13.37 (i) shows the ring main distributor. Let us suppose that current I flows in section $A B$ of the distributor. Then currents in the various sections of the distributor are as shown in Fig. 13.37 (i).

Fig. 13.37
(i) According to Kirchhoff's voltage law, the voltage drop in the closed loop $A B C D E A$ is zero i.e.

$$
I_{A B} R_{A B}+I_{B C} R_{B C}+I_{C D} R_{C D}+I_{D E} R_{D E}+I_{E A} R_{E A}=0
$$

or

$$
\begin{aligned}
0 \cdot 1 I+0.05(I-10)+0.01 & (I-30)+0.025(I-60)+0.075(I-70)=0 \\
0 \cdot 26 I & =7.55 \\
I & =7 \cdot 55 / 0 \cdot 26=29.04 \mathrm{~A}
\end{aligned}
$$

The actual distribution of currents is as shown in Fig. 13.37 (ii) from where it is clear that C is the point of minimum potential.
$\therefore \quad C$ is the point of minimum potential.
(ii) Current in section $A B=I=29 \cdot \mathbf{0 4} \mathrm{~A}$ from A to B

Current in section $B C=I-10=29.04-10=19.04$ A from B to C
Current in section $C D=I-30=29.04-30=-0.96 \mathrm{~A}=0.96$ A from D to C
Current in section $D E=I-60=29.04-60=-30.96 \mathrm{~A}=30.96$ A from E to D
Current in section $E A=I-70=29.04-70=-40.96 \mathrm{~A}=40.96 \mathrm{~A}$ from A to E

13.9 Ring Main Distributor with Interconnector

Sometimes a ring distributor has to serve a large area. In such a case, voltage drops in the various sections of the distributor may become excessive. In order to reduce voltage drops in various sections, distant points of the distributor are joined through a conductor called interconnector. Fig.
13.38 shows the ring distributor $A B C D E A$. The points B and D of the ring distributor are joined through an interconnector $B D$. There are several methods for solving such a network. However, the solution of such a network can be readily obtained by applying Thevenin's theorem. The steps of procedure are :

Fig. 13.38

(i)

(ii)

Fig. 13.39
(i) Consider the interconnector $B D$ to be disconnected [See Fig. 13.39 (i)] and find the potential difference between B and D. This gives Thevenin's equivalent circuit voltage E_{0}.
(ii) Next, calculate the resistance viewed from points B and D of the network composed of distribution lines only. This gives Thevenin's equivalent circuit series resistance R_{0}.
(iii) If $R_{B D}$ is the resistance of the interconnector $B D$, then Thevenin's equivalent circuit will be as shown in Fig. 13.39 (ii).
$\therefore \quad$ Current in interconnector $B D=\frac{E_{0}}{R_{0}+R_{B D}}$
Therefore, current distribution in each section and the voltage of load points can be calculated.
Example 13.24. A d.c. ring main $A B C D A$ is fed from point A from a 250 V supply and the resistances (including both lead and return) of various sections are as follows : $A B=0.02 \Omega ; B C=$ $0.018 \Omega ; C D=0.025 \Omega$ and $D A=0.02 \Omega$. The main supplies loads of 150 A at $B ; 300 \mathrm{~A}$ at C and 250 A at D. Determine the voltage at each load point.

If the points A and C are linked through an interconnector of resistance 0.02Ω, determine the new voltage at each load point.

Solution.

Without Interconnector. Fig. 13.40 (i) shows the ring distributor without interconnector. Let us suppose that a current I flows in section $A B$ of the distributor. Then currents in various sections of the distributor will be as shown in Fig. 13.40 (i).

Fig. 13.40

According to Kirchhoff's voltage law, the voltage drop in the closed loop $A B C D A$ is zero i.e.

$$
\begin{array}{cc}
& I_{A B} R_{A B}+I_{B C} R_{B C}+I_{C D} R_{C D}+I_{D A} R_{D A}=0 \\
\text { or } & 0.02 I+0.018(I-150)+0.025(I-450)+0.02(I-700)=0 \\
\text { or } & 0.083 I=27.95 \\
\therefore & I=27.95 / 0.083=336.75 \mathrm{~A}
\end{array}
$$

The actual distribution of currents is as shown in Fig. 13.40 (ii).
Voltage drop in $A B=336.75 \times 0.02=6.735 \mathrm{~V}$
Voltage drop in $B C=186.75 \times 0.018=3.361 \mathrm{~V}$
Voltage drop in $C D=113.25 \times 0.025=2.831 \mathrm{~V}$
Voltage drop in $D A=363.25 \times 0.02=7.265 \mathrm{~V}$
$\therefore \quad$ Voltage at point $B=250-6.735=243.265 \mathrm{~V}$
Voltage at point $C=243.265-3.361=239.904 \mathrm{~V}$
Voltage at point $D=239.904+2 \cdot 831=\mathbf{2 4 2 . 7 3 5} \mathbf{V}$
With Interconnector. Fig. 13.41 (i) shows the ring distributor with interconnector $A C$. The current in the interconnector can be found by applying Thevenin's theorem.

$$
\begin{aligned}
E_{0} & =\text { Voltage between points } A \text { and } C \\
& =250-239 \cdot 904=10 \cdot 096 \mathrm{~V} \\
R_{0} & =\text { Resistance viewed from points } A \text { and } C \\
& =\frac{(0 \cdot 02+0 \cdot 018)(0 \cdot 02+0 \cdot 025)}{(0 \cdot 02+0 \cdot 018)+(0 \cdot 02+0 \cdot 025)}=0 \cdot 02 \Omega \\
R_{A C} & =\text { Resistance of interconnector }=0 \cdot 02 \Omega
\end{aligned}
$$

Thevenin's equivalent circuit is shown in Fig. 13.41 (ii). Current in interconnector $A C$

$$
=\frac{E_{0}}{R_{0}+R_{A C}}=\frac{10 \cdot 096}{0 \cdot 02+0 \cdot 02}=252 \cdot 4 \mathrm{~A} \text { from } \mathrm{A} \text { to } C
$$

Fig. 13.41
Let us suppose that current in section $A B$ is I_{1}. Then current in section $B C$ will be $I_{1}-150$. As the voltage drop round the closed mesh $A B C A$ is zero,
$\therefore \quad 0.02 I_{1}+0.018\left(I_{1}-150\right)-0.02 \times 252.4=0$
or $\quad 0.038 I_{1}=7.748$
$\therefore \quad I_{1}=7 \cdot 748 / 0.038=203.15 \mathrm{~A}$
The actual distribution of currents in the ring distributor with interconnector will be as shown in Fig. 13.42.

$$
\text { Drop in } A B=203.15 \times 0.02=4.063 \mathrm{~V}
$$

$$
\begin{aligned}
\text { Drop in } B C & =53.15 \times 0.018 \\
& =0.960 \mathrm{~V} \\
\therefore \quad \text { Drop in } A D & =244.45 \times 0.02=4.9 \mathrm{~V} \\
\text { Potential of } B & =250-4.063 \\
& =245.93 \mathrm{~V} \\
\text { Potential of } C & =245.93-0.96 \\
& =244.97 \mathbf{V} \\
\text { Potential of } D & =250-4.9=\mathbf{2 4 5 . 1} \mathbf{~ V}
\end{aligned}
$$

It may be seen that with the use of interconnector, the voltage drops in the various sections of the distributor are reduced.

Example 13.25. Fig. 13.43 shows a ring distributor with interconnector BD. The supply is given at point A. The resistances of go and return conductors of various sections are indicated in the figure. Calculate :

Fig. 13.43
(i) current in the interconnector
(ii) voltage drop in the interconnector

Solution. When interconnector $B D$ is removed, let the current in branch $A B$ be I. Then current distribution will be as shown in Fig. 13.44 (i). As the total drop round the ring $A B C D E A$ is zero,

(i)

(ii)

Fig. 13.44
$\therefore \quad 0.075 I+0.025(I-10)+0.01(I-40)+0.05(I-60)+0.1(I-70)=0$
or
$0.26 I=10.65$
$\therefore \quad I=\frac{10 \cdot 65}{0 \cdot 26}=40 \cdot 96 \mathrm{~A}$
The actual distribution of currents will be as shown in Fig. 13.44 (ii).
Voltage drop along $B C D=30.96 \times 0.025+0.96 \times 0.01$

$$
=0.774+0.0096=0.7836 \mathrm{~V}
$$

This is equal to Thevenin's open circuited voltage E_{0} i.e.

$$
\begin{aligned}
E_{0} & =0.7836 \mathrm{~V} \\
R_{0} & =\text { Resistance viewed from } B \text { and } D \\
& =\frac{(0 \cdot 075+0 \cdot 1+0 \cdot 05)(0 \cdot 025+0 \cdot 01)}{(0 \cdot 075+0 \cdot 1+0 \cdot 05)+(0 \cdot 025+0 \cdot 01)} \\
& =\frac{(0 \cdot 225)(0 \cdot 035)}{0 \cdot 225+0.035}=0 \cdot 03 \Omega
\end{aligned}
$$

(i) Current in interconnector $B D$ is

$$
I_{B D}=\frac{E_{0}}{R_{0}+R_{B D}}=\frac{0.7836}{0.03+0.05}=9.8 \mathrm{~A}
$$

(ii) Voltage drop along interconnector $B D$

$$
=I_{B D} R_{B D}=9.8 \times 0.05=0.49 \mathrm{~V}
$$

TUTORIAL PROBLEMS

1. A 300 m ring distributor has loads as shown in Fig. 13.45 where distances are in metres. The resistance of each conductor is 0.2 W per 1000 metres and the loads are tapped off at points B, C and D as shown. If the distributor is fed at A at 240 V , find voltages at B, C and D.

$$
\left[V_{B}=236.9 \mathrm{~V} ; V_{C}=235.97 \mathrm{~V} ; V_{D}=237.45 \mathrm{~V}\right]
$$

Fig. 13.45
2. A d.c. 2-wire ring main $A B C D E A$ is fed from 230 V supply as shown in Fig. 13.46. The resistance of each section (go and return) $A B, B C, C D, D E$ and $E A$ is 0.1 W . The loads are tapped off as shown. Find the voltage at each load point.
$\left[V_{B}=227 \mathrm{~V} ; V_{C}=225 \mathrm{~V} ; V_{D}=225 \mathrm{~V}\right.$; $\left.V_{E}=226 \mathrm{~V}\right]$
3. In the d.c. network shown in Fig.13.47, A is the feeding point and is maintained at 250 V . The resistances

Fig. 13.46

Fig. 13.47

13.10 3-Wire D.C. System

The great disadvantage of direct current for general power purposes lies in the fact that its voltage cannot readily be changed, except by the use of rotating machinery, which in most cases is too expensive. The problem can be solved to a limited extent by the use of 3-wire d.c. system which makes available two voltages viz. V volts between any outer and neutral and 2 V volts between the outers. Motor loads requiring high voltage are connected between the outers whereas lighting and heating loads requiring less voltage are connected between any one outer and the neutral. Due to the availability of two voltages, 3-wire system is preferred over 2-wire system for d.c. distribution.

Fig. 13.48 shows the general principles of a 3 -wire d.c. system. It consists of two outers and a middle or neutral wire which is earthed at the generator end. The potential of the neutral wire is *half-way between the potentials of the outers. Thus, if p.d. between the

Fig. 13.48 outers is 440 V , then positive outer is at 220 V above the neutral and negative outer is 220 V below the neutral. The current in the neutral wire will depend upon the loads applied to the two sides.
(i) If the loads applied on both sides of the neutral are equal (i.e. balanced) as shown in Fig 13.48 , the current in the neutral wire will be zero. Under these conditions, the potential of the neutral will be exactly half-way between the potential difference of the outers.
(ii) If the load on the positive outer $\left(I_{1}\right)$ is greater than on the negative outer $\left(I_{2}\right)$, then out of balance current $I_{1}-I_{2}$ will flow in the neutral wire from load end to supply end as shown in Fig. 13.49 (i). Under this condition, the potential of neutral wire will no longer be midway between the potentials of the outers.

(iii) If the load on the negative outer $\left(I_{2}\right)$ is greater than on the positive outer $\left(I_{1}\right)$, then out of balance current $I_{2}-I_{1}$ will flow in the neutral from supply end to load end as shown in Fig. 13.49 (ii). Again, the neutral potential will not remain half-way between that of the outers.
(iv) As the neutral carries only the out of balance current which is generally small, therefore, area of X-section of neutral is taken half as compared to either of the outers.
It may be noted that it is desirable that voltage between any outer and the neutral should have the same value. This is achieved by distributing the loads equally on both sides of the neutral.

[^6]
13.11 Current Distribution in 3-Wire D.C. System

Fig. 13.50 shows a 3-wire $500 / 250 \mathrm{~V}$ d.c. distributor. Typical values of loads have been assumed to make the treatment more illustrative. The motor requiring 500 V is connected across the outers and takes a current of 75 A . Other loads requiring lower voltage of 250 V are connected on both sides of the neutral.

Fig. 13.50
Applying Kirchhoff's current law, it is clear that a current of 120 A enters the positive outer while 130 A comes out of the negative outer. Therefore, $130-120=10$ A must flow in the neutral at point N. Once the magnitude and direction of current in the section $N J$ is known, the directions and magnitudes of currents in the other sections of the neutral can be easily determined. For instance, the currents meeting at point K must add up to 40 A to supply the load $K H$. As seen in Fig. 13.50, 20A of $C J$ and 10A of $N J$ flow towards K, the remaining 10A coming from point L. The current of 25 A of load $D L$ is divided into two parts; 10A flowing along section $L K$ and the remaining 15 A along the section $L O$ to supply the load $O G$.

Load-point voltages. Knowing the currents in the various sections of the outers and neutral, the voltage at any load point can be determined provided resistances are known. As an illustration, let us calculate the voltage across load $C J$ of Fig.13.50. Applying Kirchhoff's voltage law to the loop ACJNA, we have,
[Algebraic sum of voltage drops] + [Algebraic sum of e.m.f.s.] $=0$
or $\quad *[-$ drop in $A C-$ voltage across $C J+$ drop in $N J]+[250]=0$
or Voltage across $C J=250-$ drop in $A C+$ drop in $N J$
Example 13.26. A load supplied on 3-wire d.c. system takes a current of 50 A on the + ve side and 40 A on the negative side. The resistance of each outer wire is $0 \cdot 1 \Omega$ and the cross-section of middle wire is one-half of that of outer. If the system is supplied at $500 / 250 \mathrm{~V}$, find the voltage at the load end between each outer and middle wire.

Solution. Fig. 13.51 shows the current loading. Obviously, current in the neutral wire is $50-40$ $=10 \mathrm{~A}$. As the X -sectional area of neutral is half that of outer, therefore, its resistance $=2 \times 0 \cdot 1=0.2 \Omega$.

Voltage at the load end on the +ve side,

$$
\begin{aligned}
V_{E L} & =250-I_{1} R_{A E}-\left(I_{1}-I_{2}\right) R_{N L} \\
& =250-50 \times 0 \cdot 1-(10) \times 0 \cdot 2=\mathbf{2 4 3} \mathbf{V}
\end{aligned}
$$

Voltage at the load end on the -ve side,

[^7]

Fig. 13.51

$$
\begin{aligned}
V_{L G} & =250+\left(I_{1}-I_{2}\right) R_{N L}-I_{2} R_{B G} \\
& =250+10 \times 0 \cdot 2-40 \times 0 \cdot 1=\mathbf{2 4 8} \mathbf{~ V}
\end{aligned}
$$

Example 13.27. A 3-wire d.c. distribution system supplies a load of 5Ω resistance across the $+v e ~ o u t e r ~ a n d ~ n e u t r a l ~ a n d ~ a ~ l o a d ~ o f ~ 6 \Omega ~ r e s i s t a n c e ~ a c r o s s ~-v e ~ o u t e r ~ a n d ~ n e u t r a l ~ a t ~ t h e ~ f a r ~ e n d ~ o f ~ t h e ~$ distributor. The resistance of each conductor is 0.1Ω. If the voltage between any outer and neutral at the load end is to be kept at 240 V , find the feeding end voltages.

Solution. Fig. 13.52 shows the 3 -wire distribution system.
Current on +ve outer, $\quad I_{1}=240 / 5=48 \mathrm{~A}$
Current on -ve outer, $\quad I_{2}=240 / 6=40 \mathrm{~A}$
Current in neutral $=I_{1}-I_{2}=48-40=8 \mathrm{~A}$

Fig. 13.52
Voltage between + ve outer and neutral at feeding end is

$$
\begin{aligned}
V_{1} & =V_{E L}+I_{1} R_{A E}+\left(I_{1}-I_{2}\right) R_{N L} \\
& =240+48 \times 0 \cdot 1+8 \times 0 \cdot 1=\mathbf{2 4 5} \cdot 6 \mathbf{V}
\end{aligned}
$$

Voltage between -ve outer and neutral at feeding end is

$$
\begin{aligned}
V_{2} & =V_{L C}-\left(I_{1}-I_{2}\right) R_{N L}+I_{2} R_{B C} \\
& =240-8 \times 0 \cdot 1+40 \times 0 \cdot 1=\mathbf{2 4 3} \cdot \mathbf{2} \mathbf{V}
\end{aligned}
$$

D.C. Distribution

Example 13.28. A 3-wire $500 / 250$ V d.c. system has a load of 35 kW between the positive lead and the middle wire and a load of 20 kW between the negative lead and the middle wire. If there is a break in the middle wire, calculate the voltage between the outers and the middle wire.

Solution. Fig. 13.53 (i) shows the arrangement before the disconnection of the middle wire. The voltages on the two sides of the middle wire are equal i.e. 250 V . Let R_{1} be the resistance of load on the +ve side and R_{2} be the resistance of load on the negative side.

$$
R_{1}=\frac{(250)^{2}}{35 \times 10^{3}}=1.785 \Omega ; R_{2}=\frac{(250)^{2}}{20 \times 10^{3}}=3.125 \Omega \quad\left[\because R=V^{2} / P\right]
$$

When there is a break in the middle wire, two resistances R_{1} and R_{2} are put in series across 500 V as shown in Fig. 13.53 (ii).

(i)

(ii)

Fig. 13.53
\therefore Circuit current, $\quad I=\frac{500}{R_{1}+R_{2}}=\frac{500}{1 \cdot 785+3 \cdot 125}=101.83 \mathrm{~A}$
$\therefore \quad$ Voltage across +ve outer and middle wire,

$$
V_{1}=I R_{1}=101.83 \times 1.785=\mathbf{1 8 1 . 8} \mathbf{V}
$$

Voltage across -ve outer and middle wire,

$$
V_{2}=I R_{2}=101.83 \times 3.125=318.2 \mathrm{~V}
$$

Example 13.29. A 3-wire, 500/250 V distributor is loaded as shown in Fig. 13.54. The resistance of each section is given in ohm. Find the voltage across each load point.

Fig. 13.54
Solution. From the current loading given in Fig. 13.54, we can find the magnitudes and directions of currents in the various sections by applying Kirchhoff's current law. Fig. 13.55 shows the magnitudes and directions of currents in the various sections.

The voltage drops in the various sections are worked out below.

Section	Resistance (Ω)	Current (A)	Drop (V)
$A C$	0.015	50	0.75
$C D$	0.01	30	0.3
$M L$	0.006	30	0.18
$K L$	0.014	6	0.084
$K J$	0.02	14	0.28
$N J$	0.02	10	0.2
$H G$	0.024	36	0.864
$G B$	0.02	60	1.2

Fig. 13.55
Voltage across load $C K=250-$ Drop in $A C-$ Drop in $K J+$ Drop in $N J$

$$
=250-0.75-0.28+0.2=\mathbf{2 4 9} \cdot \mathbf{1 7} \mathbf{~ V}
$$

Voltage across load $D M=249 \cdot 17-$ Drop in $C D-$ Drop in $M L+$ Drop in $K L$
$=249.17-0.3-0.18+0.084=\mathbf{2 4 8} \cdot \mathbf{7 7 4} \mathbf{V}$
Voltage across load $J G=250$ - Drop in $N J$ - Drop in $G B$
$=250-0 \cdot 2-1 \cdot 2=\mathbf{2 4 8} \cdot \mathbf{6} \mathbf{~ V}$
Voltage across load $L H=248.6+$ Drop in $K J-$ Drop in $K L-$ Drop in $H G$

$$
=248.6+0.28-0.084-0.864=247.932 \mathbf{V}
$$

Example 13.30. A 3-wire d.c. distributor AE 600 m long is supplied at end A at $500 / 250 \mathrm{~V}$ and is loaded as under :

Positive side : 60A, 200 m from A ; $40 \mathrm{~A}, 360 \mathrm{~m}$ from A
Negative side : 20A, 100 m from B; 60A, 260 m from B and $15 A, 600 \mathrm{~m}$ from B
The resistance of each outer is 0.02Ω per 100 metres and the cross-section of the neutral wire is the same as that of the outer. Find the voltage across each load point.

D.C. Distribution

Solution. From the current loading given in Fig. 13.56, we can find the magnitudes and directions of currents in the various sections by Kirchhoff's current law as shown in Fig. 13.57. As the neutral is of same cross-section, its resistance is 0.02Ω per 100 metres. The voltage drops in the various sections are worked out below :

Section	Resistance (Ω)	Current (A)	Drop (V)
$A C$	$0.02 \times 200 / 100=0.04$	100	4
$C D$	$0.02 \times 160 / 100=0.032$	40	1.28
$M P$	$0.02 \times 240 / 100=0.048$	15	0.72
$M L$	$0.02 \times 100 / 100=0.02$	25	0.5
$K L$	$0.02 \times 60 / 100=0.012$	35	0.42
$K J$	$0.02 \times 100 / 100=0.02$	25	0.5
$J N$	$0.02 \times 100 / 100=0.02$	5	0.1
$F H$	$0.02 \times 340 / 100=0.068$	15	1.02
$H G$	$0.02 \times 160 / 100=0.032$	75	2.4
$G B$	$0.02 \times 100 / 100=0.02$	95	1.9

Fig. 13.57
Voltage across $C K=250-$ Drop in $A C-$ Drop in $K J-$ Drop in $J N$
$=250-4-0.5-0.1=245 \cdot 4 \mathrm{~V}$
Voltage across $D M=245 \cdot 4-$ Drop in $C D-$ Drop in $M L+$ Drop in $K L$
$=245.4-1.28-0.5+0.42=\mathbf{2 4 4 . 0 4} \mathbf{~ V}$
Voltage across $J G=250+$ Drop in $J N-$ Drop in $G B$
$=250+0 \cdot 1-1 \cdot 9=248 \cdot 2 \mathrm{~V}$
Voltage across $L H=248 \cdot 2+$ Drop in $K J-$ Drop in $K L-$ Drop in $H G$
$=248.2+0.5-0.42-2.4=\mathbf{2 4 5} .88 \mathbf{V}$
Voltage across $P F=245.88+$ Drop in $M L-$ Drop in $M P-$ Drop in $F H$
$=245.88+0.5-0.72-1.02=\mathbf{2 4 4 . 6 4} \mathbf{V}$
Example 13.31. The 3-wire d.c. system supplies a load of 4Ω resistance across $+v e$ wire and the neutral wire and a load of 6Ω resistance across -ve outer and the neutral at the far end of the distributor. The resistance of each conductor is 0.15Ω and voltage across each outer and neutral is 240 V at the load end. Determine the load current and load voltages when there is a break in the (i) neutral wire (ii) positive outer (iii) negative outer. Assume that the load resistances and the feeding end voltages remain the same.

Solution. Fig. 13.58 shows the conditions of the problem when the system is healthy. Let us find the feeding end voltages.

$$
\begin{array}{ll}
\text { Current in the positive outer, } & I_{1}=240 / 4=60 \mathrm{~A} \\
\text { Current in the negative outer, } & I_{2}=240 / 6=40 \mathrm{~A} \\
\text { Current in the neutral wire } & =I_{1}-I_{2}=60-40=20 \mathrm{~A}
\end{array}
$$

Voltage between + ve outer and neutral at feeding point is

$$
\begin{aligned}
V_{1} & =V_{E L}+I_{1} R_{A E}+\left(I_{1}-I_{2}\right) R_{N L} \\
& =240+60 \times 0 \cdot 15+20 \times 0 \cdot 15=252 \mathrm{~V}
\end{aligned}
$$

Voltage between -ve outer and neutral at feeding point is

$$
\begin{aligned}
V_{2} & =V_{L C}-\left(I_{1}-I_{2}\right) R_{N L}+I_{2} R_{B C} \\
& =240-20 \times 0 \cdot 15+40 \times 0 \cdot 15=243 \mathrm{~V}
\end{aligned}
$$

Fig. 13.58
(i) When neutral breaks. When there is a break in the neutral, the system is equivalent to 2wire d.c. system having load resistance $=4+6=10 \Omega$ and p.d. $=252+243=495 \mathrm{~V}$ at the feeding end. If I is the load current, then,

Total circuit resistance $=10+0 \cdot 15+0 \cdot 15=10 \cdot 3 \Omega$
$\therefore \quad$ Load current, $I=495 / 10 \cdot 3=48 \cdot 06 \mathrm{~A}$
Voltage across 4Ω resistance $=I \times 4=48.06 \times 4=\mathbf{1 9 2 . 2 4 ~ V}$
Voltage across 6Ω resistance $=I \times 6=48.06 \times 6=\mathbf{2 8 8 . 3 6 ~ V}$
(ii) When +ve outer breaks. When there is a break in the +ve outer, there will be no current in 4Ω load. The circuit is again 2-wire d.c. system but now load is 6Ω and p.d. at the feeding point is 243 V .

$$
\text { Total circuit resistance }=6+0 \cdot 15+0 \cdot 15=6 \cdot 3 \Omega
$$

If I^{\prime} is the load current, then,

$$
\begin{aligned}
I^{\prime} & =243 / 6 \cdot 3=38 \cdot 57 \mathrm{~A} \\
\text { Voltage across } 6 \Omega & =I^{\prime} \times 6=38 \cdot 57 \times 6=231 \cdot \mathbf{4 2} \mathrm{~V}
\end{aligned}
$$

(iii) When -ve outer breaks. When there is a break in the negative outer, there will be no current in 6Ω load. The circuit is again 2 -wire d.c. system but now load is 4Ω and p.d. at the feeding point is 252 V .

Total circuit resistance $=4+0 \cdot 15+0 \cdot 15=4 \cdot 3 \Omega$
If $I^{\prime \prime}$ is the load current, then,

$$
I^{\prime \prime}=252 / 4 \cdot 3=58.6 \mathbf{A}
$$

Voltage across $4 \Omega=I^{\prime \prime} \times 4=58.6 \times 4=\mathbf{2 3 4 . 4 2} \mathbf{~ V}$

TUTORIAL PROBLEMS

1. A load supplied by a 3 -wire d.c. distribution system takes a current of 600 A on the +ve side and 480 A on the -ve side. The resistance of the outer conductor is 0.015Ω and that of the middle wire is 0.03Ω. Determine the voltage at the load end between each outer and middle wire. Supply voltage is $500 / 250 \mathrm{~V}$.
[+ve side : $\mathbf{2 3 7} \cdot \mathbf{4} \mathrm{V}$; -ve side : $\mathbf{2 4 6} \cdot \mathbf{4} \mathrm{V}$]
2. A 3-wire d.c. distributor, 250 m long, is supplied at end P at $500 / 250 \mathrm{~V}$ and is loaded as under :

Positive side : $20 \mathrm{~A}, 150 \mathrm{~m}$ from $P ; 30 \mathrm{~A}, 250 \mathrm{~m}$ from P
Negative side : $24 \mathrm{~A}, 100 \mathrm{~m}$ from $P ; 36 \mathrm{~A}, 220 \mathrm{~m}$ from P
The resistance of each outer wire is 0.02Ω per 100 m and the cross-section of the middle wire is one half that of the outer. Find the voltage across each load point.
[Positive side : $\mathbf{2 4 8} \cdot \mathbf{6 2} \mathrm{V} ; \mathbf{2 4 7} \cdot \mathbf{8 3} \mathrm{V}$; Negative side : $\mathbf{2 4 8} \cdot \mathbf{4} \mathrm{V} ; \mathbf{2 4 7} \cdot \mathbf{6 5} \mathrm{V}$]
3. The 3-wire d.c. system supplies a load of 4Ω resistance across the + ve wire and the neutral and a load of 6Ω resistance across -ve outer and the neutral at the far end of the distributor. The resistance of each conductor is 0.15Ω and voltage across each outer and neutral is 240 V at the load end. Calculate the feeding end voltage.
[+ve side : 252 V ; -ve side : $\mathbf{2 4 3}$ V]

13.12 Balancers in 3-Wire D.C. System

Although in a 3-wire d.c. system every effort is made to distribute the various loads equally on both sides of the neutral, yet it is difficult to achieve the exact balance. The result is that some current does flow in the neutral wire and consequently the voltages on the two sides of the neutral do not remain equal to each other. In order to maintain voltages on the two sides of the neutral equal to each other, a balancer set is used.

Circuit details. Fig. 13.59 shows the use of a balancer set in a 3-wire d.c. system. The balancer consists of two identical shunt wound machines A and B coupled mechanically and having their armature and field circuits connected in series across the outers. The neutral wire is connected to the junction of the armatures as shown. The circuit arrangement has two obvious advantages. Firstly, only one generator (G) is required which results in a great saving in cost. Secondly, the balancer set tends to equalise the voltages on the two sides of the neutral.

Fig. 13.59
Theory. Since the speeds and field currents of the two machines are equal, their back e.m.f.s have the same value. When the system is unloaded or when the loads on the two sides are the same (i.e. balanced), no current flows in the neutral wire. Hence, the two machines run as unloaded motors

When the load is unbalanced, the current supplied by the +ve outer will be different from that supplied by the negative outer. Suppose that load I_{1} on the + ve outer is greater that the load I_{2} on the -ve outer. Since the + ve side is more heavily loaded, p.d. on this side tends to fall below the e.m.f. of the balancer set. Therefore, machine A runs as a generator. On the other hand, p.d. on the lightly
loaded - ve side rises above the e.m.f. of the balancer so that machine B runs as a motor. The result is that energy is transferred from lightly loaded side to the heavily loaded side, preventing the voltage across heavily loaded side form dropping very much below the normal value.

For the condition shown in Fig. 13.59, the machine B acts as a motor and machine A as a generator. The out of balance current $I_{1}-I_{2}$ flows through the middle wire towards the balancers. Assuming the internal losses of the two machines to be negligible, then armature currents will be equal. Hence, one-half of the current in neutral i.e. $\left(I_{1}-I_{2}\right) / 2$ will flow through each machine as shown.

Let

$$
\therefore \quad V_{1}=E-\left(\frac{I_{1}-I_{2}}{2}\right) R_{a}
$$

$$
\begin{aligned}
R_{a} & =\text { armature resistance of each machine } \\
* E & =\text { induced e.m.f. of each machine } \\
V_{1} & =\text { terminal p.d. of machine } A \text { running as a generator } \\
V_{2} & =\text { terminal p.d. of machine } B \text { running as a motor } \\
V_{1} & =E-\left(\frac{I_{1}-I_{2}}{2}\right) R_{a} \\
V_{2} & =E+\left(\frac{I_{1}-I_{2}}{2}\right) R_{a}
\end{aligned}
$$

and
Difference of voltages between two sides

$$
\begin{aligned}
& =V_{2}-V_{1} \\
& =\left[E+\left(\frac{I_{1}-I_{2}}{2}\right) R_{a}\right]-\left[E-\left(\frac{I_{1}-I_{2}}{2}\right) R_{a}\right] \\
& =\left(I_{1}-I_{2}\right) R_{a}
\end{aligned}
$$

It is clear that difference of voltages between the two sides of the system is proportional to
(i) the out-of-balance current $I_{1}-I_{2}$
(ii) the armature resistance of balancer

Therefore, in order to keep the voltages on the two sides equal, R_{a} is kept small and loads are arranged on the two sides in such a way that out of balance current is as small as possible.

The difference of voltages $\left(V_{2}-V_{1}\right)$ on the two sides can be further reduced by cross-connecting the shunt fields of the balancer set as shown in Fig. 13.60. As the generating machine A draws its excitation from lightly loaded side which is at a higher voltage, therefore, induced e.m.f. of the machine is increased. On the other hand, induced e.m.f. of machine B is decreased since it draws its excitation from the heavily loaded side. The result is that the difference $V_{2}-V_{1}$ is decreased considerably. It may be noted that a perfect balance cannot be obtained because the operation of the balancer set depends upon a slight unbalancing of the voltages on the two sides.

Example 13.32. A d.c. 3-wire system with 500 V be-

Fig. 13.60 tween the outers supplies 1500 kW on the + ve outer and 2000 kW on the negative outer. If the losses in the machines are negligible, calculate:
(i) current in the neutral wire
(ii) total current supplied by main generator
(iii) current in each balancer armature

Solution. The connections are shown in Fig. 13.61. As the negative side is more heavily loaded, therefore, machine B acts as a generator and machine A as a motor.

[^8]Load current on +ve outer, $\quad I_{1}=1500 \times 10^{3} / 250=6000 \mathrm{~A}$
Load current on -ve outer, $\quad I_{2}=2000 \times 10^{3} / 250=8000 \mathrm{~A}$

(i)

$$
\text { Current in the neutral }=I_{2}-I_{1}=8000-6000=\mathbf{2 0 0 0} \mathbf{A}
$$

(ii) Total load on main generator $=1500+2000=3500 \mathrm{~kW}$
\therefore Current supplied by main generator, $I_{G}=3500 \times 10^{3} / 500=7000 \mathrm{~A}$
(iii)

$$
\begin{aligned}
& \text { Current in machine } A=I_{G}-I_{1}=7000-6000=1000 \mathrm{~A} \\
& \text { Current in machine } B=I_{2}-I_{G}=8000-7000=1000 \mathbf{A}
\end{aligned}
$$

Example 13.33. A d.c. 3-wire system with 500 V between outers has lighting loads of 150 kW on the positive side and 100 kW on the negative side. The loss in each balancer machine is 3 kW . Calculate :
(i) total load on the main generator
(ii) kW loading of each balancer machine

Solution. The connections are shown in Fig. 13.62. As the positive side is more heavily loaded, therefore, machine A acts as a generator and machine B as a motor.
(i) Total load on the main generator

$$
\begin{aligned}
& =\text { load on }+ \text { ve side }+ \text { load on }- \text { ve side }+ \text { losses } \\
& =150+100+2 \times 3=\mathbf{2 5 6} \mathbf{k W}
\end{aligned}
$$

(ii) Current supplied by the main generator,

$$
\begin{aligned}
I_{G} & =256 \times 10^{3} / 500=512 \mathrm{~A} \\
I_{1} & =150 \times 10^{3} / 250=600 \mathrm{~A} \\
I_{2} & =100 \times 10^{3} / 250=400 \mathrm{~A} \\
& =I_{1}-I_{2}=600-400=200 \mathrm{~A} \\
& =I_{1}-I_{\mathrm{G}}=600-512=88 \mathrm{~A} \\
& =I_{\mathrm{G}}-I_{2}=512-400=112 \mathrm{~A} \\
& =88 \times 250 / 1000=\mathbf{2 2} \mathbf{k W} \\
& =112 \times 250 / 1000=\mathbf{2 8} \mathbf{k W}
\end{aligned}
$$

Load current on +ve side,
Load current on -ve side,
Current in neutral wire
Current through machine A
Current through machine B
\therefore Load on machine A
Load on machine B
Example 13.34. In a 500/250 V d.c. 3-wire system, there is a current of 1200 A on the + ve side and 1000 A on the -ve side and a motor load of 200 kW across the outers. The loss in each balancer machine is 5 kW . Calculate :
(i) current of the main generator
(ii) load on each balancer machine

Solution. The connections are shown in Fig. 13.63. As the positive side is more heavily loaded, therefore, machine A acts as a generator and machine B as a motor.

$$
\begin{array}{ll}
\text { Load on +ve side, } & P_{1}=250 \times 1200 / 1000=300 \mathrm{~kW} \\
\text { Load on -ve side, } & P_{2}=250 \times 1000 / 1000=250 \mathrm{~kW} \\
\text { Load on outers, } & P_{3}=200 \mathrm{~kW}
\end{array}
$$

(i) Total load on the main generator $=P_{1}+P_{2}+P_{3}+$ loss in balancer machines

$$
=300+250+200+10=760 \mathrm{~kW}
$$

Current of main generator, $\quad I_{G}=760 \times 10^{3} / 500=1520 \mathrm{~A}$
(ii) Current in neutral

$$
=1200-1000=200 \mathrm{~A}
$$

Current through machine A

$$
=1600-1520=80 \mathrm{~A}
$$

Fig. 13.63
Current thro' machine $B=1520-1400=120 \mathrm{~A}$
Load on machine $A=80 \times 250 / 1000=20 \mathrm{~kW}$
Load on machine $B=120 \times 250 / 1000=30 \mathrm{~kW}$
Example 13.35. A d.c. 3-wire system with 500 volts across outers supplies 800 A on the positive side and 550 A on the negative side and 1500 A across the outers. The rotary balancer has each an

D.C. Distribution

armature resistance of $0 \cdot 2 \Omega$ and takes 5 A on no load. Find :
(i) current loading of each balancer machine
(ii) the voltage across each balancer machine
(iii) total load on the main generator

Solution. The connections are shown in Fig. 13.64. As the positive side is more heavily loaded, therefore, machine A acts as a generator and machine B as a motor.

Total current on + ve side $=800+1500=2300 \mathrm{~A}$
Total current on -ve side $=550+1500=2050 \mathrm{~A}$
Current in neutral wire $=800-550=250 \mathrm{~A}$
Let the current through machines A and B be I_{A} and I_{B} respectively. Then $I_{A}+I_{B}$ must be equal to current in the neutral wire i.e.

$$
\begin{aligned}
I_{A}+I_{B} & =250 \\
I_{A} & =250-I_{B}
\end{aligned}
$$

(i) Let V_{A} and V_{B} be the p.d.s. of machines A and B respectively. Since machine B is driving the machine A, output of B supplies the losses in the set plus the output of machine A i.e.

Fig. 13.64
Output of machine $B=$ Output of machine $\mathrm{A}+*$ Losses in the set
or

$$
\begin{equation*}
V_{B} I_{B}=V_{A} I_{A}+500 \times 5+I_{A}^{2} R_{A}+I_{B}^{2} R_{B} \tag{i}
\end{equation*}
$$

$\therefore \quad V_{B} I_{B}=V_{A}\left(250-I_{B}\right)+2500+\left(250-I_{B}\right)^{2} \times 0 \cdot 2+0 \cdot 2 I_{B}^{2}$
Each machine has same value of back e.m.f. E since their field currents and speeds are the same.

Back e.m.f.,
Terminal p.d. across A,

$$
\begin{align*}
E & =250-0 \cdot 2 \times 5=249 \mathrm{~V} \\
V_{A} & =E-I_{A} R_{A}=249-0 \cdot 2\left(250-I_{B}\right) \\
V_{A} & =199+0 \cdot 2 I_{B} \tag{ii}\\
V_{B} & =E+I_{B} R_{B} \\
& =249+0 \cdot 2 I_{B} \tag{iii}
\end{align*}
$$

Substituting the values of V_{A} and V_{B} in exp. (i), we get,
or

$$
\begin{aligned}
\left(249+0 \cdot 2 I_{B}\right) I_{B}= & \left(199+0 \cdot 2 I_{B}\right)\left(250-I_{B}\right)+2500+\left(250-I_{B}\right)^{2} \times 0 \cdot 2+0 \cdot 2 I_{B}^{2} \\
249 I_{B}+0 \cdot 2 I_{B}^{2}= & 49,750-199 I_{B}+50 I_{B}-0 \cdot 2 I_{B}^{2}+2500+12,500 \\
& +0 \cdot 2 I_{B}^{2}-100 I_{B}+0 \cdot 2 I_{B}^{2}
\end{aligned}
$$

* Losses in the set $=$ No load losses + Copper losses

$$
=500 \times 5+I_{A}^{2} R_{A}+I_{B}^{2} R_{B}
$$

or
\therefore
and
(ii) Voltage across machine A,

Voltage across machine B,
(iii) Load on main generator

$$
\begin{aligned}
498 I_{B} & =64,750 \\
I_{B} & =64750 / 498=\mathbf{1 3 0} \mathbf{A} \\
I_{A} & =250-130=\mathbf{1 2 0} \mathbf{~ A} \\
V_{A} & =199+0 \cdot 2 I_{B}=199+0 \cdot 2 \times 130=\mathbf{2 2 5} \mathbf{V} \\
V_{B} & =249+0 \cdot 2 I_{B}=249+0 \cdot 2 \times 130=\mathbf{2 7 5} \mathbf{V} \\
& =2300-I_{A}=2300-120=\mathbf{2 1 8 0} \mathbf{A}
\end{aligned}
$$

TUTORIAL PROBLEMS

1. A load on 3-wire d.c. system with 500 V between the outers consists of 1500 A on the positive side and 1300A on the negative side while motors connected across outers absorb 500 kW . Assuming each balancer machine has a loss of 3.75 kW , calculate the load on the main generator and each balancer machine.
[1207.5 kW ; 21.25 kW ; 28.75 kW]
2. In a $500 / 250 \mathrm{~V}$ d.c. 3 -wire system, there is a current of 2000 A on the +ve side, 1600 A on the negative side and a load of 300 kW across the outers. The loss in each balancer set is 8 kW . Calculate the current in each armature of the balancer set and total load on the main generator. $\quad[\mathbf{1 6 8 A} ; \mathbf{2 3 2 A} ; \mathbf{1 2 1 6} \mathbf{k W}]$
3. In a $500 / 250$ volt 3 -wire d.c. system, there is an out of balance load of 200 kW on the positive side. The loss in each balancer set is 10 kW and the current in the negative main is 2800A. Calculate the current in each armature of the balancer set and the total load on the generator.
[440A ; 360A ; 1620 kW]

13.13 Boosters

A booster is a d.c. generator whose function is to inject or add certain voltage into a circuit so as to compensate the IR drop in the feeders etc.

A booster is essentially a series d.c. generator of large current capacity and is connected in series with the feeder whose voltage drop is to be compensated as shown in Fig. 13.65. It is driven at constant speed by a shunt motor working from the bus-bars. As the booster is a series generator, therefore, voltage generated by it is directly proportional to the field current which is here the feeder current. When the feeder current increases, the voltage drop in the feeder also increases. But Bus - bars

Fig. 13.65 increased feeder current results in greater field excitation of booster which injects higher voltage into the feeder to compensate the voltage drop. For exact compensation of voltage drop, the booster must be marked on the straight or linear portion of its voltage-current characteristics.

It might be suggested to compensate the voltage drop in the feeder by overcompounding the generators instead of using a booster. Such a method is not practicable for feeders of different lengths because it will disturb the voltage of other feeders. The advantage of using a booster is that each feeder can be regulated independently - a great advantage if the feeders are of different lengths.

Example 13.36. A 2-wire system has the voltage at the supply end maintained at 500 V . The line is 3 km long. If the full-load current is 120 A , what must be the booster voltage and output in order that the far end voltage may also be 500 V ? Take the resistance of the cable at the working temperature as $0.5 \Omega / \mathrm{km}$.

Solution.

Total resistance of line $\quad=0.5 \times 3=1.5 \Omega$
F.L. voltage drop in the line $\quad=1.5 \times 120=180 \mathrm{~V}$
$\therefore \quad$ Terminal voltage of booster $=\mathbf{1 8 0} \mathrm{V}$

$$
\text { Output of booster }=\frac{120 \times 180}{1000} \mathrm{~kW}=21 \cdot 6 \mathrm{~kW}
$$

13.14 Comparison of 3-Wire and 2-Wire D.C. Distribution

It is worthwhile to make a comparison between 3-wire and 2 -wire systems for d.c. distribution. It will be shown that there is a great saving of conductor material if we use 3 -wire system instead of 2wire system for d.c. distribution. For comparison, it will be assumed that :
(i) the amount of power P transmitted is the same
(ii) the *voltage V at the consumer's terminals is the same
(iii) the distance of transmission is the same
(iv) the efficiency of transmission (and hence losses) is the same
(v) the 3-wire system is balanced i.e. no current in the neutral wire
(vi) the area of X-section of neutral wire is half the cross-section of outers in 3-wire system

Let

$$
\begin{aligned}
& R_{2}=\text { resistance of each conductor in 2-wire system } \\
& R_{3}=\text { resistance of each outer in 3-wire system }
\end{aligned}
$$

Current through outers in case of 3-wire system is

$$
I_{3}=P / 2 \mathrm{~V}
$$

Total loss in two outers

$$
=2 I_{3}^{2} R_{3}=2(P / 2 V)^{2} R_{3}
$$

Current in 2-wire system, $\quad I_{2}=P / V$
Total loss

$$
=2 I_{2}^{2} R_{2}=2(P / V)^{2} R_{2}
$$

Since efficiency of transmission is the same, it means losses are the same i.e.

$$
\begin{aligned}
& 2(P / 2 V)^{2} R_{3} & =2(P / V)^{2} R_{2} \\
\therefore & R_{3} & =4 R_{2}
\end{aligned}
$$

Therefore, the area of X -section of outers in 3-wire case will be one-fourth of each conductor in 2-wire case.
$\left.\begin{array}{ll}\text { Let } & a \\ & =\text { area of X-section of each conductor is 2-wire case } \\ \text { Then } & a / 4\end{array}\right)=$ area of X-section of each outer in 3-wire case

If l is the length of the line, then,
Volume of Cu for 3-wire system $\quad=l\left(\frac{a}{4}+\frac{a}{4}+\frac{a}{8}\right)=\frac{5}{8} a l$
Volume of Cu for 2-wire system $\quad=l(a+a)=2 a l$
$\therefore \quad \frac{\text { Volume of } \mathrm{Cu} \text { for 3-wire system }}{\text { Volume of } \mathrm{Cu} \text { for 2-wire system }}=\frac{5}{8} a l \times \frac{1}{2 a l}=\frac{5}{16}$
Hence a 3-wire system requires only $5 / 16$ th (or 31.25%) as much copper as a 2 -wire system.
Note. If the neutral has the same X -section as the outer, then,
Volume of Cu for 3-wire system

$$
\begin{aligned}
& =l\left(\frac{a}{4}+\frac{a}{4}+\frac{a}{4}\right)=\frac{3}{4} a l \\
& =l(a+a)=2 a l
\end{aligned}
$$

[^9]$$
\therefore \quad \frac{\text { Volume of } \mathrm{Cu} \text { for 3-wire system }}{\text { Volume of } \mathrm{Cu} \text { for } 2 \text { - wire system }}=\frac{3}{4} a l \times \frac{1}{2 a l}=\frac{3}{8} \text { or } 37.5 \%
$$

13.15 Ground Detectors

Ground detectors are the devices that are used to detect/indicate the ground fault for ungrounded d.c. systems. When a ground fault occurs on such a system, immediate steps should be taken to clear it. If this is not done and a second ground fault happens, a short circuit occurs. Lamps are generally used for the detection of ground faults. They are connected for ungrounded 2-wire system as shown in Fig. 13.66. Each lamp

Fig. 13.66 should have a voltage rating equal to the line voltage. The two lamps in series, being subjected to half their rated voltage, will glow dimly. If a ground fault occurs on either wires, the lamp connected to the grounded wire will not glow while the other lamp will glow brightly.

SELF - TEST

1. Fill in the blanks by inserting appropriate words/figures.
(i) In a singly fed distributor, if fault occurs on any section, the supply to all consumers has to be \qquad
(ii) A ring main distributor fed at one end is equivalent to \qquad fed at both ends with equal voltages.
(iii) A distributor is designed from \qquad considerations.
(iv) The point of minimum potential of a uniformly loaded distributor fed at both ends with equal voltages will occur at \qquad
(v) The d.c. interconnector is used \qquad the voltage drops in the various sections of the distributor.
(vi) In a 3 wire d.c. system, the load on + ve side is 400A and on negative side it is 300A. Then current in neutral wire is \qquad
(vii) In a balanced 3-wire d.c. system, the potential of neutral is \qquad between that of outers.
(viii) A booster is used to \qquad voltage drop in feeders etc.
(ix) Balancer set is used to maintain voltage on the two sides of the neutral \qquad
(x) In a balanced 3-wire d.c. system, if voltage across the outers is 500 V , then voltage between any outer and neutral is \qquad
2. Pick up the correct words/figures from brackets and fill in the blanks.
(i) The voltage drop in a doubly fed distributor is \qquad than the equivalent singly fed distributor.
(less, more)
(ii) In a 3-wire system, the area of X-section of neutral is generally \qquad of either outer.
(half, double)
(iii) If in a 3-wire d.c. system, the current in the neutral wire is zero, then voltage between any outer and neutral is \qquad
(iv) A booster is connected in \qquad with the feeder. (the same, different)
(series, parallel)
(v) For exact compensation of voltage drop in the feeder, the booster must work on \qquad . portion of its V - I characteristic. (linear, non-linear)
(vi) The balancer machine connected to the heavily loaded side works as a
(generator, motor)

ANSWERS TO SELF-TEST

1. (i) shut off (ii) straight distributor (iii) voltage drop (iv) mid-point (v) to reduce (vi) 100 A (vii) midway (viii) compensate (ix) equal to each other $(x) 250 \mathrm{~V}$
2. (i) less (ii) half (iii) the same (iv) series (v) linear (vi) generator

CHAPTER REVIEW TOPICS

1. Describe briefly the different types of d.c. distributors.
2. What are the advantages of a doubly fed distributor over singly fed distributor ?
3. Derive an expression for the voltage drop for a uniformly loaded distributor fed at one end.
4. What is the purpose of interconnector in a d.c. ring main distributor?
5. Explain 3-wire d.c. system of distribution of electrical power.
6. What are the advantages of 3-wire distribution over 2-wire distribution ?
7. Show with a neat diagram how unbalanced loads in a 3-wire d.c. system cause unequal voltages on the two sides of the neutral.
8. Explain the use of rotary balancer in a 3-wire d.c. distribution system.
9. What is a booster ? With a neat diagram, explain how it can be used on a feeder.
10. Write short notes on the following :
(i) Ring main distributor
(ii) Current distribution in a 3-wire d.c. system
(iii) Balancers

DISCUSSION QUESTIONS

1. What is the importance of minimum potential on the distributor?
2. Why is 3-wire d.c. distribution preferred to 2-wire d.c. distribution ?
3. Which points of d.c. ring main should be connected through interconnector ?
4. Can we use compound generator as a booster ?
5. Why do we use a balancer set ?
6. Can exact balance of voltages to obtained with a balancer set ?

[^0]: * Thus the distributor from point M is supplied by the feeders SLM and SRQPONM.

[^1]: * Note that resistance of each conductor of $l=100 \mathrm{~m}$ is $r / 2$.

[^2]: * Because we have assumed that r ohm is the resistance of $1 \mathrm{~m}(=100 \mathrm{~cm})$ length of the distributor.

[^3]: * Knowing the value of I_{A}, current in any section can be determined. Thus,

 Current in section $C D, I_{C D}=I_{A}-20=61.7-20=41.7 \mathrm{~A}$ from C to D
 Current in section $E F, I_{E F}=I_{A}-110=61.7-110=-48.3 \mathrm{~A}$ from E to F
 $=48.3 \mathrm{~A}$ from F to E

[^4]: * As C is at minimum potential, therefore, there is no current at this point. Consequently, current in section $A C($ i.e. $i x)$ will be the current supplied by feeding point A.

[^5]: * Drop due to uniform loading can be determined by imagining that the distributor is cut into two at point D so that $A D$ can be thought as a distributor fed at one end and loaded uniformly.
 ** You may carry out the calculation by assuming C to be point of minimum potential. The answer will be unaffected.

[^6]: * For balanced loads i.e. equal loads on both sides of the neutral wire.

[^7]: * Remember, rise in potential should be considered positive while fall in potential should be considered negative. In section $A C$, current flows from A to C and hence there is fall in potential. In section $J N$, obviously, there is rise in potential.

[^8]: * Since both machines have the same excitation and run at the same speed, their induced e.m.f.s will be same.

[^9]: * Note that in case of 3-wire system, the voltage between the outers will be 2 V .

